
Homework 2 Part 2
Face Verification using Convolutional Neural Networks

11-785: Introduction to Deep Learning (FALL 2020)

DUE: 10/18/2020 11:59 PM ET

1 Introduction

Face recognition can be categorized into face classification and face verification. Given an image of a person’s
face, the task of classifying the ID of the face is known as face classification, which is a closed-set problem.
The task of determining whether two face images are of the same person is known as face verification, which
is an open-set problem1.

In this assignment, you will use Convolutional Neural Networks (CNNs) to design an end-to-end system for
face verification. Your system will be given two images as input and will output a score that quantifies
the similarity between the faces in these images. This helps us decide whether the faces from the two images
are of the same person or not.

You will train your model on a dataset with a few thousand images of labelled ID’s (i.e., a set of images,
each labeled by an ID that uniquely identifies the person). You will learn more about embeddings (in
this case, embeddings for face information), several loss functions, and, of course, convolutional layers as
effective shift-invariant feature extractors. You will also develop skills necessary for processing and training
neural networks with big data, which is often the scale at which deep neural networks demonstrate excellent
performance in practice.

2 Face Verification

The input to your system will be a trial, i.e., a pair of face images that may or may not belong to the same
person. Given a trial, your goal is to output a numeric score that quantifies how similar the faces in the
two images are. One straightforward approach is to flatten each image matrix into a vector and then to
compute the Euclidean distance between two vectors. A lower distance will indicate higher confidence that
the faces in the two images are of the same person. If you get a competitive result on Kaggle by applying this
approach(you can also define your own distance metric functions), you can skip the following texts except
for Dataset and Submission sections because you have finished hw2p2. If you do not get a desirable result
or if you don’t want to hurt your CNN’s feelings, the following instructions might help you out.

2.1 Face Embedding

We might not really encourage directly computing the distance between two image matrices for two reasons.
First, flattened image vectors are typically high-dimensional, which results in additional computation costs.
Second, original image features are not discriminative enough. Your task in this assignment is to train a
CNN model to extract a compact, low-dimensional feature, which keeps the most important information
of the image and is also discriminative. This compact feature will be represented in a fixed-length vector,
known as a face embedding. Given two face embeddings, you will use an appropriate metric between
the embeddings to produce your similarity scores. Tips on how to choose a proper distance metric will be
covered later.

1For close-set task, all testing identities are predefined in training set. For open-set task, testing identities typically do not
appear in training set

1

2.2 Getting Started

If you have trained your CNN, your end-to-end face verification system will use your CNN as follows - given
two images, each image will be passed through the CNN to generate corresponding face embeddings, between
which you will compute your similarity score. Your system will output this score. The next question is: how
should you train your CNN to produce high-quality face embeddings?

There are typically two popular approaches, both of which are able to give SOTA results. Feel free to choose
one of them or the combination of these two.

2.2.1 N-way Classification

Classification is a good start. Similar to speech classification in the previous assignment, you are able to
apply CNNs for face classification. Suppose the labeled dataset contains a total of M images that belong to
N different people (here, M > N). Your goal is to train your model on this data so that it produces “good”
face embeddings. You can do this by optimizing these embeddings for predicting the face IDs from the
images. More concretely, your network will consist of several (convolutional) layers for feature extraction.
The input will be (possibly a part of) the image of the face. The output of the last such feature extraction
layer is the face embedding. You will pass this face embedding through a linear layer with dimensions
embedding dim× num faceids, followed by softmax, to classify the image among the N (i.e., num faceids)
people. You can then use cross-entropy loss to optimize your network to predict the correct person for every
training image. After the network is trained, you will remove the linear/classification layer. This leaves you
with a CNN that computes face embeddings given arbitrary face images.

A high testing classification accuracy will probably indicate that your feature extractor is good enough
to generate discriminative face embeddings. You are encouraged to explore the interconnection between
classification accuracy and verification performance.

Though a good job in classification is guaranteed to help you reach the A-cutoff, you are free to apply
advanced loss functions such as Center-loss [1], LM [2], L-GM [3], SphereFace [4], CosFace [5], ArcFace [6],
UniformFace [7] to go beyond this.

2.2.2 Metric Learning

The second approach is actually called deep metric learning(DML): Instead of modeling the classes, you are
directly modeling the similarity between two images. The general goal is to make the minimum distance
between negative pairs larger than the maximum distance between positive pairs2.

A potential approach is to build a Siamese Neural Network [8] and apply a Contrastive loss function as
follows:

L =
1

N
ΣN

i=1[y ∗ d(Pi) + (1− y) ∗ (m− d(Pi))] (1)

Where d denotes Euclidean distance, and y = 1/0 indicates the pair Pi is positive/negative respectively. m
is a margin. N denotes total number of training objectives.

There are two popular approaches to make pairs for your verification system. One is offline selection: pairs
are generated before passed through the neural network. Another is online selection: pairs are generated
in the mini-batch during training. For offline selection, please pay attention to the ratio of #negative pairs to
#positive pairs. You are advised to set this ratio as 5:5, 6:4, 7:3. For online selection, one straightforward

method is to select all B(B−1)
2 pairs within a mini-batch of size B. You can also just select hard3 pairs within

the mini-batch, which is also referred to as Hard Sample Mining [9, 10].

Instead of measuring the similarity between pairs, you can also apply Triplet loss [11] or Quadruplet loss
[12] to model the similarities among triplets or quadruplets.

2Two instances in the positive pair should be from the same identity. Two instances in the negative pair should be from
different identities.

3Large similarity for negative pairs and small similarity for positive pairs

2

If you’re wondering if there exists a Quintuplets, Sextuplets, Septuplets or even Octuplets loss, you can refer
to the N-pair Loss [13], Lifted-Structure Loss [14], Softtriplet Loss [15] papers.

It may also be possible for other advanced loss functions such as Pair-Wise Loss [16], Multi-Similarity(MS)
[17], Mask Proxy(MP) [18] to give SOTA verification performance.

2.3 Loading Training Data

For loading the images, we recommend that you look into the ImageFolder dataset class of PyTorch at
https://pytorch.org/docs/stable/torchvision/datasets.html#imagefolder. The images in subfold-
ers of classification data are arranged in a way that is compatible with this dataset class. Note that
ImageFolder is helpful for both N-way classification, and Metric Learning tasks.

2.4 System Evaluation

This subsection briefly describes how the “quality” of your similarity scores will be evaluated. Given similarity
scores for many trials, some threshold score is needed to actually accept or reject pairs as same-person pairs
(i.e., when the similarity score is above the threshold) or different-person pairs (i.e., when the score is
below the threshold), respectively. For any given threshold, there are four conditions on the results: some
percentage of the different-person pairs will be accepted (known as the false positive rate), some percentage
of the same-person pairs will be rejected (known as the false rejection rate), some percentage of the different-
person pairs will be rejected (known as the true negative rate), and some percentage of the same-person pairs
will be accepted (known as the true positive rate).

The Receiver Operating Characteristic (ROC) curve is created by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold settings 4. The Area Under the Curve (AUC) for
the ROC curve is equal to the probability that a classifier will rank a randomly chosen similar pair (images
of same people) higher than a randomly chosen dissimilar one (images from two different people) (assuming
’similar’ ranks higher than ’dissimilar’ in terms of similarity scores).

This is the metric which will be used to evaluate the performance of your model for the face verification
task.

To track your progress, after an epoch of training, you can compute a similarity score for every trial in the
validation set, write them to another file. One suggested approach to compute AUC is to use the function
provided in sklearn library5:

• sklearn.metrics.roc auc score(true label, similarity scores). This function is useful for Ver-
ification Validation. It loads the true label array and the generated similarity scores array and prints
out the average AUC score. Please also pay attention to the difference between cosine similarity score
and Euclidean distance score.

2.5 Cosine Similarity VS Euclidean Distance

You may struggle with selecting a proper distance metric for the verification task. The most two popular
distance metrics used in verification are cosine similarity and Euclidean distance. We would tell you in that
both two metrics are able to reach SOTA score, but at least you should get an intuition on how to choose
one of them.

The metric should be training-objective-specific, where training objective refers to the loss function. Let us
start with revisiting softmax cross entropy:

Loss = − 1

N
ΣN

i=1log
eW

T
Yi

Xi

ΣN
j=1e

WT
Yj

Xi
(2)

4https://en.wikipedia.org/wiki/Receiver_operating_characteristic
5https://scikit-learn.org/stable/

3

https://pytorch.org/docs/stable/torchvision/datasets.html#imagefolder
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://scikit-learn.org/stable/

Where Yi is the label of Xi. If you take a thorough look at this formula, you will find that the objective is to
make the vector(embedding) Xi be closer to the vector WYi and be far away from other vectors WYj . Under
this rule, the WYi

is actually the center of i− th class. Because you are performing dot product between the
class center and the embedding, then each embedding would be similar to its center in the Angular Space,
which could be illustrated in the following Figure. 1. So during verification, you are strongly suggested to
apply cosine similarity rather than Euclidean distance to compute the similarity score.

Figure 1: Angular Space [4]

Furthermore, if we design our own loss function e.g. in Eq. 3, you are suggested to apply Euclidean distance
metric to compute similarity. (Is this RBF?)

Loss = − 1

N
ΣN

i=1log
e||WYi

−Xi||2

ΣN
j=1e

||WYj
−Xi||2

(3)

Question left to you, what metric is probably better if you start with metric learning and apply the loss
function in Eq. 1?

However, the aforementioned conclusions are not definitely true. We would tell you that sometimes Euclidean
distance is also good when you apply softmax XE in Eq. 2 and cosine similarity is also good when you apply
Eq. 3 as loss function. We would just give you the following hint and let you explore it.

||U − V ||22 = ||U ||22 + ||V ||22 − 2UTV (4)

3 Dataset

The data for the assignment can be downloaded from the Kaggle competition link 6. The dataset contains
images of size 64× 64 for all RGB channels.

3.1 File Structure

The structure of the dataset folder is as follows:

• classification data: Each sub-folder in train data, val data and test data contains images of
one person and the name of that sub-folder represents their ID.

– train data: You are supposed to use the train data set for training your model either for the
classification task or for the metric learning task.

– val data: If you are doing with classification task, you are supposed to use val data to validate
the classification accuracy. If you are doing with metric learning task, you can skip this folder.

6https://www.kaggle.com/c/11-785-fall-20-homework-2-part-2/overview

4

https://www.kaggle.com/c/11-785-fall-20-homework-2-part-2/overview

– test data: If you are doing with classification task, you are supposed to use test data to test
the classification accuracy. If you are doing with metric learning task, you can skip this folder.

• verification data: This is the directory that contains the images for both the Verification

Validation and Verification Test.

• verification pairs val.txt: This file contains the trials for Verification Validation. The first
two column are the images path of the trial. The third column contains the true label for the pair.
You are supposed to use the data in this file to validate your AUC score.

• verification pairs test.txt:This file contains the trials for Verification Test. The first two
column are the images path of the trial. You task is to compute the similarity between each two trials
and to generate submission file based on this.

• hw2p2 sample submission.csv: This is a sample submission file.

4 Submission

Following are the deliverables for this assignment:

• Kaggle submission for Face Verification7.

• A one page write up (PDF) describing your model architecture, loss function, hyper parameters, any
other interesting detail which led to your best result. Please limit the write up to one page. The link
for submitting the writeup will be posted later on Piazza.

5 Conclusion

That’s all. As always, feel free to ask on Piazza if you have any questions.

Good luck and enjoy the challenge!

References
[1] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach

for deep face recognition. In European conference on computer vision, pages 499–515. Springer, 2016.

[2] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolutional
neural networks. ProC. Int. Conf. Mach. Learn., 12 2016.

[3] W. Wan, Y. Zhong, T. Li, and J. Chen. Rethinking feature distribution for loss functions in image
classification. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9117–9126, 2018.

[4] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 212–220, 2017.

[5] H. Wang, Yitong Wang, Z. Zhou, Xing Ji, Zhifeng Li, Dihong Gong, Jingchao Zhou, and Wenyu Liu.
Cosface: Large margin cosine loss for deep face recognition. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5265–5274, 2018.

[6] Jiankang Deng, J. Guo, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face recognition.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4685–4694,
2019.

7https://www.kaggle.com/c/11-785-fall-20-homework-2-part-2/overview

5

https://www.kaggle.com/c/11-785-fall-20-homework-2-part-2/overview

[7] Y. Duan, J. Lu, and J. Zhou. Uniformface: Learning deep equidistributed representation for face
recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3410–3419, 2019.

[8] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot image
recognition. 2015.

[9] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R. Scott. Deep metric learning with hierarchical
triplet loss. In ECCV, 2018.

[10] R. Manmatha, Chao-Yuan Wu, Alexander J. Smola, and Philipp Krähenbühl. Sampling matters in
deep embedding learning. 2017 IEEE International Conference on Computer Vision (ICCV), pages
2859–2867, 2017.

[11] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 815–823, 2015.

[12] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond triplet loss: a deep quadruplet
network for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 403–412, 2017.

[13] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 1857–1865. Curran Associates, Inc., 2016.

[14] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted struc-
tured feature embedding, 2015.

[15] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric learning
without triplet sampling, 2019.

[16] H. Dhamyal, T. Zhou, B. Raj, and R. Singh. Optimizing neural network embeddings using a pair-
wise loss for text-independent speaker verification. In 2019 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pages 742–748, 2019.

[17] Xun Wang, Xintong Han, Weiling Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity loss
with general pair weighting for deep metric learning. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5017–5025, 2019.

[18] Mask proxy loss for text-independent speaker recognition. https://drive.google.com/file/d/

1XQ2vLhQWnRXUfiS-JR_g9m_taNVS11fR/view?usp=sharing, 2020.

6

https://drive.google.com/file/d/1XQ2vLhQWnRXUfiS-JR_g9m_taNVS11fR/view?usp=sharing
https://drive.google.com/file/d/1XQ2vLhQWnRXUfiS-JR_g9m_taNVS11fR/view?usp=sharing

	Introduction
	Face Verification
	Face Embedding
	Getting Started
	N-way Classification
	Metric Learning

	Loading Training Data
	System Evaluation
	Cosine Similarity VS Euclidean Distance

	Dataset
	File Structure

	Submission
	Conclusion

