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Annealing Your Learning Rate

source: https://www.jeremyjordan.me/nn-learning-rate/

1. Among all the hyper parameters existing in neural network, (personally speaking -.- ) 
learning rate is one of the most important hyper parameter that affects your training 
performance.

2. It is usually helpful to anneal the learning rate over time. (Increase of Decrease) 

3. Tricky: Decay it slowly and you’ll be wasting computation bouncing around chaotically 
with little improvement for a long time. But decay it too aggressively and the system will 
cool too quickly, unable to reach the best position it can.



Three common used methods 
(to the best of my knowledge -.- ) 

• Step Decay: Reduce the learning rate by a factor every few epochs. Typical values might be 
reducing the learning rate by 0.5 every X epochs, or by 0.1 every Y epochs. X, Y depend heavily 
on the type of problem and the performance of your model. 

• (ReduceOnPlateau) One heuristic you may see in practice is to watch the validation error while 
training with a fixed learning rate, and reduce the learning rate by a constant (e.g. 0.5) whenever 
the validation error stops improving.

source: https://www.jeremyjordan.me/nn-learning-rate/



Three common used methods 
(to the best of my knowledge -.- ) 

• Exponential Decay: Reduce the learning rate according to the following mathematical form 

where k and e are hyper parameters and t is the epoch number. 

source: https://www.jeremyjordan.me/nn-learning-rate/

• 1/t Decay: Reduce the learning rate according to the following mathematical form

where t is the epoch number. 

Step decay is slightly preferable because the hyper-parameters it involves are more interpretable 
than the hyper-parameter k



Regularization
Overfitting is a modeling error that occurs when a function is too closely fit to a limited set of data points.



Regularization in NN
• L1/L2 Regularization: It involves adding an extra element to the loss function, which 

punishes our model for being too complex or, in simple words, for using too high values in 
the weight matrix.  (usually, lambda is 1e-4 or 1e-5)



Regularization in NN
• Dropout: for each training batch, you turn off some neurons with a probability. 

• Motivations: With unlimited computation, the best way to “regularize” a fixed-sized model is to 
average the predictions of all possible settings of the parameters. Practically, it’s computationally 
prohibitive. So dropout provides a method to use O(n) neural network to approximate O(2^n) 
different architectures with shared O(n^2) parameters.

• Implementation: 
• Train Time: Mask some neuron outputs as 0 with a probability. 
• Test Time: No parameters masked at test time but need to multiply with the dropout 

probability to approximate the expected output.
• Typical dropout rate: [0.1, 0.5]. (Hyper-parameter)

Paper: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (https://jmlr.org/papers/v15/srivastava14a.html)



Regularization in NN
• Dropout: for each training batch, you turn off some neurons with a probability. 

• Results:
• It addresses two problems: 
• 1) overfitting: disable some outputs so the later layers cannot overfit the data.
• 2) generalization: Model combination nearly always improves the performance of machine 

learning methods. 

Paper: Dropout: A Simple Way to Prevent Neural Networks from Overfitting (https://jmlr.org/papers/v15/srivastava14a.html)



Regularization in NN

• Batch-Norm: wildly successful and simple technique for accelerating training and learning 
better neural network representations. 

• Motivation: The general motivation of BatchNorm is the non-stationarity of unit activity during 
training that requires downstream units to adapt to a non-stationary input distribution. This co-
adaptation problem, which the paper authors refer to as internal covariate shift, significantly 
slows learning. 

Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)

https://arxiv.org/abs/1502.03167


Regularization in NN
1.

2.

Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)

https://arxiv.org/abs/1502.03167


Regularization in NN
• 1) BN enables higher training rate: Normally, large learning rates may increase the scale of 

layer parameters, which then amplify the gradient during back propagation and lead to the model 
explosion. However, with Batch Normalization, back propagation through a layer is unaffected 
by the scale of its parameters. 

• 2) Faster Convergence.

• 3) BN regularizes the model: a training example is seen in conjunction with other examples in 
the mini-batch, and the training network no longer producing deterministic values for a given 
training example. In our experiments, we found this effect to be advantageous to the 
generalization of the network. 

Paper: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167)

https://arxiv.org/abs/1502.03167


Other Regularization in NN

• Early Stop: literally, just stop the training when you see the validation score decreases. 
(overfit begins)

• Gradient Clipping: this is very important for RNN models. https://deepai.org/machine-
learning-glossary-and-terms/gradient-clipping. 

• Parameter Initializations: https://cs231n.github.io/neural-networks-2/#init

https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping
https://deepai.org/machine-learning-glossary-and-terms/gradient-clipping


Common Pitfalls
• Zero initialization: this would a very bad performance issue. -> each neuron would be 

identical. 


• Forget to shuffle the data set -> Equally as bad as zero initialization because there is no 
randomness.


• Choose of learning rate. 

• Too Large: don’t converge.


• Too Small: don’t get rid of the local optima.


• Choose of batch size 

• According to the property of SGD, smaller batch size leads to better convergence rate. But 
smaller batch size would deteriorate the performance of BN layer and running speed.


• Problem with momentum method. (prone to local minima)



Common Pitfalls

• Order of BatchNorm and activation function. (Paper: https://arxiv.org/abs/1905.05928v1 )


• Linear->BN->ReLU


• Linear->ReLU->BN (reference paper)


• Tricky things come when using BatchNorm and Dropout together. (Paper: https://arxiv.org/abs/
1801.05134)


• Theoretically, they work against each other.


• Forget to normalize your input data. This would not be a problem if you are using BN.


• Put LR_scheduler in batch loop


• Forget optimizer.zero_grad()

https://arxiv.org/abs/1905.05928v1
https://arxiv.org/abs/1801.05134
https://arxiv.org/abs/1801.05134


Tips for Improving the 
models

• Ensemble: 


• Different initializations, different architecture, different optimizers.


• Different epochs.


• Dropout


• What if we use dropout before the first linear layer?


• Deeper and wider


• Learning Rate Scheduler


• Try cyclic learning rate scheduler. e.g. CosineAnnealingLR


• Learning Rate warmup: solve the Radom initialization problem.  Lead to stable learning 
process.


