Generative Adversarial Networks

Benjamin Striner¹

¹Carnegie Mellon University

November 23, 2020

イロト イ団ト イヨト イヨト

CMU

Benjamin Striner

GANs

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- **3** GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- 3 GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

Overview

Generative Adversarial Networks (GANs) are a powerful and flexible tool for generative modeling

- What is a GAN?
- How do GANs work theoretically?
- What kinds of problems can GANs address?
- How do we make GANs work correctly in practice?

イロト イポト イヨト イヨト

Motivation

Generative networks are used to generate samples from an unlabeled distribution P(X) given samples X_1, \ldots, X_n . For example:

- Learn to generate realistic images given exemplary images
- Learn to generate realistic music given exemplary recordings
- Learn to generate realistic text given exemplary corpus

Great strides in recent years, so we will start by appreciating some end results!

イロト イボト イヨト イヨト

GANs (2014)

Output of original GAN paper, 2014 [GPM⁺14]

c)

d)

≣⇒

CMU

Benjamin Striner

4.5 Years of Progress

GAN quality has progressed rapidly

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

Large Scale GAN Training for High Fidelity Natural Image Synthesis (2019)

Generating High-Quality Images [BDS18]

Figure 6: Samples generated by our BigGAN model at 512×512 resolution.

イロト イボト イヨト イヨト

StarGAN (2018)

Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset. The first and sixth columns show input images while the rmaining columns are images generated by StarGAN. Note that the images are generated by a single generator has a length such as anyet, happy, and fearful are from RaFD, not CelebA.

CMU

Benjamin Striner

Progressive Growing of GANs (2018)

Generating new celebrities and a pretty cool video https://www.youtube.com/watch?v=X0xxPcy5Gr4 [KALL17]

Figure 5: 1024×1024 images generated using the CELEBA-HQ dataset. See Appendix F for a larger set of results, and the accompanying video for latent space interpolations.

イロト イボト イヨト イヨト

Unsupervised Image to Image Translation (2018)

Changing the weather

https://www.youtube.com/watch?v=9VC0c3pndbI [LBK17]

イロト イ団ト イヨト イヨト

CMU

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- 3 GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

Generative vs. Discriminative Networks

Given a distribution of inputs X and labels Y

- Discriminative networks model the conditional distribution $P(Y \mid X)$.
- Generative networks model the joint distribution P(X, Y).

イロン イ団 と イヨン イヨン

Why Generative Networks?

• Model understands the joint distribution P(X, Y).

- Can calculate P(X | Y) using Bayes rule.
- Can perform other tasks like P(X | Y), generating data from the label.
- "Deeper" understanding of the distribution than a discriminative model.
- If you only have X, you can still build a model. Many ways to leverage unlabeled data. Not every problem is discriminative.
- However, model for P(X, Y) is harder to learn than P(Y | X)
 - Map from X to Y is typically many to one
 - Map from Y to X is typically one to many
 - Dimensionality of X typically >> dimensionality of Y

イロン イロン イヨン イヨン

Traditional Viewpoint

When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a more general one. Vapnik 1995

イロト イポト イヨト イヨト

Alternative Viewpoint

(a) The generative model does indeed have a higher asymptotic error (as the number of training examples becomes large) than the discriminative model, but (b) The generative model may also approach its asymptotic error much faster than the discriminative model—possibly with a number of training examples that is only logarithmic, rather than linear, in the number of parameters.

イロト イポト イヨト イヨト

CMU

Ng and Jordan 2001

(日) (四) (三) (三)

CMU

Implicit vs Explicit Distribution Modeling

- Explicit: calculate $P(x \sim X)$ for all x
- Implicit: can generate samples $x \sim X$

Why might one be easier or harder?

Explicit Distribution Modeling

Y is a label (cat vs dog): output probability X is a dog
Y is an image: output probability of image Y
Why might one be easier or harder?

イロト イ団ト イヨト イヨト

Implicit Distribution Modeling

- Y is a label (cat vs dog): generate cat/dog labels at appropriate ratios
- Y is an image: output samples of images

Why might one be easier or harder? More or less useful?

イロト イポト イヨト イヨト

Can you convert models?

Could you convert an explicit model to an implicit model?
Could you convert an implicit model to an explicit model?
Why?

イロト イポト イヨト イヨト

Can you convert models?

- Sample from explicit model to create an implicit model
- Fit explicit model to samples or define explicit model as mixture of samples

イロト イポト イヨト イヨト

イロト イ団ト イヨト イヨト

æ

CMU

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- 3 GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

GANs and VAEs

GANs and VAEs are two large families of generative models that are useful to compare

- Generative Adversarial Networks (GANs) minimize the divergence between the generated distribution and the target distribution. This is a noisy and difficult optimization.
- Variational Autoencoders (VAEs) minimize a bound on the divergence between the generated distribution and the target distribution. This is a simpler optimization but can produce "blurry" results.

We will discuss some high-level comparisons between the two. There is also research on hybridizing the two models.

イロト イポト イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

æ

- What is a VAE?
- What does a VAE optimize?

Similar to a typical autoencoder

- Trained to reconstruct inputs
- Encoder models $P(Z \mid X)$
- Decoder models $P(X \mid Z)$
- Hidden representation Z is learned by the model
- We encourage the marginal distribution over Z to match a prior Q(Z)
- Hidden representation during training is generated by encoder
- $\blacksquare \mathbb{E}_X P(Z \mid X) \approx Q(Z)$
- If our prior is something simple, then we can draw samples from the prior and pass them to the decoder. $D(Z) \approx X$

イロン イ団 と イヨン イヨン

Bounds vs Estimates

Both VAE and GAN attempt to create a generative model such that $G(Z) \approx X$

- A VAE is an example of optimizing a bound. Optimization is relatively straightforward but you are not really optimizing what you want and will get artifacts. You aren't really learning P(X)
- A GAN is an example of optimizing an estimate using sampling. Optimization is complicated and the accuracy of the estimate depends on many factors but the model is attempting to model P(X).

Bounds make things tractable at the cost of artifacts. Sampling might get better results while requiring more calculations. (Rough generalizations apply to many trade-offs in ML)

Pros and Cons

- GANs produce "sharper" results
- VAEs train faster and more reliably
- VAEs require an analytical understanding of the prior and it's KL divergence
- GANs only require the ability to sample from a prior
- VAEs learn an encoder decoder pair but GANs do not
- VAEs are more theoretically justified, the GAN zoo is more based on what works
- VAE generator trained on encoded data but evaluated on prior samples; GAN trained and evaluated on prior samples

イロン イ団 と イヨン イヨン

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- 3 GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?

8 Bibliography

GANs

Generative Adversarial Networks were introduced in 2014 $\ensuremath{\left[\mathsf{GPM}^+14 \right]}$

- Goal is to model P(X), the distribution of the training data
- Model can generate samples from P(X)
- Trained using a pair of "adversaries" (two players with conflicting loss functions)

イロン イヨン イヨン ・

Generator

- The generator learns P(X | Z); produce realistic looking output samples X given samples from a hidden space Z
 - Hidden representation Z is sampled from a known prior, such as a Gaussian
 - Generator function can be deterministic because composition of sampling from prior and the generator is stochastic
 - Generator maps between a simple known distribution and a complicated output distribution; learns a lower-dimensional manifold in the output space
 - However, no simple loss function available to measure the divergence between the generated distribution and the real distribution
 - Easy to measure distance between individual samples, harder to measure distance between complicated distributions
 - Instead of a traditional loss function, loss is calculated by a discriminator (another network)

Goal of the generator is for the generated distribution $G(z) \sim Z$ to match the true P(X). We sample from some simple distribution Z, put it into G, and we get samples from P(X).

イロト イボト イヨト イヨト

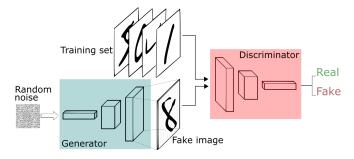
Discriminator

- The discriminator is a secondary neural network that guides the generator
 - Trained to tell the difference between real and generated data
 - Generator tries to "confuse" the discriminator, so it can't tell the difference between real and generated data
 - Discriminator tells generator how to look more "real" and less "fake" / "generated"

・ロト ・四ト ・ヨト ・ヨト

- "Throwaway" network only really useful to train the generator
- Serves the purpose of a "loss function" in other models

GAN Architecture Diagram



https://medium.freecodecamp.org/

an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

	< 그 > < 크 > < 크 > < 크 > < 크 >	-2	4) Q (4
Benjamin Striner			CMU
GANs			

Min-Max Gaming

The original GAN formulation is the following min-max game

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{X} \log D(X) + \mathbb{E}_{Z} \log(1 - D(G(Z)))$$

・ロト ・四ト ・ヨト ・ヨト

æ

CMU

• D wants D(X) = 1 and D(G(Z)) = 0

•
$$G$$
 wants $D(G(Z)) = 1$

Min-Max Optimal Discriminator

What is the optimal discriminator?

$$f := \mathbb{E}_{X \sim P_D} \log D(X) + \mathbb{E}_{X \sim P_G} \log(1 - D(X))$$
$$= \int_X [P_D(X) \log D(X) + P_G(X) \log(1 - D(X))] dX$$
$$\frac{\partial f}{\partial D(X)} = \frac{P_D(X)}{D(X)} - \frac{P_G(X)}{1 - D(X)} = 0$$
$$\frac{P_D(X)}{D(X)} = \frac{P_G(X)}{1 - D(X)}$$
$$(1 - D(X))P_D(X) = D(X)P_G(X)$$
$$D(X) = \frac{P_D(X)}{P_G(X) + P_D(X)}$$

イロト イ団ト イヨト イヨト

æ

Min-Max Optimal Value

What is value at the optimal discriminator?

$$\begin{split} m(X) &= \frac{P_D + P_G}{2} \\ JS(P_D \| P_G) &= \frac{1}{2} KL(P_D \| m) + \frac{1}{2} KL(P_G | m) \\ f &:= \mathbb{E}_{X \sim P_D} \log D(X) + \mathbb{E}_{X \sim P_G} \log(1 - D(X)) \\ &= \mathbb{E}_{P_D} \log \frac{P_D(X)}{P_G(X) + P_G(X)} + \mathbb{E}_{P_G} \log \frac{P_G(X)}{P_G(X) + P_G(X)} \\ &= JSD(P_D | P_G) - \log 4 \end{split}$$

Min-Max Optimal Generator

What is the optimal generator?

$$\min_{G} JSD(P_D \| P_G) - \log 4$$

Minimize the Jensen-Shannon divergence between the real and generated distributions (make the distributions similar)

GANS

Min-Max Stationary Point

There exists a stationary point

- If the generated data exactly matches the real data, the discriminator should output 0.5 for all inputs
- If the discriminator outputs 0.5 for all inputs, the gradient to the generator is flat, so the generated distribution has no reason to change

< D > < A > < B > < B >

Min-Max Stable Point

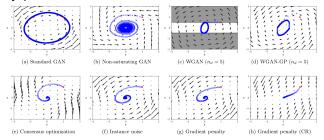
- The stationary point might not be stable (depends on exact GAN formulation and other factors)
 - If the generated data is near the real data, the discriminator outputs might be arbitrarily large
 - Generator may overshoot some values or oscillate around an optimum
 - Whether those oscillations converge or not depends on training details
- Imagine real data and generated data are separated by some minimal distance. A discriminator with unlimited capacity can still assign an arbitrarily large distance between these distributions.

Min-Max Optimization

- The hard part is that both generator and discriminator need to be trained simultaneously
- If the discriminator is under-trained, it provides incorrect information to the generator
- If the discriminator is over-trained, there is nothing local that a generator can do to get a marginal improvement
- The correct discriminator changes during training
- Discriminator and generator are trying to hit "moving targets"
- Significant research on techniques, tricks, modifications, etc. to help stabilize training

GAN Stability in Pictures

There are many variations of GANs that attempt to make the stationary point more stable



https://avg.is.tuebingen.mpg.de/projects/convergence-and-stability-of-gan-training

GAN Stability in Videos

GANs can be very sensitive to hyperparameters (more training details next time), as seen in these MNIST examples

- Good Hyperparameters https://www.youtube.com/watch?v=IUiOREAWj2c&t=4s
- Bad Hyperparameters https://www.youtube.com/watch?v=J8m1NXLwSKw
- More Advanced Method (WGAN-GP)

https://www.youtube.com/watch?v=unXILX2wp1A

Perceptual Loss

- A discriminator might be able to address the ethereal issue of "perceptual distance"
 - Loss functions like L₂ are easy to implement and optimize
 - The L₂ distance is not very representative of images humans consider "similar"
 - Discriminator loss is much more flexible than L_1 , L_2 , etc.
 - For example, if discriminator includes a CNN, pooling, etc., then the loss will have some degree of shift invariance
- Although an idealized discriminator just calculates the JS divergence, a real discriminator calculates something much more complicated

イロン イヨン イヨン イヨン

Implicit Distributions

- Note that a generator implicitly learns a target distribution P(X)
 - Generator models $P(X \mid Z)$
 - Can draw samples from P(X) by drawing samples from P(Z) and calculating P(X | Z)

 - So easy to draw samples, but requires sampling to calculate things like the likelihood of a given input

イロン イ団 と イヨン イヨン

The Good, the Bad, and the Ugly

- Good GANs can produce awesome, crisp results for many problems
- Bad GANs have stability issues and open theoretical questions
- Ugly Many ad-hoc tricks and modifications to get GANs to work correctly

GAN vs VAE Models

Imagine a target distribution with two modes.

- Ideal representation has bimodal Z latent representation
- Completely bimodal encoder has infinite loss under VAE. Why?
- Bimodal mapping of Z has minimal loss under GAN. Why?

GAN vs VAE Model Explanation

Imagine dogs are encoded to 0 with 1.0 probability and cats are encoded to 1 with 1.0 probability, and the prior is a binary variable .5/.5 takes the value 0/1.

- The average KL between the encoding and the prior is infinite. Can you show that?
- The KL between the marginal distribution and the prior is 0.
- VAE calculates average divergence between conditional and prior
- GAN calculates divergence between marginal and prior

(日) (四) (三) (三)

IWAE Helps (tangent)

Importance Weighted Autoencoder is somewhat like a variant of VAE that can give better results. Please read the paper if you are interested.

< ロ > < 同 > < 三 > < 三 >

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- **3** GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

▲ロ▶▲圖▶▲≣▶▲≣▶ = つんの

GAN Evaluation

- The task of generating realistic-looking images is not as easily quantified as a task like correctly labeling images
- The distribution is implicit and we cannot easily evaluate by something like calculating the likelihood of a test set
 - Ask humans to compare and evaluate image quality
 - Sampling-based methods can approximately calculate the likelihood of a test set.
 - Neural networks trained for other purposes can be co-opted to evaluate GANs

Human Evaluations

The most direct answer to the question of whether generated data is "realistic-looking"

- Expensive
- Time consuming
- Not reproducible
- Yet maybe the only justifyable way to claim that generated data is "realistic"
- Maybe not so bad with MechanicalTurk, etc.

Approximate test set likelihood

A simple method to approximate the likelihood of a test set. However, not very accurate or efficient and requires a number of assumptions and hyperparameters.

- Cannot directly calculate P(X), only $P(X \mid Z)$
- Therefore, pull many samples of Z and calculate P(X | Z) for each, and then calculate the average probability
- If you generate a million images, and count how many of those match your test point, then you know the probability of the test point, sounds feasible ...?
- No image matches exactly, so generate a million images and place a Gaussian around each one. Convert your GAN to a GMM and calculate the probability under the GMM.
- Requires many samples, and some assumptions about a meaningful ball around each generated X -> -> -> -> -> -> ->

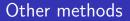
GANS

Evaluate with Discriminative Network

A standard discriminative network can be used to evaluate a GAN under some assumptions and some independence

- An Inception or other standard network is trained to classify real images into some number of labels
- A GAN is trained to generate images and is not given the labels
- If the GAN is generating images correctly
 - Inception should produce a wide variety of labels
 - Each label should have high confidence
- The "Inception Score" quantifies this intuition in terms of the entropy of each labeling and the entropy of the marginal labeling [SGZ⁺16]

・ロト ・四ト ・ヨト ・ヨト



Stay tuned next week. WGAN provides somewhat of a method for comparison using a discriminator.

CMU

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- **3** GANs and VAEs
- 4 GAN Theory
- **5** GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

GAN Architectures

There are many variations of GANs for modeling different tasks. This is not meant to be exhaustive but a sample of the possibilities.

- GAN
- Conditional GAN
- LapGAN
- Recurrent Adversarial Network
- Categorical GAN
- InfoGAN
- AAE
- BiGAN
- CycleGAN

Unqualified, "GAN" typically refers to a simple model of P(X) [GPM⁺14]. This is a vanilla GAN. Think unsupervised generation of unlabeled images, video, etc.

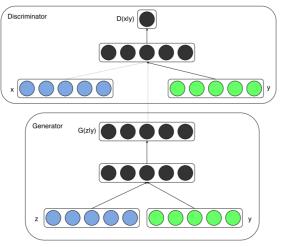
Conditional GANs

A conditional GAN models P(X | Y). For example, generate samples of MNIST conditioned on the digit you are generating. [MO14]. The model is constructed by adding the labels Y as an input to both generator and discriminator.

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{X} \log D(X,Y) + \mathbb{E}_{Z} \log D(G(Z,Y),Y)$

イロト イポト イヨト イヨト

Conditional GAN Architecture



Conditional GAN Results

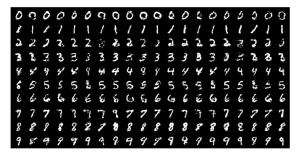


Figure 2: Generated MNIST digits, each row conditioned on one label

イロト イヨト イヨト イヨト

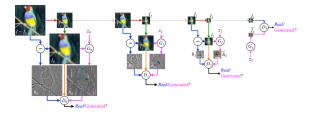
æ

LapGAN

A Laplacian GAN is constructed of a chain of conditional GANs, to generate progressively larger images. A GAN generates small, blurry images. A conditional GAN generates larger images conditioned on the smaller image, repeated until you reach the desired size. [DCSF15]

イロト イポト イヨト イヨト

LapGAN Architecture



▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

CMU

Benjamin Striner

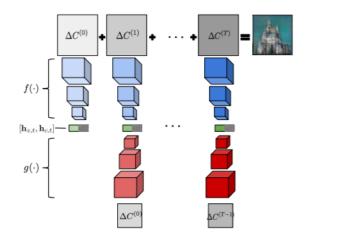
GANs

Recurrent Adversarial Networks

A recurrent adversarial network iteratively modifies a canvas to draw an image over several timesteps. The inputs to the generator are a sequence of prior samples. [IKJM16]

イロト イポト イヨト イヨト

Recurrent Adversarial Network Architecture



< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Recurrent Adversarial Network Results

Images are generated over several timesteps

Figure 25. Drawing at different time steps on mnist samples.

Categorical GANs

A categorical GAN is useful for clustering and semi-supervised learning. Rather than a binary output, the discriminator produces a softmax output. The discriminator attempts to correctly label real data with low entropy and to produce high entropy labels for generated data. [Spr15]

CatGAN Results

Figure 2: Comparison between k-means (left), RIM (middle) and CatGAN (rightmost three) – with neural networks – on the "circles" dataset with K = 2. Blue and green denote class assignments to the two different classes. For CatGAN we visualize class assignments – both on the dataset and on a larger region of the input domain – and generated samples. Best viewed in color.

イロト イヨト イヨト イヨト

InfoGANs

An InfoGAN learns both a decoder and a partial encoder. A secondary loss term is added to train an encoder to recover the hidden space from the output. The hidden space is split into c (information you care about) and z (noise you don't care about). [CDH⁺16]

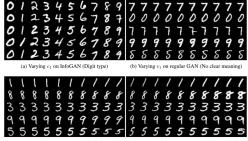
$$\min_{G} \max_{D} V_{I}(D, G) = V(D, G) - \lambda I(c; G(z, c))$$

The premise is that if you can recover z, then z will be meaningful and "disentangled"

(日) (四) (三) (三)

InfoGAN Representations

InfoGAN learns meaningful representations



(c) Varying c2 from -2 to 2 on InfoGAN (Rotation) (d) Varying c3 from -2 to 2 on InfoGAN (Width)

Adversarial Autoencoders

An adversarial autoencoder is like a combination of VAE and GAN. An encoder/decoder pair is trained to reconstruct X using hidden representation Z. [MSJG15]

- In VAE, encodings E_XP(Z | X) match prior Q(Z) using bounds on KL divergence
- In AAE, encodings E_XP(Z | X) match prior Q(Z) using discriminator to measure distance between the two distributions

If we have an autoencoder where the latent distribution is a known prior, then we can sample from Z directly, and now have a generative model.

3

イロト 不同 トイヨト イヨト

AAE Architecture



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

CMU

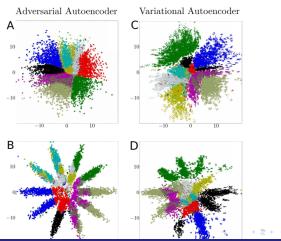
Benjamin Striner

AAE vs. VAE

- Learns encoder/decoder pair instead of just decoder
- Discriminator works on latent space not input/output space, so easy to use on discrete inputs/outputs
- Latent space is strongly regularized to match prior exactly
- However, still requires a traditional loss function for reconstruction loss

AAE vs. VAE Visualized

AAE latent space matches prior better than VAE



CMU

Benjamin Striner

BiGANs

A Bi-Directional Generative Adversarial Network trains an encoder/decoder pair in an elegant fashion. The discriminator tries to tell the difference between pairs of real data and encoded real data from data generated from prior samples and prior samples. [DKD16]

$$V(D, E, G) = \mathbb{E}_X \log D(X, E(X)) + \mathbb{E}_Z \log(1 - D(G(Z), Z))$$

This method simultaneously trains the pair and does not require any assumptions about the distance metric in either the hidden or output spaces.

イロト イポト イヨト イヨト

BiGAN Architecture

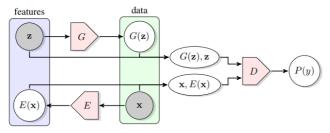


Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

・ロト ・四ト ・ヨト ・ヨト

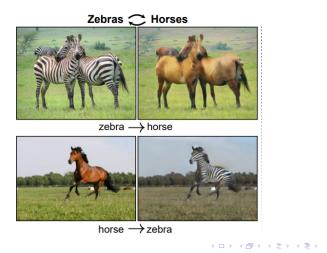
æ

CycleGAN trains a pair of conditional GANs to perform image-to-image translation [ZPIE17].

- GAN A trained to convert from X to Y
- GAN *B* trained to convert from *Y* to *X*
- Additional "cycle-consistency" losses $||Y A(B(Y))||_1$ and ||X B(A(X))||

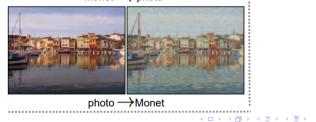
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

CycleGAN Results



э

CycleGAN Results



э

CMU

Benjamin Striner

GANs

CycleGAN Results

CMU

Benjamin Striner

GANs

- There is no paired dataset of zebras and horses
- So no easy discriminative method to train zebras from horses
- But using GANs, can train distributions to match

イロト イボト イヨト イヨト

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- **3** GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

What's next?

- Many issues trying to optimize the original formulation
- Explore why original GAN needs modifications
- Learn techniques for training GANs that actually work
 Please feel free to contact me with any questions.
 bstriner@gmail.com

イロト イポト イヨト イヨト

Table of Contents

1 Motivation

- 2 Generative vs. Discriminative
- **3** GANs and VAEs
- 4 GAN Theory
- 5 GAN Evaluation
- 6 GAN Architectures
- 7 What's next?
- 8 Bibliography

▲日▼▲□▼▲目▼▲目▼▲□▼ ④40

References I

- Andrew Brock, Jeff Donahue, and Karen Simonyan, Large scale GAN training for high fidelity natural image synthesis, CoRR abs/1809.11096 (2018).
- Yunjey Choi, Min-Je Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo, *Stargan: Unified generative adversarial networks for multi-domain image-to-image translation*, CoRR **abs/1711.09020** (2017).
- Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel, *Infogan: Interpretable representation learning by information maximizing generative adversarial nets*, CoRR **abs/1606.03657** (2016).

イロト イボト イヨト イヨト

References II

- Emily L. Denton, Soumith Chintala, Arthur Szlam, and Robert Fergus, Deep generative image models using a laplacian pyramid of adversarial networks, CoRR abs/1506.05751 (2015).
- Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell, Adversarial feature learning, CoRR **abs/1605.09782** (2016).
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, *Generative Adversarial Networks*, ArXiv e-prints (2014).

References III

- Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, and Roland Memisevic, *Generating images with recurrent* adversarial networks, CoRR abs/1602.05110 (2016).
- Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen, *Progressive growing of gans for improved quality, stability, and variation*, CoRR **abs/1710.10196** (2017).
- Ming-Yu Liu, Thomas Breuel, and Jan Kautz, Unsupervised image-to-image translation networks, CoRR abs/1703.00848 (2017).
- Mehdi Mirza and Simon Osindero, *Conditional generative adversarial nets*, CoRR **abs/1411.1784** (2014).

イロト イボト イヨト イヨト

References IV

- Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow, Adversarial autoencoders, CoRR abs/1511.05644 (2015).
- Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen, *Improved techniques for training gans*, CoRR **abs/1606.03498** (2016).
 - Jost Tobias Springenberg, Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks, arXiv e-prints (2015), arXiv:1511.06390.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, CoRR abs/1703.10593 (2017).

< ロ > < 同 > < 三 > < 三 >