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Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or 

“does this recording include HELLO”  are best performed by scanning for 
the target pattern

• Scanning an input with a network and combining the outcomes is 
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or subnetwork makes the final decision

• Deformations in the input can be handled by “max pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a 
convolutional network

• For 1-D scan along time, it is called a Time-delay neural network
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A little history

• How do animals see?
– What is the neural process from eye to recognition?

• Early research: 
– largely based on behavioral studies 

• Study behavioral judgment in response to visual stimulation
• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images
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Hubel and Wiesel 1959

• First study on neural correlates of vision. 
– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”:  Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators
– Anaesthetized with truth serum
– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied
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Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina 
through fully open (slitted) Iris
– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and 
measured neural responses in striate cortex
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Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical 
units were called receptive fields. 

– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina, 

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions
• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– A spot of light gave greater response for some directions of movement than others.
• Can be used to determine the receptive field

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.
• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel
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Hubel and Wiesel 59

• Response as orientation of input light rotates
– Note spikes – this neuron is sensitive to vertical bands
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Hubel and Wiesel
• Oriented slits of light were the most effective stimuli for activating 

striate cortex neurons

• The orientation selectivity resulted from the previous level of input 
because lower level neurons responding to a slit also responded to 
patterns of spots if they were aligned with the same orientation as 
the slit. 

• In a later paper (Hubel & Wiesel, 1962), they showed that within 
the striate cortex, two levels of processing could be identified
– Between neurons referred to as simple S-cells and complex C-cells. 
– Both types responded to oriented slits of light, but complex cells were 

not “confused” by spots of light while simple cells could be confused
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Hubel and Wiesel model

• ll

Transform from circular retinal 
receptive fields to elongated fields for 
simple cells.  The simple cells are 
susceptible to fuzziness and noise

Composition of complex receptive 
fields from simple cells. The C-cell 
responds to the largest output from a 
bank of S-cells to achieve oriented 
response that is robust to distortion 
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Hubel and Wiesel
• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns 
by composing early neural responses
– Successive transformation through Simple-Complex 

combination layers

• Demonstrated more and more complex responses in 
later papers
– Later experiments were on waking macaque monkeys

• Too horrible to recall
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Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of 
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing 
early neural responses

– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall
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Adding insult to injury..

• “However, this model cannot accommodate 
the color, spatial frequency and many other 
features to which neurons are tuned.  The 
exact organization of all these cortical columns 
within V1 remains a hot topic of current 
research.”
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Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the
Hubel-Wiesel model

• One of the chief problems: Position invariance of 
input
– Your grandmother cell fires even if your grandmother 

moves to a different location in your field of vision

Kunihiko Fukushima
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NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising  a 
layer of “S-cells” followed by a layer of “C-cells”
– ௌ௟ is the lth layer of S cells, ஼௟ is the lth layer of C cells

• S-cells respond to the signal in the previous layer
• C-cells confirm the S-cells’ response

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their 
response

Figures from Fukushima, ‘80
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NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.  
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the 
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input to the plane than the 
adjacent cells in the plane.
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NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-specific 
patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding planes of the 
S layers 17



Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–
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Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–

Could simply replace these 
strange functions with a
RELU and a max
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NeoCognitron

• The deeper the layer, the larger the receptive field of 
each neuron
– Cell planes get smaller with layer number
– Number of planes increases

• i.e the number of complex pattern detectors increases with layer 20



Learning in the neocognitron

• Unsupervised learning 
• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤௜௝ = 𝑥௜𝑦௝

• Within any layer,  at any position, only the maximum S from all the layers is 
selected for update

– Also viewed as max-valued cell from each S column
• Ensures only one of the planes picks up any feature
• If multiple max selections are on the same plane, only the largest is chosen

– But across all positions, multiple planes will be selected

• Updates are distributed across all cells within the plane

max
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Learning in the neocognitron

• Ensures different planes learn different features
– E.g.  Given many examples of the character “A” the different cell 

planes in the S-C layers may learn the patterns shown
• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion
• Unsupervised: Effectively clustering
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Neocognitron – finale

• Fukushima showed it successfully learns to 
cluster semantic visual concepts
– E.g. number or characters, even in noise
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Adding Supervision

• The neocognitron is fully unsupervised
– Semantic labels are automatically learned

• Can we add external supervision?
• Various proposals:

– Temporal correlation:  Homma, Atlas, Marks, ‘88
– TDNN:  Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun
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Supervising the neocognitron

• Add an extra decision layer after the final C layer
– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters
– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of 
every layer
– C-cells are not updated

Output
class 
label(s)
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Scanning vs. multiple filters

• Note: The original Neocognitron actually uses 
many identical copies of a neuron in each S 
and C plane 
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Supervising the neocognitron

• The Math
– Assuming square receptive fields, rather than elliptical ones
– Receptive field of S cells in lth layer is ௟ ௟

– Receptive field of C cells in lth layer is ௟ ௟

Output
class 
label(s)
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Supervising the neocognitron

• This is, however, identical to “scanning” (convolving) 
with a single neuron/filter (what LeNet actually did)

Output
class 
label(s)

𝑺,𝒍,𝒏 𝑺,𝒍,𝒏 𝑪,𝒍ି𝟏,𝒑

𝑲𝒍

௟ୀଵ

𝑲𝒍

௞ୀଵ𝒑

𝑪,𝒍,𝒏
௞∈ ௜,௜ା௅೗ ,௝∈(௟,௟ା௅೗)

𝑺,𝒍,𝒏
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Convolutional Neural Networks
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Story so far
• The mammalian visual cortex contains of S cells, which capture oriented 

visual patterns and C cells which perform a “majority” vote over groups of 
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C 
cells with identical response, to enable shift invariance
– Only S cells are learned
– C cells perform the equivalent of a max over groups of S cells for robustness
– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron
– S planes of cells with identical response are modelled by a scan (convolution) 

over image planes by a single neuron
– C planes are emulated by cells that perform a max over groups of S cells

• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”
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The general architecture of a 
convolutional neural network

• A convolutional neural network comprises “convolutional” and “downsampling” layers
– Convolutional layers comprise neurons that scan their input for patterns 

• Correspond to S planes

– Downsampling layers perform max operations on groups of outputs from the convolutional layers 
• Correspond to C planes

– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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The general architecture of a 
convolutional neural network

• A convolutional neural network comprises of “convolutional” and 
“downsampling” layers
– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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The general architecture of a 
convolutional neural network

• Convolutional layers and the MLP are learnable
– Their parameters must be learned from training data for the target 

classification task

• Down-sampling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output
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A convolutional layer

• A convolutional layer comprises of a series of “maps”
– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer
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A convolutional layer

• Each activation map has two components
– An affine map, obtained by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer
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A convolutional layer: affine map

• All the maps in the previous layer contribute 
to each convolution 

Previous
layer

Previous
layer
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A convolutional layer: affine map

• All the maps in the previous layer contribute to 
each convolution 
– Consider the contribution of a single map

Previous
layer

Previous
layer
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What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights 

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter bias
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What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are 

multiplied component wise, and the products are added along with 
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

39



The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2
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The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

filter
Input layer

Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

49



What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

filter1 filter2
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠
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A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various 
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)
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The “cube” view of input maps

• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

One map

bias

The “cube” view of input maps

59



• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

All maps

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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• The computation of the convolutional map at any 
location sums the convolutional outputs at all 
planes

bias

The “cube” view of input maps
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Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
66



Engineering consideration: The size of 
the result of the convolution

• The size of the output of the convolution operation depends on 
implementation factors
– The size of the input, the size of the filter, and the stride

• And may not be identical to the size of the input
– Let’s take a brief look at this for completeness sake

bias
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The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• “Stride”: 1
• Output size = ? 68



The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Stride: 1
• Output size = ? 69



The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4
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The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4
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The size of the convolution

• Image size: 
• Filter: 
• Stride: 1
• Output size = (N-M)+1 on each side

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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The size of the convolution

• Image size: 
• Filter: 
• Stride: 
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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The size of the convolution

• Image size: 
• Filter: 
• Stride: 
• Output size (each side) = 

– Assuming you’re not allowed to go beyond the edge of the input

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?
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Convolution Size
• Simple convolution size pattern:

– Image size: 
– Filter: 
– Stride: 
– Output size (each side) = 

• Assuming you’re not allowed to go beyond the edge of the input

• Results in a reduction in the output size
– Even if 
– Sometimes not considered acceptable

• If there’s no active downsampling, through max pooling and/or 
, then the output map should ideally be the same size as the 

input 
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Solution

• Zero-pad the input
– Pad the input image/map all around

• Add PL rows of zeros on the left and PR rows of zeros on the right
• Add PL rows of zeros on the top and PL rows of zeros at the bottom

– PL and PR chosen such that:
• PL = PR   OR  | PL – PR| = 1
• PL+ PR = M-1

– For stride 1, the result of the convolution is the same size as the original 
image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0
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Solution

• Zero-pad the input
– Pad the input image/map all around
– Pad as symmetrically as possible, such that..
– For stride 1, the result of the convolution is the 

same size as the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0
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Zero padding
• For an width filter:

– Odd : Pad on both left and right with columns of zeros
– Even :  Pad one side with columns of zeros, and the other with 

௅

ଶ
columns of zeros

– The resulting image is width  
– The result of the convolution is width 

• The top/bottom zero padding follows the same rules to maintain 
map height after convolution

• For hop size , zero padding is adjusted to ensure that the size 
of the convolved output is 
– Achieved by first zero padding the image with 

columns/rows of zeros and then applying above rules
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A convolutional layer

• The convolution operation results in an affine map
• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer
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Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
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The other component 
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by 
“downsampling”  (or “pooling”) layers
– Typically (but not always) “max” pooling
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output
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Recall: Max pooling

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6
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Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

3 2

5 7
Max

6 6 7

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer 
jitter-robustness, but do not constitute 
downsampling

• Downsampling requires a stride greater than 1
87



Downsampling requires Stride>1

• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

89



• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

90



• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

94



• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input
– One output per stride
– The output is “downsampled”

Downsampling requires Stride>1

Max
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Max Pooling layer at layer 

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
97

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Pooling: Size of output

• An picture compressed by a pooling
filter with stride results in an output map of side 

• Typically do not zero pad



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2 
filters and stride 2 3.25 5.25

2 2

Alternative to Max pooling: 
Mean Pooling

• Compute the mean of the pool, instead of the max



Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

100

a) Performed separately for every map (j)



Alternative to Max pooling: 
-norm

• Compute a p-norm of the pool

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters 
and stride 2,  = 5 4.86 8

2.38 3.16

ଶ ௜௝
௣

௜,௝

೛



Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each 
2x2 block and strides by 
2 in this example

6 8

3 4

Network in network



Or even an “all convolutional” net

• Downsampling may even be done by a simple convolution 
layer with stride larger than 1
– Replacing the maxpooling layer with a conv layer

Just a plain old convolution
layer with stride>1
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Fully convolutional network
(no pooling)

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x,m = 1:stride(l):Wl-1-Kl+1 # double indices

for y,n = 1:stride(l):Hl-1-Kl+1

for j = 1:Dl
segment = y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

Y = softmax( {Y(L,:,:,:)} )
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– Downsampling layers that vote over groups of outputs from the 
convolutional layer

• Convolution can change the size of the output. This may be 
controlled via zero padding.

• Downsampling layers may perform max, p-norms, or be learned 
downsampling networks

• Regular convolutional layers with stride > 1 also perform 
downsampling
– Eliminating the need for explicit downsampling layers
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Setting everything together

• Typical image classification task
– Assuming maxpooling..

106



Convolutional Neural Networks

• Input: 1 or 3 images
– Grey scale or color
– Will assume color to be generic

107



• Input: 3 pictures

Convolutional Neural Networks

108



• Input: 3 pictures

Convolutional Neural Networks
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Preprocessing

• Large images are a problem
– Too much detail
– Will need big networks

• Typically scaled to small sizes, e.g. 128x128 or 
even 32x32
– Based on how much will fit on your GPU
– Typically cropped to square images
– Filters are also typically square
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• Input: 3 pictures

Convolutional Neural Networks

111



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks
K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  

113



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  
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• A 1x1 filter is simply a perceptron that operates over the 
depth of the stack of maps, but has no spatial extent
– Takes one pixel from each of the maps (at a given location) 

as input

The 1x1 filter
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or 

even 1x1(x3)

Convolutional Neural Networks
K1 total filters
Filter size:  
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• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
– Typical stride:  1 or 2

Convolutional Neural Networks

Total number of parameters: 

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 

K1 total filters
Filter size:  
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• The input may be zero-padded according to 
the size of the chosen filters

Convolutional Neural Networks
K1 total filters
Filter size:  
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• First convolutional layer:  Several convolutional filters
– Filters are “3-D” (third dimension is color)
– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map

Convolutional Neural Networks

௠
ଵ

௠
ଵ

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

K1 filters of size:  
𝐿 × 𝐿 × 3

𝑧௠
ଵ

(𝑖, 𝑗) = ෍ ෍ ෍ 𝑤௠
ଵ

𝑐, 𝑘, 𝑙 𝐼௖ 𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏௠
(ଵ)

௅

௟ୀଵ

௅

௞ୀଵ௖∈{ோ,ீ,஻}

The layer includes a convolution operation
followed by an activation (typically RELU)
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Learnable parameters in the first 
convolutional layer

• The first convolutional layer comprises filters, 
each of size 
– Spatial span: 
– Depth : 3 (3 colors)

• This represents a total of parameters
– “+ 1” because each filter also has a bias

• All of these parameters must be learned
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of ௠

ଵ into a single value
It employs a stride D between
adjacent blocks

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block 
Pooling stride 

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?

௄భ

ଵ

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
ଵ

ଶ

ଶ
ଶ

௄భ

ଶ
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

𝑋𝑤𝑖𝑛(𝑖) = [ 𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [ 𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
ଵ

ଶ

ଶ
ଶ

௄మ

ଶ

𝐾ଶ = 𝐾ଵ. Just using the
new index 𝐾ଶ for notational
uniformity.
Pooling layers do not change
the number of maps because
pooling is performed individually
on each of the maps in the
previous layer.
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• First pooling layer: Drawing it differently for 
convenience

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ
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• First pooling layer: Drawing it differently for 
convenience

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

Convolutional Neural Networks

2

௄మ

ଶ
௄భ

ଵ

Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters ( 1, 2, etc) is the number of channels

126



• Second convolutional layer: ଷ 3-D filters resulting in ଷ 2-D maps
– Alternately,  a kernel with ଷ output channels

Convolutional Neural Networks
௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ
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• Second convolutional layer: ଶ 3-D filters resulting in ଷ 2-D maps

௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ

Total number of parameters: 
All these parameters must be learned

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 
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Convolutional Neural Networks

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps

௠ 2 3 3

3

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

4
௠

௡ାଵ
௠

௡
௠

௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜ (௝)

௠
௡

௄మ

ଶ
௄భ

ଵ
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௠ 2 3 3

3

௄య

ଷ

3

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

4

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps

௠
௡ାଵ

௠
௡

௠
௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜), 
௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

Parameters to choose:
Size of pooling block 4

Pooling stride 4
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Convolutional Neural Networks

• This continues for several layers until the final convolved output is fed to 
a softmax
– Or a full MLP

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼

4

௄భ

ଵ

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
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The Size of the Layers
• Each convolution layer with stride 1 typically maintains the size of the image

– With appropriate zero padding
– If performed without zero padding it will decrease the size of the input

• Each convolution layer will generally increase the number of maps from the 
previous layer
– Increasing layers reduces the amount of information lost by subsequent 

downsampling

• Each pooling layer with stride decreases the size of the maps by a factor of 

• Filters within a layer must all be the same size, but sizes may vary with layer
– Similarly for pooling, may vary with layer

• In general the number of convolutional filters increases with layers
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Parameters to choose (design choices)
• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:
– Number of filters ௜

– Spatial extent of filter ௜ ௜

• The “depth” of the filter is fixed by the number of filters in the previous layer 𝐾௜ିଵ

– The stride ௜

• For each downsampling/pooling layer:
– Spatial extent of filter ௜ ௜

– The stride ௜

• For the final MLP:
– Number of layers, and number of neurons in each layer

133



Digit classification
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Training

• Training is as in the case of the regular MLP
– The only difference is in the structure of the network

• Training examples of (Image, class) are provided
• Define a divergence between the desired output and true output of the 

network in response to any input
• Network parameters are trained through variants of gradient descent
• Gradients are computed through backpropagation

௄భ

ଵ

1
௄మ

ଶ

2

3
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Story so far

• The convolutional neural network is a supervised 
version of a computational model of mammalian vision

• It includes
– Convolutional layers comprising learned filters that scan 

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs 
from the convolutional layer to reduce network size

• The parameters of the network can be learned through 
regular back propagation
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Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

1

𝐾1 × 𝐼 × 𝐼

3

learnable learnable

learnable

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
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Recap: Learning the CNN
• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a loss:
– Define a divergence between the desired output and true 

output of the network in response to any input
– The loss aggregates the divergences of the training set

• Network parameters are trained to minimize the loss
– Through variants of gradient descent
– Gradients are computed through backpropagation
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Defining the loss

• The loss for a single instance 139

ଵ
ଵ

ଶ
ଵ

1

4

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

௄య

ଷ

3

௠

1

௄భ

ଵ

௠ 2 3 3

3

2

௄మ

ଶ



Recap: Problem Setup
• Given a training set of input-output pairs 

• The divergence on the ith instance is 
• The aggregate Loss

• Minimize w.r.t 
– Using gradient descent
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Recap: The derivative

• Computing the derivative

141

Total derivative:

Total training loss:



Recap: The derivative

• Computing the derivative

142

Total derivative:

Total training loss:



Backpropagation: Final flat layers

• For each training instance: First, a forward pass through the net
• Then the backpropagation of the derivative of the divergence

• Backpropagation continues in the usual manner until the computation of 
the derivative of the divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the “unrolling” of the maps from 

the final convolutional layer

௒(௅)

௄భ

ଵ

1
௄మ

ଶ

2

3

Conventional backprop until here
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Backpropagation: Convolutional and 
Pooling layers

• Backpropagation from the flat MLP requires 
special consideration of 
– The shared computation in the convolution layers

– The pooling layers (particularly maxpooling)

௄భ

ଵ

1
௄మ

ଶ

2

3

Need adjustments here

௒(௅)

144



Backpropagating through the convolution

• Convolution layers:
• We already have the derivative w.r.t (all the elements of) activation map 

– Having backpropagated it from the divergence

• We must backpropagate it through the activation to compute the derivative w.r.t.
and further back to compute the derivative w.r.t the filters and 145

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

Affine maps Activation maps



Backprop:  Pooling and D/S layer

• Pooling and downsampling layers:
• We already have the derivative w.r.t 

– Having backpropagated it from the divergence

• We must compute the derivative w.r.t 146

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟ିଵ)

pooling

𝛻௒(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()



Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine 
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)
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Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine 
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)
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Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine 
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)
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Backpropagating through the activation

• Forward computation: The activation maps are obtained by point-wise 
application of the activation function to the affine maps

– The affine map entries have already been computed via 
convolutions over the previous layer 150

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)



Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of 
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 151

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)



Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine 
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)
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Backpropagating through affine map

• Forward affine computation:  
– Compute affine maps from previous 

layer maps and filters 

• Backpropagation: Given 

– Compute derivative w.r.t.
– Compute derivative w.r.t.
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Backpropagating through affine map

• Forward affine computation:  
– Compute affine maps from previous 

layer maps and filters 

• Backpropagation: Given 

– Compute derivative w.r.t.
– Compute derivative w.r.t.
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Backpropagating through the affine map

• We already have the derivative w.r.t 
– Having backpropagated it past 

• We must compute the derivative w.r.t 155

Filter1 Filter 𝑙

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)



Backpropagating through the affine map

• We already have the derivative w.r.t 
– Having backpropagated it past 

• We must compute the derivative w.r.t 156

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝒘𝒍(𝟐, 𝟏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝟐, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)



Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter ௟

• influences the divergence through all maps157

Filter(n)

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

௟

௟

௟ ௟ିଵ

𝑍(𝑙, 𝑛)



Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter ௟

• influences the divergence through all maps158

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝒎, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)



Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter ௟

• influences the divergence through all maps159

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)



Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of 
the th filter ௟

• influences the divergence through all maps160

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)



Dependency diagram for a single map

• Each map influences through the th “plane” of the 
th filter ௟

• influences the divergence through all maps
161

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)



Dependency diagram for a single map

௒ ௟ିଵ,௠ ௓ ௟,௡

௡

௒ ௟ିଵ,௠

• Need to compute ௒ ௟ିଵ,௠ , the derivative of w.r.t. to 
complete the computation of the formula 162

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)



Dependency diagram for a single map

163

௒ ௟ିଵ,௠ ௓ ௟,௡

௡

௒ ௟ିଵ,௠

• Need to compute ௒ ௟ିଵ,௠ , the derivative of w.r.t. to 
complete the computation of the formula

Consider a specific 

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)



BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence w.r.t. 
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BP: Convolutional layer

3 44
4 32
3 42

• Each affects several 
terms
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BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– But how?

N = No. of filters

166



How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the 

derivative w.r.t that component of 
167

௟

Assuming indexing
begins at 0



How a single influences 

168

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ

௟



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 
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௟

• Note: The coordinates of and ௟ sum to the coordinates 
of 

௟
ᇱ



How a single influences 

• Note: The coordinates of and 
sum to the coordinates of 

177

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦



How a single influences 

௟

178

Contribution of a single position 

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦



How a single influences 

௟

179
Contribution of the entire th affine map 

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦



BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

180



Computing derivative for 

• The derivatives for every element of every 
map in by direct implementation of 
the formula:

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

• But this is actually a convolution!
– Let’s see how

181



How a single influences 
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௟



How a single influences 
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௟



How a single influences 

184

௟



How a single influences 
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௟



How a single influences 
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௟



How a single influences 
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௟



How a single influences 
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௟



How a single influences 
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௟



How a single influences 
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௟



How a single influences 

191

௟

• The derivative at is the sum of component-wise product of the 
elements of the flipped filter and the elements of the derivative at 

• The flipped filter is positioned with its bottom right square at (2,2) on the Z 
derivative map



How a single influences 

192

• The derivative at is the sum of component-wise product 
of the flipped filter and the elements of the derivative at 

• The flipped filter is positioned with its bottom right corner at 

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦



Derivative at from a single map

193
Contribution of the entire th affine map 

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦



௟

194

Derivative at from a single map
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Derivative at from a single map

௟

Zero pad with K-1 rows
and cols on every side

flip
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௟

Derivative at from a single map
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௟

Derivative at from a single map
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௟

Derivative at from a single map
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௟

Derivative at from a single map
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௟

Derivative at from a single map



௟
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Derivative at from a single map



௟
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Derivative at from a single map
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Derivative at from a single map
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௟

Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map
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Derivative at from a single map



௟

208

Derivative at from a single map



௟
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Derivative at from a single map



௟
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Derivative at from a single map
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௟

Derivative at from a single map



௟
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Derivative at from a single map



௟
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Derivative at from a single map
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Derivative at from a single map
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௟

Derivative at from a single map



௟
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Derivative at from a single map



Derivative at from a single map

௟
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Derivative at from a single map

௟
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Derivative at from a single map

௟
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Derivative at from a single map
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௟



BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

221



The actual convolutions

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters
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Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)



The actual convolutions

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters
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Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)
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௟ In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍
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௟

௟

flip

In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip

235

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



flip
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡
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flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡



Computing the derivative for 

• This is just a convolution of the zero-padded  
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side
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𝑤௟(𝑚, 𝑛, 𝑥, 𝑦)

𝑤௟(𝑚, 𝑛, 𝐾 + 1 − 𝑥, 𝐾 + 1 − 𝑦)



The size of the Y-derivative map

• We continue to compute elements for the derivative map as long as the 
(flipped) filter has at least one element in the (unpadded) derivative Zmap
– I.e. so long as the derivative is non-zero

• The size of the derivative map will be 
– and are heidght and width of the Zmap

• This will be the size of the actual map that was originally convolved
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The size of the Y-derivative map

• If the map was zero-padded in the forward 
pass, the derivative map will be the size of the 
zero-padded map
– The zero padding regions must be deleted before 

further backprop
253



When the stride is more than 1?

• When the stride is greater than 1, some positions of 
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to 

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute 

to only a quarter as many locations as the unboxed ones

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter



When the stride is more than 1?
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to only a quarter as many locations as the unboxed ones



When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0
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0 1 0

11 0

Filter

0

bias 4 4
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1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4
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half as many locations as the unboxed locations
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to only a quarter as many locations as the unboxed ones



When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

• When the stride is greater than 1, some positions of 
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to 

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute 

to only a quarter as many locations as the unboxed ones



When the stride is more than 1?

• We must make adjustments for when the 
stride is greater than 1.

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
4 4

2 4



Stride greater than 1

• How do we adjust the formulae when we 
downsample by 
– The output map is now a factor smaller on every side

– We have not computed all the terms in the usual formula

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

4 4

2 4



Stride greater than 1

• Observation: Convolving with a stride greater than 1 is the same 
as convolving with stride 1 and “dropping” out of every 
rows, and of every columns
– Downsampling by 
– E.g. for stride 2, it is the same as convolving with stride 1 and dropping 

every 2nd entry

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
4 4

2 4

3 44
4 32
3 42



Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives 
of the divergence with respect to the 
elements of the downsampled (strided) map 

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)



Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives of the divergence 
with respect to the elements of the downsampled (strided) map 

• We can place these derivative values back into their original 
locations of the full-sized map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)



Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives of the divergence with respect to 
the elements of the downsampled (strided) map 

• We can place these values back into their original locations of the full-sized map

• The remaining entries of the map do not affect the divergence
– Since they get dropped out

• The derivative of the divergence w.r.t. these values is 0

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0
0 00
0

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)



Computing derivatives with Stride > 1

• Upsampling derivative map:
– Upsample the downsampled derivatives
– Insert zeros into the “empty” slots
– This gives us the derivatives w.r.t. all the entries of a full-sized (stride 1) map

• We can compute the derivatives for , using the full map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0
0 00
0

𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)



Overall algorithm for computing 
derivatives w.r.t.

• Given the derivatives ௗ஽௜௩

ௗ௭ ௟,௡,௫,௬

• If stride , upsample derivative map

• For ,

• Compute derivatives using:

266

ᇱ ᇱ
௟

ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Can be computed by convolution with flipped filter



Derivatives for a single layer : 
Vector notation

# The weight W(l,m)is a 3D Dl-1xKlxKl
# Assuming dz has already been obtained via backprop

if (stride > 1)  #upsample

dz = upsample(dz,stride,Wl-1,Hl-1,Kl)

dzpad = zeros(Dlx(Hl+2(Kl-1))x(Wl+2(Kl-1))) # zeropad

for j = 1:Dl
for i = 1:Dl-1 # Transpose and flip

Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(l,i,j,:,:))) 

dzpad(j,Kl:Kl+Hl-1,Kl:Kl+Wl-1) = dz(l,j,:,:) #center map

end

for j = 1:Dl-1
for x = 1:Wl-1

for y = 1:Hl-1
segment = dzpad(:, x:x+Kl-1, y:y+Kl-1) #3D tensor

dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.

267



Upsampling
# Upsample dz to the size it would be if stride was 1

function upsample(dz, S, W, H, K)

if (S > 1)  #Insert S-1 zeros between samples

Hup = H – K + 1

Wup = W – K + 1

dzup = zeros(Wup, Hup)

for x  = 1:H

for y = 1:W

dzup((x-1)S+1,(y-1)S+1) = dz(x,y)

else

dzup = dz

return dzup

268



Upsampling
function upsample(dz, S)

if (S > 1)  #Insert S-1 zeros between samples

dzup = zeros((H-1)xS+1, (W-1)xS+1)

for x  = 1:H

for y = 1:W

dzup((x-1)S+1,(y-1)S+1) = dz(x,y)

else

dzup = dz

return dzup

269



Backpropagating through affine map

• Forward affine computation:  
– Compute affine maps from previous 

layer maps and filters 

• Backpropagation: Given 

– Compute derivative w.r.t.
– Compute derivative w.r.t.

270



The derivatives for the weights

271

• Each weight affects several 
– Consider the contribution of one filter components: 

(e.g. )

௟

௫ᇱ,௬ᇱ

௟

௠

௟
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• Each affine output is computed from multiple input maps simultaneously
• Each weight ௟ affects several 

Previous
layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

Convolution: the contribution of 
a single weight
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• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight



Previous
layer

277

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight



Previous
layer

278

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight



Previous
layer

280

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight
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Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight



282

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of 
a single weight



283

Convolution: the contribution of 
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several 
– Consider the contribution of one filter components: e.g. ௟



Previous
layer

284

Convolution: the contribution of 
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟



285

Convolution: the contribution of 
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

௟ ௟



Previous
layer

286

Convolution: the contribution of 
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

௟



287

• The final divergence is influenced by every 
• The derivative of the divergence w.r.t ௟ must sum over all 

terms it influences

The derivative for a single weight

௟

Div

• Each filter component ௟ affects several 
• The derivative of each w.r.t. ௟ is given by

௟
௫,௬

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯



288

• The final divergence is influenced by every 
• The derivative of the divergence w.r.t ௟ must sum over all 

terms it influences

The derivative for a single weight

௟

Div

௟
௫,௬

Already computed

• Each filter component ௟ affects several 
• The derivative of each w.r.t. ௟ is given by

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯



289

• The final divergence is influenced by every 
• The derivative of the divergence w.r.t ௟ must sum over all 

terms it influences

The derivative for a single weight

௟

Div

Already computed

௟
௫,௬

• Each filter component ௟ affects several 
• The derivative of each w.r.t. ௟ is given by

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯
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• The final divergence is influenced by every 
• The derivative of the divergence w.r.t ௟ must sum over all 

terms it influences

The derivative for a single weight

௟

Div

௟
௫,௬

• Each filter component ௟ affects several 
• The derivative of each w.r.t. ௟ is given by



But this too is a convolution

• The derivatives for all components of all filters 
can be computed directly from the above formula

• In fact it is just a convolution

• How?

291

௟
௫,௬

௟



Recap: Convolution

• Forward computation: Each filter produces an 
affine map 292

Filter1 Filter 𝑙

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠



Recap: Convolution

• influences through 
293

Filter1

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 294

𝑍(𝑙, 1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 1, 𝑥, 𝑦)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,2)

௟



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 295

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 296

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 297

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 2,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 298

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 299

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 300

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 301

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 302

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivatives of the divergence w.r.t. every element of 
is known

– Must use them to compute the derivative for 303

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 2,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)



The filter derivative

• The derivative of the th affine map convolves with 
every output map of the th layer, to get 
the derivative for , the th “plane” of the th filter

304

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

Filter(n)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

௟

௟

௟ ௟ିଵ



The filter derivative

305

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 1, 𝑥, 𝑦)

Filter1

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑑𝐷𝑖𝑣

𝑑𝑤௟ (𝑚, 𝑛, 𝑖, 𝑗)
= ෍

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)
𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗

௫,௬

=
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛)
⨂𝑦 𝑙 − 1, 𝑚

ௗ஽௜௩

ௗ௪೗ (௠,௡,௜,௝)
must be upsampled if the stride was greater than 1 in the forward pass

If was zero padded in the forward pass, it must be zero padded for backprop

௟

௟

௟ ௟ିଵ



Derivatives for the filters at layer : 
Vector notation

# The weight W(l,j)is a 3D Dl-1xKlxKl
# Assuming that derivative maps have been upsampled
#    if stride > 1

# Also assuming y map has been zero-padded if this was
#    also done in the forward pass

for n = 1:Dl
for x = 1:Kl
for y = 1:Kl

for m = 1:Dl-1
dw(l,m,n,x,y) = dz(l,n,:,:).       #dot product

y(l-1,m,x:x+Kl-1,y:y+Kl-1)  
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Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination 

maps from the activation output maps 

• How to compute the derivative w.r.t. and 
given derivatives w.r.t.

307



CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for x = 1:W-K+1 

for y = 1:H-K+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
308

Switching to 1-based
indexing with appropriate 
adjustments



Backward layer 

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)
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Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)310



Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)311

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here



Complete Backward (with strides)
dY(L) = dDiv/dY(L)
for l = L:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for x = 1:stride:Wl

m = (x-1)stride
for y = 1:stride: Hl

n = (y-1)stride
for j = 1:Dl

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)
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Backpropagation: Convolutional and 
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of 
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from 
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)
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Max

314

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max

316

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

319



Max pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ , 

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

Max

1 3

6 5
Max

6
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Derivative of Max pooling

• Max pooling selects the largest from a pool of elements

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ , 

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

321

1 3

6 5
Max

6

0 0
𝑑𝐷𝑖𝑣

𝑑𝑌 0

𝑑𝐷𝑖𝑣

𝑑𝑌
Backprop



Max Pooling layer at layer 

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
322

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Derivative of max pooling layer at 
layer 

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

323

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent  overlapping windows 



Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

௟௣௢௢௟
ଶ

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ , 

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

Mean

1 3

6 5
Mean

3.75
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Derivative of mean pooling

• The derivative of mean pooling is distributed over the 
pool

Mean

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

𝑑𝑌

௟௣௢௢௟

௟௣௢௢௟ ௟௣௢௢௟
ଶ
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Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl  #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = pooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

y(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

326

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.



Derivative of mean pooling layer at 
layer 

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride     

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l-1,j,p,n+i,m+j) += (1/K2lpool)y(l,j,x,y)

327

“+=“ because adjacent windows may overlap



Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, 
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the 
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– Downsampling layers that operate over groups of outputs from the 
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back 
propagation
– Maxpooling layers must propagate derivatives only over the maximum 

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for 
the fact that the network is, in fact, a shared parameter network 329



An implicit assumption

• We’ve always assumed that subsequent steps 
shrink the size of the maps

• Can subsequent maps increase in size?

Stride>1

330



1-D scans

• The number of “bars” in each layer is usually the same or smaller than the 
bars in the previous layer
– Scanning  maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 331

time

softmax



Upsampling 1-D scans

• The number of “bars” in each layer is usually the same or smaller than the 
bars in the previous layer
– Scanning  maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 332

time

softmax



Upsampling 1-D scans

• The number of “bars” in each layer is usually the same or smaller than the 
bars in the previous layer
– Scanning  maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 333

time

softmax



Upsampling 1-D scans

• Problem:  The values required to compute the intermediate 
values are missing from the previous layer!

• 334

time

softmax



Upsampling 1-D scans

• Problem: The values required to compute the intermediate values are missing from 
the previous layer!

• Solution: Synthetically fill in the missing intermediate values of the previous layer
– With zeros

• Could also fill them in with linear or spline interpolation of neighbors, but it will complicate backprop

time

softmax



Upsampling 1-D scans

• Problem: The values required to compute the intermediate values are missing from 
the previous layer!

• Solution: Synthetically fill in the missing intermediate values of the previous layer
– With zeros

• Could also fill them in with linear or spline interpolation of neighbors, but it will complicate backprop

time

softmax This is exactly analogous to 
the upsampling performed 
during backprop when 
forward convolution uses 
stride > 1 



Upsampling 1-D scans

• The 0-valued interpolated inputs do not really provide any input
• They, and their connections can be removed without changing the computation
• This is the actual computation performed

time

softmax
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Upsampling 1-D scans

• The 0-valued interpolated inputs do not really provide any input
• They, and their connections can be removed without changing the computation
• This is the actual computation performed

time

softmax



Upsampling 1-D scans

• Key difference from downsampling layers
– All the “columns” in the regular/downsampling layers are identical

• Their incoming weight patterns are identical

– The columns in the upsampling layers are not identical
• The outgoing weight patterns of the lower layer columns are identical

softmax



Upsampling as a scanning network

• Example of a network with one upsampling layer
• Maintaining Symmetry: 

– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3 
– The pattern of values of upward weights for each of the three pink (3rd layer) bars is identical

time

softmax
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Upsampling as a scanning network

• Maintaining Symmetry: 
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3 
– The pattern of values of upward weights for each of the three pink (3rd layer) 

bars is identical 341

time

softmax Actual scanning network



Upsampling as a scanning network

• Maintaining Symmetry: 
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3 
– The pattern of values of upward weights for each of the three pink (3rd layer) 

bars is identical 342

time

softmax Actual scanning networkNote two different types of
Neurons here



Scanning with increased-res layer

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note:  Arrangement of vertical bars is predetermined by architecture

time

softmax
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With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note:  Arrangement of vertical bars is predetermined by architecture

time

softmax
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With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note:  Arrangement of vertical bars is predetermined by architecture

time

softmax
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With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note:  Arrangement of vertical bars is predetermined by architecture

time

softmax
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Transposed convolution

• Signal propagation rules are transposed for expanding layers
• In regular convolution, the affine value 𝑍 for a layer “pulls” 𝑌 values from the lower layer

– In vector form
𝑍௟ = 𝑊௟𝑌௟ିଵ

– The ith neuron:
𝑧௟(𝑖) = 𝑊௟(𝑖, : )𝑌௟ିଵ

– Invokes the ith row of 𝑊௟

• In an upsampling layer the 𝑌 values are “pushed” to the upper 𝑍

𝑍௟ = ෍ 𝑊௟(: , 𝑗)𝑌௟ିଵ(𝑗)

௝

– Invokes the jth column of 𝑊௟

– Or alternately, the jth row of 𝑊௟
்

• Expanding operations are sometimes called transpose convolutions as a result
– The primary operation uses the transpose of the convolutional filter 347



In 2-D

• Similar computation

348



2D expanding convolution

• Upsample the input to the appropriate size by interpolating 𝑏 − 1 zeros between adjacent 
elements to increase the size of the map by 𝑏

• Convolve with the filter with stride 1, to get the final upsampled output
– Output map size also dependent on size of filter
– Zero-pad upsampled input maps to ensure the output is exactly the desired size 349

upsample



2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1))  ×  (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size
350

is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

These filters are “transposed” (flipped across the top-left to
bottom-right diagonal) w.r.t. the scanning filters for the upsampled
maps in the previous slide



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

351

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

355

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙
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is the “stride” 
(scaling factor between the sizes of Z and Y)
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2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map:   (𝑏𝐻 +  (𝐾 − 1)) 𝑥 (𝑏𝑊 +  (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size



CNN: Expanding convolution layer 

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)
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Backprop through expanding 
convolution

• Backpropagation will give us derivatives for every element of the upsampled map
• Downsample the derivative map by dropping elements corresponding to zeros introduced during 

upsampling
• Continue backprop from there
• Actually easier in code…

362

downsample backprop



CNN: Expanding convolution layer 

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)
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We leave the rather trivial issue of how to modify this code to
compute the derivatives w.r.t w and y to you



Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance
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• We can rewrite this as so (tensor inner product)

Shift-invariance – a different 
perspective
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• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance
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• More generally each 
filter produces a set of 
transformed (and 
shifted) maps
– Set of transforms 

must be enumerated 
and discrete

– E.g. discrete set of 
rotations and scaling, 
reflections etc.

• The network becomes 
invariant to all the 
transforms considered

Transform invariance

೟ 367



Regular CNN : single layer 
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))
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Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1
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• Derivatives flow
back through the 
transforms to update 
individual filters
– Need point 

correspondences 
between original and 
transformed filters

– Left as an exercise

BP with transform invariance
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Story so far
• CNNs are shift-invariant neural-network models for shift-invariant 

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with 

distributed representations

• The parameters of the network can be learned through regular back 
propagation

• Like a regular MLP, individual layers may either increase or decrease 
the span of the representation learned

• The models can be easily modified to include invariance to other 
transforms
– Although these tend to be computationally painful
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But what about the exact location?

• We began with the desire to identify the picture as 
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?
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Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates) 

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier 

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of 
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)
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Pose estimation

• Can use the same mechanism to predict the 
joints of a stick model
– For pose estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints
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Model variations

• Very deep networks
– 100 or more layers in MLP

– Formalism called “Resnet”
• You will encounter this in your HWs

• “Depth-wise” convolutions
– Instead of multiple independent filters with 

independent parameters, use common layer-wise 
weights and combine the layers differently for 
each filter 375



Conventional convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that 

filter

Conventional

convolve collapse
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Conventional convolutions

• This is done separately for each of the M filters 
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve
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Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2
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Conventional vs. depth-wise 
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters, 
which span all M input channels

• Each filter produces one output channel

• Total  NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M  independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N   Mx1x1  1D filters
• Each applies to one 2D location across all M input 

channels
• Total  NM +  MK2 parameters 379



Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern 

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of 

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object 
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency, 
better ability to compute derivatives, etc.
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What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious 

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by 

backpropagation
381
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Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style 

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly 
become very large

• Insufficient training data to train well
– Solution: Data augmentation
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Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data
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Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms

– Used in text processing
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Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html
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Digit classification

387



Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result:  6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps  (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 388



The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset:  Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories
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AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest 
• 1000 different classes (softmax layer)
• NN configuration 

• NN contains 60 million parameters and 650,000 neurons, 
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1:  96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer  [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3,  stride 2
• Normalization layer  [Unnecessary]
• Conv3: 384 3x3,  stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC:  3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons 
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Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over 

the lot! 

10 patches
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Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01,  decreased by 10 every time validation accuracy 

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7 
networks
– Lowest prior error using conventional classifiers:  > 25%
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ImageNet

Figure 3: 96 convolutional 
kernels of size 11×11×3 learned 
by the first convolutional layer 
on the 224×224×3 input images. 
The top 48 kernels were learned 
on GPU 1 while the bottom 48 
kernels were learned on GPU 2. 
See Section 6.1 for details. 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five labels 
considered most probable by our model. The correct 
label is written under each image, and the 
probability assigned to the correct label is also 
shown with a red bar (if it happens to be in the top 
5). 

Five ILSVRC-2010 test images in the first column. The 
remaining columns show the six training images that 
produce feature vectors in the last hidden layer with 
the smallest Euclidean distance from the feature 
vector for the test image. 



ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4%  14.8%

• Combining multiple models as before

5121024512

396



VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error 

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to 

6.8% using only two classifiers

• Final arch:  64 conv, 64 conv, 
64 pool, 
128 conv, 128 conv, 
128 pool,
256 conv, 256 conv, 256 conv, 
256 pool,
512 conv, 512 conv, 512  conv, 
512 pool,
512 conv, 512 conv, 512  conv, 
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 397



Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant;  error  6.7%

– Using only 5 million parameters, thanks to average pooling398



Imagenet

• Resnet: 2015
– Current top-5 error:  < 3.5%
– Over 150 layers, with “skip” connections..
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Resnet details for the curious..

• Last layer before addition must have the same number of filters as 
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger 

learning rate)
• Mini batch 256
• Weight decay 1e-5 
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Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 401



Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..
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CNN for Automatic 
Speech Recognition

• Convolution over frequencies
• Convolution over time



• Neural network with  specialized connectivity 
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time 

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap


