
Deep Neural Networks
Convolutional Networks II

Bhiksha Raj
Fall 2020

1

Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or

“does this recording include HELLO” are best performed by scanning for
the target pattern

• Scanning an input with a network and combining the outcomes is
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or subnetwork makes the final decision

• Deformations in the input can be handled by “max pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a
convolutional network

• For 1-D scan along time, it is called a Time-delay neural network

2

3

A little history

• How do animals see?
– What is the neural process from eye to recognition?

• Early research:
– largely based on behavioral studies

• Study behavioral judgment in response to visual stimulation
• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images
4

Hubel and Wiesel 1959

• First study on neural correlates of vision.
– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”: Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators
– Anaesthetized with truth serum
– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied
5

Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina
through fully open (slitted) Iris
– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and
measured neural responses in striate cortex

6

Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical
units were called receptive fields.

– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina,

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions
• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– A spot of light gave greater response for some directions of movement than others.
• Can be used to determine the receptive field

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.
• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel

7

Hubel and Wiesel 59

• Response as orientation of input light rotates
– Note spikes – this neuron is sensitive to vertical bands

8

Hubel and Wiesel
• Oriented slits of light were the most effective stimuli for activating

striate cortex neurons

• The orientation selectivity resulted from the previous level of input
because lower level neurons responding to a slit also responded to
patterns of spots if they were aligned with the same orientation as
the slit.

• In a later paper (Hubel & Wiesel, 1962), they showed that within
the striate cortex, two levels of processing could be identified
– Between neurons referred to as simple S-cells and complex C-cells.
– Both types responded to oriented slits of light, but complex cells were

not “confused” by spots of light while simple cells could be confused

9

Hubel and Wiesel model

• ll

Transform from circular retinal
receptive fields to elongated fields for
simple cells. The simple cells are
susceptible to fuzziness and noise

Composition of complex receptive
fields from simple cells. The C-cell
responds to the largest output from a
bank of S-cells to achieve oriented
response that is robust to distortion

10

Hubel and Wiesel
• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns
by composing early neural responses
– Successive transformation through Simple-Complex

combination layers

• Demonstrated more and more complex responses in
later papers
– Later experiments were on waking macaque monkeys

• Too horrible to recall
11

Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing
early neural responses

– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall

12

Adding insult to injury..

• “However, this model cannot accommodate
the color, spatial frequency and many other
features to which neurons are tuned. The
exact organization of all these cortical columns
within V1 remains a hot topic of current
research.”

13

Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the
Hubel-Wiesel model

• One of the chief problems: Position invariance of
input
– Your grandmother cell fires even if your grandmother

moves to a different location in your field of vision

Kunihiko Fukushima

14

NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising a
layer of “S-cells” followed by a layer of “C-cells”
– ௌ௟ is the lth layer of S cells, ஼௟ is the lth layer of C cells

• S-cells respond to the signal in the previous layer
• C-cells confirm the S-cells’ response

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their
response

Figures from Fukushima, ‘80

15

NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input to the plane than the
adjacent cells in the plane.

16

NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-specific
patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding planes of the
S layers 17

Neocognitron

• S cells: RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly

enough

–
18

Neocognitron

• S cells: RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly

enough

–

Could simply replace these
strange functions with a
RELU and a max

19

NeoCognitron

• The deeper the layer, the larger the receptive field of
each neuron
– Cell planes get smaller with layer number
– Number of planes increases

• i.e the number of complex pattern detectors increases with layer 20

Learning in the neocognitron

• Unsupervised learning
• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤௜௝ = 𝑥௜𝑦௝

• Within any layer, at any position, only the maximum S from all the layers is
selected for update

– Also viewed as max-valued cell from each S column
• Ensures only one of the planes picks up any feature
• If multiple max selections are on the same plane, only the largest is chosen

– But across all positions, multiple planes will be selected

• Updates are distributed across all cells within the plane

max

21

Learning in the neocognitron

• Ensures different planes learn different features
– E.g. Given many examples of the character “A” the different cell

planes in the S-C layers may learn the patterns shown
• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion
• Unsupervised: Effectively clustering

22

Neocognitron – finale

• Fukushima showed it successfully learns to
cluster semantic visual concepts
– E.g. number or characters, even in noise

23

Adding Supervision

• The neocognitron is fully unsupervised
– Semantic labels are automatically learned

• Can we add external supervision?
• Various proposals:

– Temporal correlation: Homma, Atlas, Marks, ‘88
– TDNN: Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun

24

Supervising the neocognitron

• Add an extra decision layer after the final C layer
– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters
– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of
every layer
– C-cells are not updated

Output
class
label(s)

25

Scanning vs. multiple filters

• Note: The original Neocognitron actually uses
many identical copies of a neuron in each S
and C plane

26

Supervising the neocognitron

• The Math
– Assuming square receptive fields, rather than elliptical ones
– Receptive field of S cells in lth layer is ௟ ௟

– Receptive field of C cells in lth layer is ௟ ௟

Output
class
label(s)

27

Supervising the neocognitron

• This is, however, identical to “scanning” (convolving)
with a single neuron/filter (what LeNet actually did)

Output
class
label(s)

𝑺,𝒍,𝒏 𝑺,𝒍,𝒏 𝑪,𝒍ି𝟏,𝒑

𝑲𝒍

௟ୀଵ

𝑲𝒍

௞ୀଵ𝒑

𝑪,𝒍,𝒏
௞∈ ௜,௜ା௅೗ ,௝∈(௟,௟ା௅೗)

𝑺,𝒍,𝒏

28

Convolutional Neural Networks

29

Story so far
• The mammalian visual cortex contains of S cells, which capture oriented

visual patterns and C cells which perform a “majority” vote over groups of
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C
cells with identical response, to enable shift invariance
– Only S cells are learned
– C cells perform the equivalent of a max over groups of S cells for robustness
– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron
– S planes of cells with identical response are modelled by a scan (convolution)

over image planes by a single neuron
– C planes are emulated by cells that perform a max over groups of S cells

• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”
30

The general architecture of a
convolutional neural network

• A convolutional neural network comprises “convolutional” and “downsampling” layers
– Convolutional layers comprise neurons that scan their input for patterns

• Correspond to S planes

– Downsampling layers perform max operations on groups of outputs from the convolutional layers
• Correspond to C planes

– The two may occur in any sequence, but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

31

The general architecture of a
convolutional neural network

• A convolutional neural network comprises of “convolutional” and
“downsampling” layers
– The two may occur in any sequence, but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

32

The general architecture of a
convolutional neural network

• Convolutional layers and the MLP are learnable
– Their parameters must be learned from training data for the target

classification task

• Down-sampling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output

33

A convolutional layer

• A convolutional layer comprises of a series of “maps”
– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer

34

A convolutional layer

• Each activation map has two components
– An affine map, obtained by convolution over maps in the previous layer

• Each affine map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer

35

A convolutional layer: affine map

• All the maps in the previous layer contribute
to each convolution

Previous
layer

Previous
layer

36

A convolutional layer: affine map

• All the maps in the previous layer contribute to
each convolution
– Consider the contribution of a single map

Previous
layer

Previous
layer

37

What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter bias

38

What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are

multiplied component wise, and the products are added along with
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

39

The “Stride” between adjacent
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

40

The “Stride” between adjacent
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

41

The “Stride” between adjacent
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2

42

The “Stride” between adjacent
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

43

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

filter
Input layer

Output map

44

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map

45

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map

46

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

47

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

48

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

49

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

50

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

Input layer
Output map

51

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

52

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Input layer
Output map

53

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

Previous
layer

filter1 filter2

54

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

55

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 2, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)

ଷ

௟ୀଵ

ଷ

௞ୀଵ௠

56

A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)

57

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

58

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

One map

bias

The “cube” view of input maps

59

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

All maps

bias

The “cube” view of input maps

60

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

61

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

62

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

63

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

64

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

bias

The “cube” view of input maps

65

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})
66

Engineering consideration: The size of
the result of the convolution

• The size of the output of the convolution operation depends on
implementation factors
– The size of the input, the size of the filter, and the stride

• And may not be identical to the size of the input
– Let’s take a brief look at this for completeness sake

bias

67

The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• “Stride”: 1
• Output size = ? 68

The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Stride: 1
• Output size = ? 69

The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

70

The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

71

The size of the convolution

• Image size:
• Filter:
• Stride: 1
• Output size = (N-M)+1 on each side

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?

72

The size of the convolution

• Image size:
• Filter:
• Stride:
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?

73

The size of the convolution

• Image size:
• Filter:
• Stride:
• Output size (each side) =

– Assuming you’re not allowed to go beyond the edge of the input

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?

74

Convolution Size
• Simple convolution size pattern:

– Image size:
– Filter:
– Stride:
– Output size (each side) =

• Assuming you’re not allowed to go beyond the edge of the input

• Results in a reduction in the output size
– Even if
– Sometimes not considered acceptable

• If there’s no active downsampling, through max pooling and/or
, then the output map should ideally be the same size as the

input
75

Solution

• Zero-pad the input
– Pad the input image/map all around

• Add PL rows of zeros on the left and PR rows of zeros on the right
• Add PL rows of zeros on the top and PL rows of zeros at the bottom

– PL and PR chosen such that:
• PL = PR OR | PL – PR| = 1
• PL+ PR = M-1

– For stride 1, the result of the convolution is the same size as the original
image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0

76

Solution

• Zero-pad the input
– Pad the input image/map all around
– Pad as symmetrically as possible, such that..
– For stride 1, the result of the convolution is the

same size as the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0

77

Zero padding
• For an width filter:

– Odd : Pad on both left and right with columns of zeros
– Even : Pad one side with columns of zeros, and the other with

௅

ଶ
columns of zeros

– The resulting image is width
– The result of the convolution is width

• The top/bottom zero padding follows the same rules to maintain
map height after convolution

• For hop size , zero padding is adjusted to ensure that the size
of the convolved output is
– Achieved by first zero padding the image with

columns/rows of zeros and then applying above rules

78

A convolutional layer

• The convolution operation results in an affine map
• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer

79

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})
80

The other component
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by
“downsampling” (or “pooling”) layers
– Typically (but not always) “max” pooling
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

81

Recall: Max pooling

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6

82

Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

83

Recall: Max pooling

Max

3 2

5 7
Max

6 6 7

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

84

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

85

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

86

Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer
jitter-robustness, but do not constitute
downsampling

• Downsampling requires a stride greater than 1
87

Downsampling requires Stride>1

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

88

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

89

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

90

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

91

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

92

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

93

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

94

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Max

Downsampling requires Stride>1

95

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input
– One output per stride
– The output is “downsampled”

Downsampling requires Stride>1

Max

96

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

Y(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
97

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Pooling: Size of output

• An picture compressed by a pooling
filter with stride results in an output map of side

• Typically do not zero pad

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2
filters and stride 2 3.25 5.25

2 2

Alternative to Max pooling:
Mean Pooling

• Compute the mean of the pool, instead of the max

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

Y(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

100

a) Performed separately for every map (j)

Alternative to Max pooling:
-norm

• Compute a p-norm of the pool

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters
and stride 2, = 5 4.86 8

2.38 3.16

ଶ ௜௝
௣

௜,௝

೛

Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each
2x2 block and strides by
2 in this example

6 8

3 4

Network in network

Or even an “all convolutional” net

• Downsampling may even be done by a simple convolution
layer with stride larger than 1
– Replacing the maxpooling layer with a conv layer

Just a plain old convolution
layer with stride>1

103

Fully convolutional network
(no pooling)

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for x,m = 1:stride(l):Wl-1-Kl+1 # double indices

for y,n = 1:stride(l):Hl-1-Kl+1

for j = 1:Dl
segment = y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

Y = softmax({Y(L,:,:,:)})
104

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that vote over groups of outputs from the
convolutional layer

• Convolution can change the size of the output. This may be
controlled via zero padding.

• Downsampling layers may perform max, p-norms, or be learned
downsampling networks

• Regular convolutional layers with stride > 1 also perform
downsampling
– Eliminating the need for explicit downsampling layers

105

Setting everything together

• Typical image classification task
– Assuming maxpooling..

106

Convolutional Neural Networks

• Input: 1 or 3 images
– Grey scale or color
– Will assume color to be generic

107

• Input: 3 pictures

Convolutional Neural Networks

108

• Input: 3 pictures

Convolutional Neural Networks

109

Preprocessing

• Large images are a problem
– Too much detail
– Will need big networks

• Typically scaled to small sizes, e.g. 128x128 or
even 32x32
– Based on how much will fit on your GPU
– Typically cropped to square images
– Filters are also typically square

110

• Input: 3 pictures

Convolutional Neural Networks

111

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks
K1 total filters
Filter size:

112

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:

113

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:

114

• A 1x1 filter is simply a perceptron that operates over the
depth of the stack of maps, but has no spatial extent
– Takes one pixel from each of the maps (at a given location)

as input

The 1x1 filter

115

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or

even 1x1(x3)

Convolutional Neural Networks
K1 total filters
Filter size:

116

• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
– Typical stride: 1 or 2

Convolutional Neural Networks

Total number of parameters:

Parameters to choose: , and
1. Number of filters
2. Size of filters
3. Stride of convolution

K1 total filters
Filter size:

117

• The input may be zero-padded according to
the size of the chosen filters

Convolutional Neural Networks
K1 total filters
Filter size:

118

• First convolutional layer: Several convolutional filters
– Filters are “3-D” (third dimension is color)
– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map

Convolutional Neural Networks

௠
ଵ

௠
ଵ

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

K1 filters of size:
𝐿 × 𝐿 × 3

𝑧௠
ଵ

(𝑖, 𝑗) = ෍ ෍ ෍ 𝑤௠
ଵ

𝑐, 𝑘, 𝑙 𝐼௖ 𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏௠
(ଵ)

௅

௟ୀଵ

௅

௞ୀଵ௖∈{ோ,ீ,஻}

The layer includes a convolution operation
followed by an activation (typically RELU)

119

Learnable parameters in the first
convolutional layer

• The first convolutional layer comprises filters,
each of size
– Spatial span:
– Depth : 3 (3 colors)

• This represents a total of parameters
– “+ 1” because each filter also has a bias

• All of these parameters must be learned

120

• First downsampling layer: From each block of each
map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

Convolutional Neural Networks

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

Filter size:
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of ௠

ଵ into a single value
It employs a stride D between
adjacent blocks

௠
ଶ

௞∈௑௪௜௡(௜),
௟∈௒௪௜௡(௝)

௠
ଵ

𝑋𝑤𝑖𝑛(𝑖) = [𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]

121

• First downsampling layer: From each block of each
map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block
Pooling stride

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?

௄భ

ଵ

௠
ଶ

௞∈௑௪௜௡(௜),
௟∈௒௪௜௡(௝)

௠
ଵ

𝑋𝑤𝑖𝑛(𝑖) = [𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]

ଵ
ଶ

ଶ
ଶ

௄భ

ଶ

122

• First downsampling layer: From each block of each
map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜),
௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

𝑋𝑤𝑖𝑛(𝑖) = [𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
ଵ

ଶ

ଶ
ଶ

௄భ

ଶ

123

• First downsampling layer: From each block of each
map, pool down to a single value
– For max pooling, during training keep track of which position

had the highest value

Convolutional Neural Networks
𝐼/𝐷 × (𝐼/𝐷

ଵ
ଵ

ଶ
ଵ

Filter size:
𝐿 × 𝐿 × 3

pool

௠
ଶ

௠
ଵ

௠
ଶ

௠
ଶ

௞∈௑௪௜௡(௜),
௟∈௒௪௜௡(௝)

௠
ଵ

௄భ

ଵ

𝑋𝑤𝑖𝑛(𝑖) = [𝑖 − 1 𝐷 + 1, 𝑖 − 1 𝐷 + 𝑃]

𝑌𝑤𝑖𝑛(𝑗) = [𝑗 − 1 𝐷 + 1, 𝑗 − 1 𝐷 + 𝑃]
ଵ

ଶ

ଶ
ଶ

௄మ

ଶ

𝐾ଶ = 𝐾ଵ. Just using the
new index 𝐾ଶ for notational
uniformity.
Pooling layers do not change
the number of maps because
pooling is performed individually
on each of the maps in the
previous layer.

124

• First pooling layer: Drawing it differently for
convenience

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ

125

• First pooling layer: Drawing it differently for
convenience

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

Convolutional Neural Networks

2

௄మ

ଶ
௄భ

ଵ

Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters (1, 2, etc) is the number of channels

126

• Second convolutional layer: ଷ 3-D filters resulting in ଷ 2-D maps
– Alternately, a kernel with ଷ output channels

Convolutional Neural Networks
௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ

127

• Second convolutional layer: ଶ 3-D filters resulting in ଷ 2-D maps

௠ 2 3 3

3

௄య

ଷ

3

௠
௡

௠
௡

௠
௡

௠
௡

௥
௡ିଵ

௠
(௡)

௅
௡

௟ୀଵ

௅
௡

௞ୀଵ

௄೙షభ

௥ୀଵ

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ
௄భ

ଵ

Total number of parameters:
All these parameters must be learned

Parameters to choose: , and
1. Number of filters
2. Size of filters
3. Stride of convolution

128

Convolutional Neural Networks

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D

maps

௠ 2 3 3

3

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

4
௠

௡ାଵ
௠

௡
௠

௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜),
௟∈௒௪௜ (௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

129

௠ 2 3 3

3

௄య

ଷ

3

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

4

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D

maps

௠
௡ାଵ

௠
௡

௠
௡ାଵ

௠
௡ାଵ

௞∈௑௪௜௡(௜),
௟∈௒௪௜௡(௝)

௠
௡

௄మ

ଶ
௄భ

ଵ

Parameters to choose:
Size of pooling block 4

Pooling stride 4

130

Convolutional Neural Networks

• This continues for several layers until the final convolved output is fed to
a softmax
– Or a full MLP

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼

4

௄భ

ଵ

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ

131

The Size of the Layers
• Each convolution layer with stride 1 typically maintains the size of the image

– With appropriate zero padding
– If performed without zero padding it will decrease the size of the input

• Each convolution layer will generally increase the number of maps from the
previous layer
– Increasing layers reduces the amount of information lost by subsequent

downsampling

• Each pooling layer with stride decreases the size of the maps by a factor of

• Filters within a layer must all be the same size, but sizes may vary with layer
– Similarly for pooling, may vary with layer

• In general the number of convolutional filters increases with layers
132

Parameters to choose (design choices)
• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:
– Number of filters ௜

– Spatial extent of filter ௜ ௜

• The “depth” of the filter is fixed by the number of filters in the previous layer 𝐾௜ିଵ

– The stride ௜

• For each downsampling/pooling layer:
– Spatial extent of filter ௜ ௜

– The stride ௜

• For the final MLP:
– Number of layers, and number of neurons in each layer

133

Digit classification

134

Training

• Training is as in the case of the regular MLP
– The only difference is in the structure of the network

• Training examples of (Image, class) are provided
• Define a divergence between the desired output and true output of the

network in response to any input
• Network parameters are trained through variants of gradient descent
• Gradients are computed through backpropagation

௄భ

ଵ

1
௄మ

ଶ

2

3

135

Story so far

• The convolutional neural network is a supervised
version of a computational model of mammalian vision

• It includes
– Convolutional layers comprising learned filters that scan

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs
from the convolutional layer to reduce network size

• The parameters of the network can be learned through
regular back propagation

136

Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௄య

ଷ

3

௠

1

ଵ
ଵ

ଶ
ଵ

௄భ

ଵ

1

𝐾1 × 𝐼 × 𝐼

3

learnable learnable

learnable

௠ 2 3 3

3

𝐾2 × 𝐼/𝐷 × 𝐼/𝐷

2

௄మ

ଶ

137

Recap: Learning the CNN
• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a loss:
– Define a divergence between the desired output and true

output of the network in response to any input
– The loss aggregates the divergences of the training set

• Network parameters are trained to minimize the loss
– Through variants of gradient descent
– Gradients are computed through backpropagation

138

Defining the loss

• The loss for a single instance 139

ଵ
ଵ

ଶ
ଵ

1

4

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

௄య

ଷ

3

௠

1

௄భ

ଵ

௠ 2 3 3

3

2

௄మ

ଶ

Recap: Problem Setup
• Given a training set of input-output pairs

• The divergence on the ith instance is
• The aggregate Loss

• Minimize w.r.t
– Using gradient descent

140

Recap: The derivative

• Computing the derivative

141

Total derivative:

Total training loss:

Recap: The derivative

• Computing the derivative

142

Total derivative:

Total training loss:

Backpropagation: Final flat layers

• For each training instance: First, a forward pass through the net
• Then the backpropagation of the derivative of the divergence

• Backpropagation continues in the usual manner until the computation of
the derivative of the divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the “unrolling” of the maps from

the final convolutional layer

௒(௅)

௄భ

ଵ

1
௄మ

ଶ

2

3

Conventional backprop until here

143

Backpropagation: Convolutional and
Pooling layers

• Backpropagation from the flat MLP requires
special consideration of
– The shared computation in the convolution layers

– The pooling layers (particularly maxpooling)

௄భ

ଵ

1
௄మ

ଶ

2

3

Need adjustments here

௒(௅)

144

Backpropagating through the convolution

• Convolution layers:
• We already have the derivative w.r.t (all the elements of) activation map

– Having backpropagated it from the divergence

• We must backpropagate it through the activation to compute the derivative w.r.t.
and further back to compute the derivative w.r.t the filters and 145

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

Affine maps Activation maps

Backprop: Pooling and D/S layer

• Pooling and downsampling layers:
• We already have the derivative w.r.t

– Having backpropagated it from the divergence

• We must compute the derivative w.r.t 146

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟ିଵ)

pooling

𝛻௒(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

147

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

148

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

149

Backpropagating through the activation

• Forward computation: The activation maps are obtained by point-wise
application of the activation function to the affine maps

– The affine map entries have already been computed via
convolutions over the previous layer 150

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)

Backpropagating through the activation

• Backward computation: For every map 𝑌(𝑙, 𝑚) for every position (𝑥, 𝑦), we already have the derivative of
the divergence w.r.t. 𝑦(𝑙, 𝑚, 𝑥, 𝑦)

– Obtained via backpropagation

• We obtain the derivatives of the divergence w.r.t. 𝑧(𝑙, 𝑚, 𝑥, 𝑦) using the chain rule:
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑚, 𝑥, 𝑦)
=

𝑑𝐷𝑖𝑣

𝑑 𝑦(𝑙, 𝑚, 𝑥, 𝑦)
𝑓′(𝑧(𝑙, 𝑚, 𝑥, 𝑦))

– Simple component-wise computation 151

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑚) 𝑌(𝑙, 𝑚)

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• Given derivative w.r.t. activation 𝑌(𝑙) compute the derivatives w.r.t. the affine
combination 𝑍(𝑙) maps

• From derivative w.r.t. 𝑍(𝑙) compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

152

Backpropagating through affine map

• Forward affine computation:
– Compute affine maps from previous

layer maps and filters

• Backpropagation: Given

– Compute derivative w.r.t.
– Compute derivative w.r.t.

153

Backpropagating through affine map

• Forward affine computation:
– Compute affine maps from previous

layer maps and filters

• Backpropagation: Given

– Compute derivative w.r.t.
– Compute derivative w.r.t.

154

Backpropagating through the affine map

• We already have the derivative w.r.t
– Having backpropagated it past

• We must compute the derivative w.r.t 155

Filter1 Filter 𝑙

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

Backpropagating through the affine map

• We already have the derivative w.r.t
– Having backpropagated it past

• We must compute the derivative w.r.t 156

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝛻௒(௟)𝐷𝑖𝑣()𝛻௓(௟)𝐷𝑖𝑣()

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙, 1)

𝑌(𝑙, 2)

𝑌(𝑙, 𝐷௟)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝒘𝒍(𝟐, 𝟏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝟐, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)

Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps157

Filter(n)

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

௟

௟

௟ ௟ିଵ

𝑍(𝑙, 𝑛)

Dependency between Z(l,n) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps158

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝒎, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps159

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)

Dependency between Z(l,*) and Y(l-1,*)

• Each map influences through the th “plane” of
the th filter ௟

• influences the divergence through all maps160

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝒘𝒍(𝟏, 𝟏)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝟏, 𝟐)

𝒘𝒍(𝟏, 𝒏)

𝒘𝒍(𝟏, 𝑫𝒍)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

𝒘𝒍(𝑫𝒍ି𝟏, 𝟏)
𝒘𝒍(𝑫𝒍ି𝟏, 𝟐)

𝒘𝒍(𝑫𝒍ି𝟏, 𝒏)

𝒘𝒍(𝑫𝒍ି𝟏, 𝑫𝒍)

Dependency diagram for a single map

• Each map influences through the th “plane” of the
th filter ௟

• influences the divergence through all maps
161

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

Dependency diagram for a single map

௒ ௟ିଵ,௠ ௓ ௟,௡

௡

௒ ௟ିଵ,௠

• Need to compute ௒ ௟ିଵ,௠ , the derivative of w.r.t. to
complete the computation of the formula 162

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

𝒘𝒍(𝒎, 𝟏)

𝒘𝒍(𝒎, 𝟐)

𝒘𝒍(𝒎, 𝒏)
𝒘𝒍(𝒎, 𝑫𝒍)

Dependency diagram for a single map

163

௒ ௟ିଵ,௠ ௓ ௟,௡

௡

௒ ௟ିଵ,௠

• Need to compute ௒ ௟ିଵ,௠ , the derivative of w.r.t. to
complete the computation of the formula

Consider a specific

𝛻௓(௟)𝐷𝑖𝑣()𝛻௒(௟ିଵ)𝐷𝑖𝑣()

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑍(𝑙, 𝑛)

BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence w.r.t.

164

BP: Convolutional layer

3 44
4 32
3 42

• Each affects several
terms

165

BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– But how?

N = No. of filters

166

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the

derivative w.r.t that component of
167

௟

Assuming indexing
begins at 0

How a single influences

168

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

௟

How a single influences

169

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

170

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

171

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

172

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

173

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

174

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

175

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

176

௟

• Note: The coordinates of and ௟ sum to the coordinates
of

௟
ᇱ

How a single influences

• Note: The coordinates of and
sum to the coordinates of

177

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

How a single influences

௟

178

Contribution of a single position

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

How a single influences

௟

179
Contribution of the entire th affine map

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

180

Computing derivative for

• The derivatives for every element of every
map in by direct implementation of
the formula:

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

• But this is actually a convolution!
– Let’s see how

181

How a single influences

182

௟

How a single influences

183

௟

How a single influences

184

௟

How a single influences

185

௟

How a single influences

186

௟

How a single influences

187

௟

How a single influences

188

௟

How a single influences

189

௟

How a single influences

190

௟

How a single influences

191

௟

• The derivative at is the sum of component-wise product of the
elements of the flipped filter and the elements of the derivative at

• The flipped filter is positioned with its bottom right square at (2,2) on the Z
derivative map

How a single influences

192

• The derivative at is the sum of component-wise product
of the flipped filter and the elements of the derivative at

• The flipped filter is positioned with its bottom right corner at

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

Derivative at from a single map

193
Contribution of the entire th affine map

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

௟

194

Derivative at from a single map

195

Derivative at from a single map

௟

Zero pad with K-1 rows
and cols on every side

flip

196

௟

Derivative at from a single map

197

௟

Derivative at from a single map

198

௟

Derivative at from a single map

199

௟

Derivative at from a single map

200

௟

Derivative at from a single map

௟

201

Derivative at from a single map

௟

202

Derivative at from a single map

௟

203

Derivative at from a single map

204

௟

Derivative at from a single map

௟

205

Derivative at from a single map

௟

206

Derivative at from a single map

௟

207

Derivative at from a single map

௟

208

Derivative at from a single map

௟

209

Derivative at from a single map

௟

210

Derivative at from a single map

211

௟

Derivative at from a single map

௟

212

Derivative at from a single map

௟

213

Derivative at from a single map

௟

214

Derivative at from a single map

215

௟

Derivative at from a single map

௟

216

Derivative at from a single map

Derivative at from a single map

௟

217

Derivative at from a single map

௟

218

Derivative at from a single map

௟

219

Derivative at from a single map

220

௟

BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Summing over all Z maps

221

The actual convolutions

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

222

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)

The actual convolutions

• The ௟ affine maps are produced by convolving with ௟ filters
• The th map always convolves the th plane of the filters
• The derivative for the th map will invoke the th plane of all the filters

223

Filter1 Filter 𝑙

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1, 𝑚)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑍(𝑙, 1)

𝑍(𝑙, 𝑚)

𝑍(𝑙, 𝐷௟)

224

௟ In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

225

௟

௟

flip

In reality, the derivative at each (x,y)
location is obtained from all z maps

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

flip

226

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

227

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

228

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

229

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

230

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

231

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

232

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

233

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

234

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

235

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

236

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

237

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

238

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

239

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

240

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

241

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

242

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

243

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

244

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

245

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

246

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

247

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

248

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

flip

249

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

250

flip

௟

௟

𝒏 = 𝟏

𝒏 = 𝟐

𝒏 = 𝑫𝒍

𝑑𝐷𝑖𝑣

𝑑𝑌(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍

𝑑𝐷𝑖𝑣

𝑑𝑧 𝑙, 𝑛, 𝑥ᇱ, 𝑦ᇱ
𝑤௟(𝑚, 𝑛, 𝑥 − 𝑥ᇱ, 𝑦 − 𝑦ᇱ)

௫ᇱ,௬ᇱ௡

Computing the derivative for

• This is just a convolution of the zero-padded
maps by the transposed and flipped filter
– After zero padding it first with zeros on every side

251

𝑤௟(𝑚, 𝑛, 𝑥, 𝑦)

𝑤௟(𝑚, 𝑛, 𝐾 + 1 − 𝑥, 𝐾 + 1 − 𝑦)

The size of the Y-derivative map

• We continue to compute elements for the derivative map as long as the
(flipped) filter has at least one element in the (unpadded) derivative Zmap
– I.e. so long as the derivative is non-zero

• The size of the derivative map will be
– and are heidght and width of the Zmap

• This will be the size of the actual map that was originally convolved
252

The size of the Y-derivative map

• If the map was zero-padded in the forward
pass, the derivative map will be the size of the
zero-padded map
– The zero padding regions must be deleted before

further backprop
253

When the stride is more than 1?

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

When the stride is more than 1?

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4

• When the stride is greater than 1, some positions of
contribute to more locations on the maps than others
– With a stride of 2, the boxed-in-blue locations contribute to

half as many locations as the unboxed locations
– The double-boxed (blue and red boxes) locations contribute

to only a quarter as many locations as the unboxed ones

When the stride is more than 1?

• We must make adjustments for when the
stride is greater than 1.

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
4 4

2 4

Stride greater than 1

• How do we adjust the formulae when we
downsample by
– The output map is now a factor smaller on every side

– We have not computed all the terms in the usual formula

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

4 4

2 4

Stride greater than 1

• Observation: Convolving with a stride greater than 1 is the same
as convolving with stride 1 and “dropping” out of every
rows, and of every columns
– Downsampling by
– E.g. for stride 2, it is the same as convolving with stride 1 and dropping

every 2nd entry

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
4 4

2 4

3 44
4 32
3 42

Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives
of the divergence with respect to the
elements of the downsampled (strided) map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives of the divergence
with respect to the elements of the downsampled (strided) map

• We can place these derivative values back into their original
locations of the full-sized map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter
𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Derivatives with Stride greater than 1

• Derivatives: Backprop gives us the derivatives of the divergence with respect to
the elements of the downsampled (strided) map

• We can place these values back into their original locations of the full-sized map

• The remaining entries of the map do not affect the divergence
– Since they get dropped out

• The derivative of the divergence w.r.t. these values is 0

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0
0 00
0

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Computing derivatives with Stride > 1

• Upsampling derivative map:
– Upsample the downsampled derivatives
– Insert zeros into the “empty” slots
– This gives us the derivatives w.r.t. all the entries of a full-sized (stride 1) map

• We can compute the derivatives for , using the full map

0

1 1 1 0 0

0 1 1 1 0

1 1 10

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0
0 00
0

𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(1,1)

Overall algorithm for computing
derivatives w.r.t.

• Given the derivatives ௗ஽௜௩

ௗ௭ ௟,௡,௫,௬

• If stride , upsample derivative map

• For ,

• Compute derivatives using:

266

ᇱ ᇱ
௟

ᇱ ᇱ

௫ᇱ,௬ᇱ௡

Can be computed by convolution with flipped filter

Derivatives for a single layer :
Vector notation

The weight W(l,m)is a 3D Dl-1xKlxKl
Assuming dz has already been obtained via backprop

if (stride > 1) #upsample

dz = upsample(dz,stride,Wl-1,Hl-1,Kl)

dzpad = zeros(Dlx(Hl+2(Kl-1))x(Wl+2(Kl-1))) # zeropad

for j = 1:Dl
for i = 1:Dl-1 # Transpose and flip

Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(l,i,j,:,:)))

dzpad(j,Kl:Kl+Hl-1,Kl:Kl+Wl-1) = dz(l,j,:,:) #center map

end

for j = 1:Dl-1
for x = 1:Wl-1

for y = 1:Hl-1
segment = dzpad(:, x:x+Kl-1, y:y+Kl-1) #3D tensor

dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.

267

Upsampling
Upsample dz to the size it would be if stride was 1

function upsample(dz, S, W, H, K)

if (S > 1) #Insert S-1 zeros between samples

Hup = H – K + 1

Wup = W – K + 1

dzup = zeros(Wup, Hup)

for x = 1:H

for y = 1:W

dzup((x-1)S+1,(y-1)S+1) = dz(x,y)

else

dzup = dz

return dzup

268

Upsampling
function upsample(dz, S)

if (S > 1) #Insert S-1 zeros between samples

dzup = zeros((H-1)xS+1, (W-1)xS+1)

for x = 1:H

for y = 1:W

dzup((x-1)S+1,(y-1)S+1) = dz(x,y)

else

dzup = dz

return dzup

269

Backpropagating through affine map

• Forward affine computation:
– Compute affine maps from previous

layer maps and filters

• Backpropagation: Given

– Compute derivative w.r.t.
– Compute derivative w.r.t.

270

The derivatives for the weights

271

• Each weight affects several
– Consider the contribution of one filter components:

(e.g.)

௟

௫ᇱ,௬ᇱ

௟

௠

௟

272

• Each affine output is computed from multiple input maps simultaneously
• Each weight ௟ affects several

Previous
layer

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

Convolution: the contribution of
a single weight

273

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

Convolution: the contribution of
a single weight

274

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

275

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

276

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

Previous
layer

277

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

Previous
layer

278

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

279

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

Previous
layer

280

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

281

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

282

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Convolution: the contribution of
a single weight

283

Convolution: the contribution of
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑥ᇱ, 𝑦ᇱ 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑥ᇱ, 𝑦 + 𝑥ᇱ + 𝑏௟(𝑛)

ଶ

௬ᇲୀ଴

ଶ

௫ᇲୀ଴௠

• Each weight ௟ affects several
– Consider the contribution of one filter components: e.g. ௟

Previous
layer

284

Convolution: the contribution of
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

285

Convolution: the contribution of
a single weight

Previous
layer

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

௟ ௟

Previous
layer

286

Convolution: the contribution of
a single weight

𝑧 𝑙, 𝑛, 0,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,2 + ⋯
𝑧 𝑙, 𝑛, 1,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,2 + ⋯
𝑧 𝑙, 𝑛, 2,0 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,2 + ⋯
𝑧 𝑙, 𝑛, 0,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,3 + ⋯
𝑧 𝑙, 𝑛, 1,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,3 + ⋯
𝑧 𝑙, 𝑛, 2,1 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,3 + ⋯
𝑧 𝑙, 𝑛, 0,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 1,4 + ⋯
𝑧 𝑙, 𝑛, 1,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 2,4 + ⋯
𝑧 𝑙, 𝑛, 2,2 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 3,4 + ⋯

𝑌(𝑙 − 1, 𝑚) 𝑍(𝑙, 𝑛)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 1,2 𝑦 𝑙 − 1, 𝑚, 𝑥 + 1, 𝑦 + 2 + ⋯

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

௟

௟

287

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

௟
௫,௬

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

288

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

௟
௫,௬

Already computed

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

289

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

Already computed

௟
௫,௬

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + ⋯

290

• The final divergence is influenced by every
• The derivative of the divergence w.r.t ௟ must sum over all

terms it influences

The derivative for a single weight

௟

Div

௟
௫,௬

• Each filter component ௟ affects several
• The derivative of each w.r.t. ௟ is given by

But this too is a convolution

• The derivatives for all components of all filters
can be computed directly from the above formula

• In fact it is just a convolution

• How?

291

௟
௫,௬

௟

Recap: Convolution

• Forward computation: Each filter produces an
affine map 292

Filter1 Filter 𝑙

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

Recap: Convolution

• influences through
293

Filter1

𝑍(𝑙, 1)

𝑍(𝑙, 2)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑧 𝑙, 𝑛, 𝑥, 𝑦 = ෍ ෍ ෍ 𝑤௟ 𝑚, 𝑛, 𝑖, 𝑗 𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗 + 𝑏௟(𝑛)

ଶ

௝ୀ଴

ଶ

௜ୀ଴௠

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 294

𝑍(𝑙, 1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 1, 𝑥, 𝑦)

𝑍(𝑙, 𝐷௟)

𝑌(𝑙 − 1,2)

௟

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 295

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 296

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 297

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 2,0)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 298

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 299

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,1)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 300

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 301

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 0,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 302

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 1,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivatives of the divergence w.r.t. every element of
is known

– Must use them to compute the derivative for 303

𝒅𝑫𝒊𝒗

𝒅𝒘𝒍 (𝒎, 𝒏, 𝒊, 𝒋)
= ෍

𝒅𝑫𝒊𝒗

𝒅𝒛(𝒍, 𝒏, 𝒙, 𝒚)
𝒚 𝒍 − 𝟏, 𝒎, 𝒙 + 𝒊, 𝒚 + 𝒋

𝒙,𝒚

𝑑𝐷𝑖𝑣

𝑑𝑤௟(𝑚, 𝑛, 2,2)

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)

The filter derivative

• The derivative of the th affine map convolves with
every output map of the th layer, to get
the derivative for , the th “plane” of the th filter

304

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)

Filter(n)

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

௟

௟

௟ ௟ିଵ

The filter derivative

305

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 1, 𝑥, 𝑦)

Filter1

𝑌(𝑙 − 1,1)

𝑌(𝑙 − 1,2)

𝑌(𝑙 − 1, 𝐷௟ିଵ)

𝑑𝐷𝑖𝑣

𝑑𝑤௟ (𝑚, 𝑛, 𝑖, 𝑗)
= ෍

𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛, 𝑥, 𝑦)
𝑦 𝑙 − 1, 𝑚, 𝑥 + 𝑖, 𝑦 + 𝑗

௫,௬

=
𝑑𝐷𝑖𝑣

𝑑𝑧(𝑙, 𝑛)
⨂𝑦 𝑙 − 1, 𝑚

ௗ஽௜௩

ௗ௪೗ (௠,௡,௜,௝)
must be upsampled if the stride was greater than 1 in the forward pass

If was zero padded in the forward pass, it must be zero padded for backprop

௟

௟

௟ ௟ିଵ

Derivatives for the filters at layer :
Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl
Assuming that derivative maps have been upsampled
if stride > 1

Also assuming y map has been zero-padded if this was
also done in the forward pass

for n = 1:Dl
for x = 1:Kl
for y = 1:Kl

for m = 1:Dl-1
dw(l,m,n,x,y) = dz(l,n,:,:). #dot product

y(l-1,m,x:x+Kl-1,y:y+Kl-1)

306

Backpropagation: Convolutional layers

• For convolutional layers:
• How to compute the derivatives w.r.t. the affine combination

maps from the activation output maps

• How to compute the derivative w.r.t. and
given derivatives w.r.t.

307

CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for x = 1:W-K+1

for y = 1:H-K+1

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
308

Switching to 1-based
indexing with appropriate
adjustments

Backward layer

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

309

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)310

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:downto:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)311

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here

Complete Backward (with strides)
dY(L) = dDiv/dY(L)
for l = L:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for x = 1:stride:Wl

m = (x-1)stride
for y = 1:stride: Hl

n = (y-1)stride
for j = 1:Dl

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)

312

Backpropagation: Convolutional and
Pooling layers

• Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer
– Obtained as a result of backpropagating through the flat MLP

• Required:
– For convolutional layers:

• How to compute the derivatives w.r.t. the affine combination 𝑍(𝑙) maps from
the activation output maps 𝑌(𝑙)

• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) and 𝑤(𝑙) given derivatives w.r.t.
𝑍(𝑙)

– For pooling layers:
• How to compute the derivative w.r.t. 𝑌(𝑙 − 1) given derivatives w.r.t. 𝑌(𝑙)

313

Max

314

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

315

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

316

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

317

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

318

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

319

Max pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

Max

1 3

6 5
Max

6

320

Derivative of Max pooling

• Max pooling selects the largest from a pool of elements

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

321

1 3

6 5
Max

6

0 0
𝑑𝐷𝑖𝑣

𝑑𝑌 0

𝑑𝐷𝑖𝑣

𝑑𝑌
Backprop

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

y(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
322

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Derivative of max pooling layer at
layer

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l-1,j,pidx(l,j,x,y)) += dy(l,j,x,y)

323

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent overlapping windows

Mean pooling

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

௟௣௢௢௟
ଶ

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

Mean

1 3

6 5
Mean

3.75

324

Derivative of mean pooling

• The derivative of mean pooling is distributed over the
pool

Mean

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

4𝑑𝑌

𝑑𝐷𝑖𝑣

𝑑𝑌

௟௣௢௢௟

௟௣௢௢௟ ௟௣௢௢௟
ଶ

325

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = pooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

y(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

326

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.

Derivative of mean pooling layer at
layer

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l-1,j,p,n+i,m+j) += (1/K2lpool)y(l,j,x,y)

327

“+=“ because adjacent windows may overlap

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2

328

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back
propagation
– Maxpooling layers must propagate derivatives only over the maximum

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network 329

An implicit assumption

• We’ve always assumed that subsequent steps
shrink the size of the maps

• Can subsequent maps increase in size?

Stride>1

330

1-D scans

• The number of “bars” in each layer is usually the same or smaller than the
bars in the previous layer
– Scanning maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 331

time

softmax

Upsampling 1-D scans

• The number of “bars” in each layer is usually the same or smaller than the
bars in the previous layer
– Scanning maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 332

time

softmax

Upsampling 1-D scans

• The number of “bars” in each layer is usually the same or smaller than the
bars in the previous layer
– Scanning maintains or reduces the time resolution of the signal at each layer

• What if we want to increase the time resolution with layers? 333

time

softmax

Upsampling 1-D scans

• Problem: The values required to compute the intermediate
values are missing from the previous layer!

• 334

time

softmax

Upsampling 1-D scans

• Problem: The values required to compute the intermediate values are missing from
the previous layer!

• Solution: Synthetically fill in the missing intermediate values of the previous layer
– With zeros

• Could also fill them in with linear or spline interpolation of neighbors, but it will complicate backprop

time

softmax

Upsampling 1-D scans

• Problem: The values required to compute the intermediate values are missing from
the previous layer!

• Solution: Synthetically fill in the missing intermediate values of the previous layer
– With zeros

• Could also fill them in with linear or spline interpolation of neighbors, but it will complicate backprop

time

softmax This is exactly analogous to
the upsampling performed
during backprop when
forward convolution uses
stride > 1

Upsampling 1-D scans

• The 0-valued interpolated inputs do not really provide any input
• They, and their connections can be removed without changing the computation
• This is the actual computation performed

time

softmax

337

Upsampling 1-D scans

• The 0-valued interpolated inputs do not really provide any input
• They, and their connections can be removed without changing the computation
• This is the actual computation performed

time

softmax

Upsampling 1-D scans

• Key difference from downsampling layers
– All the “columns” in the regular/downsampling layers are identical

• Their incoming weight patterns are identical

– The columns in the upsampling layers are not identical
• The outgoing weight patterns of the lower layer columns are identical

softmax

Upsampling as a scanning network

• Example of a network with one upsampling layer
• Maintaining Symmetry:

– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer) bars is identical

time

softmax

340

Upsampling as a scanning network

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical 341

time

softmax Actual scanning network

Upsampling as a scanning network

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical 342

time

softmax Actual scanning networkNote two different types of
Neurons here

Scanning with increased-res layer

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

343

With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

344

With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

345

With layer of increased size

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture

time

softmax

346

Transposed convolution

• Signal propagation rules are transposed for expanding layers
• In regular convolution, the affine value 𝑍 for a layer “pulls” 𝑌 values from the lower layer

– In vector form
𝑍௟ = 𝑊௟𝑌௟ିଵ

– The ith neuron:
𝑧௟(𝑖) = 𝑊௟(𝑖, :)𝑌௟ିଵ

– Invokes the ith row of 𝑊௟

• In an upsampling layer the 𝑌 values are “pushed” to the upper 𝑍

𝑍௟ = ෍ 𝑊௟(: , 𝑗)𝑌௟ିଵ(𝑗)

௝

– Invokes the jth column of 𝑊௟

– Or alternately, the jth row of 𝑊௟
்

• Expanding operations are sometimes called transpose convolutions as a result
– The primary operation uses the transpose of the convolutional filter 347

In 2-D

• Similar computation

348

2D expanding convolution

• Upsample the input to the appropriate size by interpolating 𝑏 − 1 zeros between adjacent
elements to increase the size of the map by 𝑏

• Convolve with the filter with stride 1, to get the final upsampled output
– Output map size also dependent on size of filter
– Zero-pad upsampled input maps to ensure the output is exactly the desired size 349

upsample

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) × (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size
350

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

These filters are “transposed” (flipped across the top-left to
bottom-right diagonal) w.r.t. the scanning filters for the upsampled
maps in the previous slide

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

351

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

352

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

353

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

354

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

355

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

356

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

357

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

358

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

359

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟௞௠

is the “stride”
(scaling factor between the sizes of Z and Y)

360

2D expanding convolution in practice

• The parameters are filter size and output stride
• Output size is primarily decided by filter stride

– Edges padded by 𝐾 − 1 rows/columns (𝐾 is width of filter)
– Size of new map: (𝑏𝐻 + (𝐾 − 1)) 𝑥 (𝑏𝑊 + (𝐾 − 1))

– Adjust filter stride and filter stride, and crop output map to ensure it is the right size

CNN: Expanding convolution layer

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)

361

Backprop through expanding
convolution

• Backpropagation will give us derivatives for every element of the upsampled map
• Downsample the derivative map by dropping elements corresponding to zeros introduced during

upsampling
• Continue backprop from there
• Actually easier in code…

362

downsample backprop

CNN: Expanding convolution layer

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)

363

We leave the rather trivial issue of how to modify this code to
compute the derivatives w.r.t w and y to you

Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance

364

• We can rewrite this as so (tensor inner product)

Shift-invariance – a different
perspective

365

• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance

366

• More generally each
filter produces a set of
transformed (and
shifted) maps
– Set of transforms

must be enumerated
and discrete

– E.g. discrete set of
rotations and scaling,
reflections etc.

• The network becomes
invariant to all the
transforms considered

Transform invariance

೟ 367

Regular CNN : single layer
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

for j = 1:Dl
segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

368

Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1

369

• Derivatives flow
back through the
transforms to update
individual filters
– Need point

correspondences
between original and
transformed filters

– Left as an exercise

BP with transform invariance

370

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with

distributed representations

• The parameters of the network can be learned through regular back
propagation

• Like a regular MLP, individual layers may either increase or decrease
the span of the representation learned

• The models can be easily modified to include invariance to other
transforms
– Although these tend to be computationally painful

371

But what about the exact location?

• We began with the desire to identify the picture as
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?

372

Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates)

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)

373

Pose estimation

• Can use the same mechanism to predict the
joints of a stick model
– For pose estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints

374

Model variations

• Very deep networks
– 100 or more layers in MLP

– Formalism called “Resnet”
• You will encounter this in your HWs

• “Depth-wise” convolutions
– Instead of multiple independent filters with

independent parameters, use common layer-wise
weights and combine the layers differently for
each filter 375

Conventional convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that

filter

Conventional

convolve collapse

376

Conventional convolutions

• This is done separately for each of the M filters
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve

377

Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2

378

Conventional vs. depth-wise
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters,
which span all M input channels

• Each filter produces one output channel

• Total NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N Mx1x1 1D filters
• Each applies to one 2D location across all M input

channels
• Total NM + MK2 parameters 379

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency,
better ability to compute derivatives, etc.

380

What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by

backpropagation
381

382

Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly
become very large

• Insufficient training data to train well
– Solution: Data augmentation

383

Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data

384

Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms

– Used in text processing

385

Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html

386

Digit classification

387

Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result: 6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 388

The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset: Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories

389

AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
• 1000 different classes (softmax layer)
• NN configuration

• NN contains 60 million parameters and 650,000 neurons,
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1: 96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3, stride 2
• Normalization layer [Unnecessary]
• Conv3: 384 3x3, stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC: 3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons

391

Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over

the lot!

10 patches

392

Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01, decreased by 10 every time validation accuracy

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks
– Lowest prior error using conventional classifiers: > 25%

393

ImageNet

Figure 3: 96 convolutional
kernels of size 11×11×3 learned
by the first convolutional layer
on the 224×224×3 input images.
The top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU 2.
See Section 6.1 for details.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five labels
considered most probable by our model. The correct
label is written under each image, and the
probability assigned to the correct label is also
shown with a red bar (if it happens to be in the top
5).

Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that
produce feature vectors in the last hidden layer with
the smallest Euclidean distance from the feature
vector for the test image.

ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4%  14.8%

• Combining multiple models as before

5121024512

396

VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to

6.8% using only two classifiers

• Final arch: 64 conv, 64 conv,
64 pool,
128 conv, 128 conv,
128 pool,
256 conv, 256 conv, 256 conv,
256 pool,
512 conv, 512 conv, 512 conv,
512 pool,
512 conv, 512 conv, 512 conv,
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 397

Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant; error  6.7%

– Using only 5 million parameters, thanks to average pooling398

Imagenet

• Resnet: 2015
– Current top-5 error: < 3.5%
– Over 150 layers, with “skip” connections..

399

Resnet details for the curious..

• Last layer before addition must have the same number of filters as
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger

learning rate)
• Mini batch 256
• Weight decay 1e-5

400

Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 401

Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..

402

CNN for Automatic
Speech Recognition

• Convolution over frequencies
• Convolution over time

• Neural network with specialized connectivity
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap

