Deep Learning
Recurrent Networks: Part 3
Fall 2020

Y(t+6)

Story so far &

{

A

?T

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

* [terated structures are good for analyzing time series
data with short-time dependence on the past

— These are “Time delay” neural nets, AKA convnets

Story so far

SEEEEEE.
|

» »
» »

» » »
> » P

A A A A A A A

X(t)

t=0

Time

Iterated structures are good for analyzing time series data
with short-time dependence on the past

— These are “Time delay” neural nets, AKA convnets
Recurrent structures are good for analyzing time series
data with long-term dependence on the past

— These are recurrent neural networks

Recap: Recurrent networks can be
incredibly effective at modeling long-term
dependencies

static int indicate_policy(void)
{

int error;

if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

Iy
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;

b

rw->name = "Getjbbregs";

bprm_self clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info-s>historidac)] | PFMR_CLOBATHINC_SECON
return segtable;

Recurrent structures can do what
static structures cannot

10101011110

1

MLP

|

1000110010

|

1100101100

Previous
carry

1
1

—

RNN unit |

e

/N

1 0

* The addition problem: Add two N-bit numbers to produce a N+1-bit number

— Inputis binary

— Will require large number of training instances

* QOutput must be specified for every pair of inputs

* Weights that generalize will make errors

— Network trained for N-bit numbers will not work for N+1 bit numbers

* An RNN learns to do this very quickly
— With very little training data!

Carry
out

Story so far

Ydesired(t)

Y(t)

X(t)

t=0

Time

e Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs

— Through gradient descent and backpropagation

Primary topic

Story so far
for today

Vaesre! 7

Y(t)

X(t)

t=0

Time

e Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs

— Through gradient descent and backpropagation

Story so far: stability

e Recurrent networks can be unstable

— And not very good at remembering at other times

sigmoid

Recap: Vanishing gradient examples..

ELU activation, Batch gradients

Input layer

Output layer

e Learning is difficult: gradients tend to vanish..

The long-term dependency problem

1

l

PATTERNL [ccoiiriiiieiiieveenieenn,] PATTERN 2

Jane had a quick lunch in the bistro. Then she..

* Long-term dependencies are hard to learn in a
network where memory behavior is an

untriggered function of the network

— Need it to be a triggered response to input

10

Long Short-Term Memory

® ® ©

- T\ ~ N T\
A I\I/Ig—lbgll A

\I /_> _/ >\I /_’

© ® ©

 The LSTM addresses the problem of input-
dependent memory behavior

11

Recap: LSTM-based architecture

Y(t)

1

B N N B BN N NN
T:T T:T T:T :T

X(t)

Time

e LSTM based architectures are identical to
RNN-based architectures

12

Recap: Bidirectional LSTM

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

LI

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

A A A A A A hb(lnf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
» t

 Bidirectional version..

13

Primary topic

Key Issue
for today

Vaesre! 7

Y(t)

X(t)

t=0

Time

* How do we define the divergence

* Also: how do we compute the outputs..

14

What follows in this series on
recurrent nets

 Architectures: How to train recurrent networks of
different architectures

* Synchrony: How to train recurrent networks when
— The target output is time-synchronous with the input

— The target output is order-synchronous, but not time
synchronous

— Applies to only some types of nets

* How to make predictions/inference with such networks

Variants of recurrent nets

one to one many to many
! tt 1
- >
Images from
? T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 16

Variants of recurrent nets

many to one

Sequence classification: Classifying a full input sequence
— E.gisolated word/phrase recognition
Order synchronous , time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

17

More variants

many to many one to many

Images from
Karpathy

* A posteriori sequence to sequence: Generate output sequence after processing
input
— E.g. language translation
* Single-input a posteriori sequence generation

— E.g. captioning an image 18

Variants of recurrent nets

one to one many to many

Images from

? T T ? Karpathy

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 19

Regular MLP for processing sequences

A EEEEE:

X(t)

t=0

Time

No recurrence in model
— Exactly as many outputs as inputs
— Every input produces a unique output

— The output at time t is unrelated to the output at t’ # t

20

Learning in a Regular MLP
Ydesired(t)

A 2N 2NN 2N N S

Y(t)

Time
* No recurrence
— Exactly as many outputs as inputs

* One to one correspondence between desired output and actual
output

— The output at time t is unrelated to the output at t’ # t.

21

Regular MLP

Yta rget(t)

v o

Y(t)

Gradient backpropagated at each time

VyyDiv(Yrarger(1 ... T),Y(1...T))
Common assumption:

Div(Yrarget(1..T),Y(1..T)) = Z weDiv(Yegrger (8), Y (1))
t

‘7Y(t)Div(Ytarget(1 T); Y(l T)) = Wt VY(t)Div(Ytarget(t): Y(t))

— W is typically set to 1.0
— This is further backpropagated to update weights etc

22

Regular MLP
Ytarget(t)
v Y ¥

Y(t)

* Gradient backpropagated at each time

Py yDiv(Yearger(1 .. T), Y (1 ...T))
¢ Common assumption:

Div(Yiarger(1..T),Y(1..T)) = Z Div(Yiarge: (), Y (1))

t
VY(t)Div(Ytarget(l T)» Y(l T)) - VY(t)Div(Ytarget(t); Y(t))

— This is further backpropagated to update weights etc

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = KL(Yiqrget (t), Y (1))

Variants of recurrent nets

one to one any to man
! tt 1
- >
Images from
? T T ? Karpathy
N, 4
\/

e Conventional MLP

* Time-synchronous outputs
— E.g. part of speech tagging 2

Variants of recurrent nets

one to one any to man
! bt 1
Bl -
Images from
? T T T Karpathy
N, 4
N_

With a brief defour into modelling language

* Time-synchronous outputs
— E.g. part of speech tagging 25

Time synchronous network
CD NNS VBD IN DT J) NN
S EEEEEE

two roads diverged in a yellow wood

\ 4

»
»

 Network produces one output for each input
— With one-to-one correspondence
— E.g. Assigning grammar tags to words

* May require a bidirectional network to consider both past
and future words in the sentence

26

Time-synchronous networks:

Inference
Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
, W W E N RN
. > > —> 0000 —» >

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

* One sided network: Process input left to right
and produce output after each input

27

- -

Time-synchronous networks:

h(0) h(1)

/'Thfan /Thfm

[
»

X(0) X(1)

Inference
................. N N SR S

h(T — 1) h(T)

A

X(T - 1) X(T)

 For bidirectional networks:

— Process input left to right using forward net

— Process it right to left using backward net
— The combined outputs are time-synchronous, one per input time, and are passed up to the next

layer

» Rest of the lecture(s) will not specifically consider bidirectional nets, but the

discussion generalizes

How do we train the network

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
B EEEEER
1 { f { { f

000 —> > >

A A A A A A

\ 4
\ 4

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

Back propagation through time (BPTT)

Given a collection of sequence training instances comprising input
sequences and output sequences of equal length, with one-to-one
correspondence

— (X;,D;), where

- Xi = Xl',O' "'JXi,T

— Di - Di,O' ""Di,T

Training: Forward pass

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENEREE

[
»

> —> o000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

t

* For each training input:

Forward pass: pass the entire data sequence through the network,
generate outputs

30

SEENEREE

Training: Computing gradients

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

[
»

> —> o000 —» >
A A A

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

»

t

<

For each training input:

Backward pass: Compute divergence gradients via backpropagation

— Back Propagation Through Time

31

Back Propagation Through Time

DIV
D(1..T)
f f
Y (0) Y(1) Y(2) Y(T-2) Y({T-1) YT
h-1 ‘\ * o000 *
J N N { N N
X(0) X(1) X(2) X(T-2) X(T-1 X

* The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

* This is not just the sum of the divergences at individual times

= Unless we explicitly define it that way
32

Back Propagation Through Time

DIV
D(1..T)
t t
Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y
* *
h-l XXX
by N N | N N
X(0) X(1) X(2) X(T-2) X(T-1) X

First step of backprop: Compute Vy DIV for all t

The rest of backprop continues from there

33

Back Propagation Through Time

DIV

D(1..T)
YEO) Y(Tl) Y(2) Y(T-2) Y(T-1) Y
h-l * o000
by N N | N N
X(0) X(1) X(2) X(T-2) X(T-1) X

First step of backprop: Compute Vy DIV for all t
VZ(l)(t)DIV = VyyDIV VY (t)

And so on!

34

Back Propagation Through Time

DIV
D(1..T)
t t
Y (0) Y(1) Y(2) Y(T=2) Y(T-1) Y(T)
h-l * o000
y N N | A N
X(0) X(1) X(2) X(T-2) X(T-1) X()

First step of backprop: Compute Vy DIV for all t
/

 The key component is the computation of this derivative!!
* This depends on the definition of “DIV”

35

. -
\4
A\ 4
A\ 4
v
A\ 4

Time-synchronous recurrence
Ytarget(t)
v Y ¥

Y(t)

Time
Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

Div(Yiarget(1...T),Y(1..T)) = Z Div(Yarge: (), Y (1))
t

VY(t)Div(Ytarget(l T); Y(l T)) — VY(t)Div(Ytarget(t)r Y(t))

36

Time-synchronous recurrence

Ytarget(t) * * *

Y(t)
h-1

X(t)

t=0
Time
* Usual assumption: Sequence divergence is the sum of the divergence at

individual instants

Div(Yiarget(1...T),Y(1..T)) = Z Div(Yarge: (), Y (1))
t

VY(t)Div(Ytarget(l T); Y(l T)) — VY(t)Div(Ytarget(t)r Y(t))

Typical Divergence for classification: Div(Ytarget(t), Y(t)) = KL(Yiqrget (t), Y (1))

Simple recurrence example: Text

Modelling

w1
h_l *

.

Wy

W»
A

Wq

»
Ll

»
>

W»

W3 Wy
A A

W3

»
»

Ws
A

Wy

»
>

Wg
A

Ws

Wy

Learn a model that can predict the next character given a sequence of

characters
« LINCOL?

— Or, at a higher level, words

e TO BE OR NOT TO ???

After observing inputs wy ... wy it predicts wy, 4

Simple recurrence example: Text
Modelling

target chars: ‘e’ i “1" ‘0"
Figure from Andrej Karpathy. . o o -
outputlayer | % 1.0 1.9 0.1
4.1 1=2 -1.1 2.2
Input: Sequence of characters (presented T T T Tw_hy
as one-hot vectors). 03 0 . . [
hidden layer | -0.1 0.3 05 — 0.9
.) 0.9 0.1 -0.3 0.7
Target output after observing “h e | I” is “0” T T T T
W_xh
1 0 0 0
input layer 8 [1) (1) ?
0 0 0 0
input chars: “p” “e@” A “I”

* |nput presented as one-hot vectors

— Actually “embeddings” of one-hot vectors

* Qutput: probability distribution over characters
— Must ideally peak at the target character

39

v
v
v

Training
\ \ \ y ¥

r
Y(t)
..

A A A A A

WO W4 W, W3 Wy

t=0 Time

v

Input: symbols as one-hot vectors
* Dimensionality of the vector is the size of the “vocabulary”

Output: Probability distribution over symbols
Y(t, l) == P(VL|WO ...Wt_l)
* V;isthei-th symbol in the vocabulary

Divergence

Div(Yegrger(1..T),Y(1..T)) = Z KL(Yiarge:(8),Y(t)) = — Z log Y (t, Wey1)

v

The probability assigned
to the correct next word

40

Brief detour: Language models

* Modelling language using time-synchronous
nets

* More generally language models and
embeddings..

Language modelling using RNNs

Four score and seven years ???

ABRAHAMLINCOL??

* Problem: Given a sequence of words (or
characters) predict the next one

42

Language modelling: Representing
words

* Represent words as one-hot vectors

— Pre-specify a vocabulary of N words in fixed (e.g. lexical) order
* E.g. [A AARDVARK AARON ABACK ABACUS... ZZYP]

— Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

 E.g. “AARDVARK” 2> [01000...]
 E.g. “AARON” > [001000..]

e Characters can be similarly represented

— English will require about 100 characters, to include both cases,
special characters such as commas, hyphens, apostrophes, etc.,
and the space character

Predicting words

Four score and seven years ??? Wo

Wn =fWo, ..., Wn_q)

~/ R

Nx1 one-hot vectors

S roo&= o3

,S

co o R
L —

* Given one-hot representations of W,...W,,_4, predict W,

44

Predicting words

Four score and seven years ??? Wo

W, = f(WOr ey Wn—l)

~/ R

Nx1 one-hot vectors

:C;...HO(D::O,_\...Oo:

S

co o R
L —

* Given one-hot representations of W,...W,,_4, predict W,

* Dimensionality problem: All inputs W,...W,,_4 are both
very high-dimensional and very sparse

45

The one-hot representation

(1,0,0)

(0,1,0)

v

(0,0,1)

The one hot representation uses only N corners of the 2N corners of a unit
cube

— Actual volume of space used =0

* (1,&8) has no meaning except fore =6 =0
. . N
— Density of points: O (r_N)

This is a tremendously inefficient use of dimensions

46

Why one-hot representation

(1,0,0)

(0T

v

(0,0,1)

The one-hot representation makes no assumptions about the relative

importance of words
— All word vectors are the same length

It makes no assumptions about the relationships between words
— The distance between every pair of words is the same

47

Solution to dimensionality problem

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: O (TiM)

48

Solution to dimensionality problem

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: O (TiM)

— If properly learned, the distances between projected points will capture semantic relations
between the words

49

The Projected word vectors

.
Four score and seven years ??? w, || p
1
W, = f(PWy, PW,, ...,PW,_1) o
W, |1 P)
1 —P
; fO ;| Wa
: 0
(1,0,0) o
1
0
Wh-1|:[™ p

v

* Project the N-dimensional one-hot word vectors into a lower-dimensional space
— Replace every one-hot vector W; by PW;
— Pisan M X N matrix
— PW; is now an M-dimensional vector

— Learn P using an appropriate objective

* Distances in the projected space will reflect relationships imposed by the objective
50

“Projection”

W, = f(PWp PW,, ...,PWn_l) 0

f0 [w

(1,0,0)

v

M
N

* Pisasimple linear transform
* Asingle transform can be implemented as a layer of M neurons with linear activation

e The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights
51

Predicting words: The TDNN model

v

Predict each word based on the past N words
— “A neural probabilistic language model”, Bengio et al. 2003
— Hidden layer has Tanh() activation, output is softmax

One of the outcomes of learning this model is that we also learn low-dimensional
representations PW of words

52

Alternative models to learn

projections
We| [Wo| [Wio|

*

Mean pooling

Color indicates
shared parameters

7Am7AmA Am7Ama

* Soft bag of words: Predict word based on words in
immediate context

— Without considering specific position
e Skip-grams: Predict adjacent words based on current
word

e More on these in a future recitation?

53

Embeddings: Examples

Country and Capital Vectors Projected by PCA

] !]

" Chinax
Beijing
15 Russias s
Japan«
Al AMoscow |
Turkey- snkara Tokyo
05 F -
Polandk
0 Germany o
France Warsaw
» »Berlin
05 | Italy Paris .
Greece: w - WAthens
-1} Spain Rome -
-1.5 | Portugal Fifie ::adnd |
_2 | 1 | ! 1 Il 1
-2 1.5 1 0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

From Mikolov et al., 2013, “Distributed Representations of Words

and Phrases and their Compositionality” 54

Modelling language

 The hidden units are (one or more layers of) LSTM units
* Trained via backpropagation from a lot of text

— No explicit labels in the training data: at each time the next
word is the label.

55

Generating Language: Synthesis

i

* On trained model : Provide the first few words
— One-hot vectors
» After the last input word, the network generates a probability distribution

over words

— Outputs an N-valued probability distribution rather than a one-hot vector
56

Generating Language: Synthesis

i

v

On trained model : Provide the first few words
— One-hot vectors

After the last input word, the network generates a probability distribution over words
— Outputs an N-valued probability distribution rather than a one-hot vector

Draw a word from the distribution
— And set it as the next word in the series

57

Generating Language: Synthesis

w,| we
EEE B
t =T__»T =T

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

58

Generating Language: Synthesis

\ 4
\4
v
\ 4
v
v

* Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution
e Continue this process until we terminate generation

— In some cases, e.g. generating programs, there may be a natural termination
59

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1:
goto bail;

I
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
X
X
ru->name = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
t table;
return segtable; 60

Composing music with RNN

>
%g,

A

http://www.hexahedria.com/2015/08/03/composing-music-with-recu rrent-neural-netwcggks/

Returning to our problem

* Divergences are harder to define in other
scenarios..

Variants of recurrent nets

\ 4

\ 4

\ 4

Sequence on: Classifying a full input sequence
— E.g phoneme recognition
Order synchronous , time asynchronous sequence-to-sequence generation

— E.g. speech recognition
— Exact location of output is unknown a priori

63

Example..

bluc
T

Color of sky

* Question answering
* |nput : Sequence of words

* QOutput: Answer at the end of the question

64

Example..

AR/
T
t t 1
Xo| | X1| |42

* Speech recognition
* Input : Sequence of feature vectors (e.g. Mel spectra)
 QOutput: Phoneme ID at the end of the sequence

— Represented as an N-dimensional output probability vector,
where N is the number of phonemes

65

Inference: Forward pass

/AH/
T
t 1
XO Xl XZ

* Exact input sequence provided
— QOutput generated when the last vector is processed

* Output is a probability distribution over phonemes

 But what about at intermediate stages?

Forward pass

/AH/

t + 1

Xo| | X1| |42

* Exact input sequence provided

— Output generated when the last vector is processed
e Qutput is a probability distribution over phonemes

e Qutputs are actually produced for every input
— We only read it at the end of the sequence

Training

/AH/

o

t

\v(z)

T

t LT v 1
x| | x| [X

* The Divergence is only defined at the final input
— DIV (Yarger, Y) = KL(Y(T), Phoneme)

* This divergence must propagate through the net
to update all parameters

Training

Shortcoming: Pretends there's no useful ||/aH/
information in these

Xo| |[X1] |42

* The Divergence is only defined at the final input
— DIV(Ytarget, Y) = Xent(Y(T), Phoneme)

* This divergence must propagate through the net
to update all parameters

69

Training

Fix: Use these JAH/| |/AH/| | /AH/

outputs too. T T I
N .

These too must
ideally point to the

correct phoneme Y(2)
i H 1
10 1 il
Xo Xi| [X2

* Exploiting the untagged inputs: assume the same output for the
entire input

* Define the divergence everywhere

DIV (Yiarger Y) = Z w,Xent (Y (t), Phoneme)
t

70

Training

Fix: USC These /AH/ /AH/ /AH/ Blue

outputs too. ; T T
N .

These too must

v
o
Vol

T

ideally point to the

correct phoneme Y(2)
T 1
t t t t t t
Xo| | X1 |4X2

Color of sky

* Define the divergence everywhere
DIV(Ytarget, Y) = Z wiXent(Y(t), Phoneme)
t

* Typical weighting scheme for speech: all are equally important
* Problem like question answering: answer only expected after the question ends

— Only wr is high, other weights are 0 or low -

Variants on recurrent nets

many to one

e Sequence classification: Classifying a full ire
— E.g phoneme recognition

* Order synchronous, time asynchronous sequence-to-sequence generation
— E.g. speech recognition
— Exact location of output is unknown a priori 79

A more complex problem

/B/

T

/AH/

T

/T/

T

T

T

T

T

Xo

X1

X2

X3

X4

Xe

* Objective: Given a sequence of inputs, asynchronously

output a sequence of symbols

— This is just a simple concatenation of many copies of the simple

“output at the end of the input sequence” model we just saw

But this simple extension complicates matters..

73

The sequence-to-sequence problem

/B/ /AH/ [T/
t 1 * 1 1 ?
| | —P — - - — | -
t ¢+ ¢+ 1 ¢+ ¢+ + ¢+ t 1
Xo| |X1| [X2 X3| | Xa| | Xs| [Xe| | X7| | Xs| |[Xo

* How do we know when to output symbols
— In fact, the network produces outputs at every time
— Which of these are the real outputs

e Outputs that represent the definitive occurrence of a symbol

74

/AH/
/B/
/D/
/EH/
/IY/
/F/
/G/

The actual output of the network

AH

AH

yor | [y | v3 1 o I 7 I I a6 72l B O Ol I I
Yo yr Y2 y3 Vi ye ve y7 Vs
Yo VP vy ys Vi s Ve y7 Ve

yoo | |yi" | |27 |vs"] v | yE" | |¥é" | |y | ys"

Yo yi© 2 | | vs Vi s Ve y7 Vg
Yo yi Y3 3 Ya s Ye y7 Vg
Y6 %t % ys Vi s Ve %4 Vs
1 1 | | 1 1 1 1 |
X, X, X, X, X, Xs X, X, Xq
At each time the network outputs a probability for

each output symbol given all inputs until that time
— Eg y4l,) — pTOb(S4 — D|X0 X4)

75

Recap: The output of a network

* Any neural network with a softmax (or logistic) output
is actually outputting an estimate of the a posteriori
probability of the classes given the output

[P(c11X), P(cz|X), ..., P(cg|X)]
* Selecting the class with the highest probability results
in maximum a posteriori probability classification

Class = argmax P(Y;|X)
i

* We use the same principle here

/AH/
/B/
/D/
/EH/
/IY/
/F/
/G/

Overall objective

3ol R I e B U7 O U 2w N U7 I I C-n B I 7w B 5 2 B 7
Yo Y& %1 ys Vi ye Ve y7 Vs
Yo P vy ys Vs g e y7 Vs

yoo | o™ |y | |ys" | |y | |we™| |¥é" | |y | ws"

Yo vi¥ vy s Va© Vs Ve vy Vg
Yo yi Y 3 Vi s Ve y; Vs
6 %t y: Vel Vi s Ve %ed Vs
1 1 | | 1 1 1 1 1
X, X4 X, X, X, Xs X, X, Xq
-ind most likely symbol sequence given inputs

So .- Sk—1 = argmax prob(S} ...Si_1|Xo - Xn_1)

/ !
SO ...SK_l

77

Finding the best output

1 1 1

1

1

1

/AH/ | Yo Y1 Y2 Y3 Ya Vs Y6 Y7 Y
/B/ | ¥§ i Y3 3 Vi Vs Vé s Vs
/D) | Yo Vi V3 V3 Vi Ve Ve 3
/EH/ | ¥§ Vi 3 y3 Vi Vs Ve 7 Vs
| v y$ y3 y3 y3 yg ys
K| Y6 Y1 vé y7 Y8
/6 I 193] [93] [[]] [] [93
1 1 | | 1 1 1 1 |
X, X, X, X, X, Xs X, X, Xq

* Option 1: Simply select the most probable
symbol at each time

Finding the best output

VA I I e B U 7 o N 12 o I 7 (O I 7 I 6 75 B I B I 7
/8/ | ¥§ yr Y2 y3 Vi ye ve y7 Vs
/o | ¥5 P y3 3 vy y? e Al |
R A A A R A R R R 7 B A W Y
N, | vo i 2. | | ys" i A B g
A S I Ve y7 Vg
6/ | o - ek Vel Vi Ve % Vs
1 1 | | 1 1 1 1 1
X, X, X, X, X, X< X, X, Xq

* Option 1: Simply select the most probable symbol at each
time
— Merge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant 79

Simple pseudocode

e Assuming y(t,i),t =1..T,i =1..N isalready
computed using the underlying RNN

n =1
best (1)= argmax,(y(1l,1))
for t = 1:T
best (t)= argmax, (y(t,1))
1f (best(t) !'= best(t-1))
out (n) = best (t-1)
time (n) = t-1
n = n+l

Finding the best output

17NV s T I Z el B V2 B I 7l O 7t O O V- I 7 O 7 I O Vo

/B/ | ¥§ yr vy y3 Vs ye ve vy Vs
/o) | ¥ yP y? y? yP y? yP y? -

Cannot distinguish between an extended symbol and |B73H yZH yEH

repetitions of the symbol B yiY

4 vy 3

ve el Ve

| | |
X, X4 X, X, X, Xs X, X, Xq

* Option 1: Simply select the most probable symbol at each
time
— Merge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant 81

Finding the best output

AH AH

/AH/ | ¥§ yi Vs V4 Vi Vi yét | | 4 V4
B B

"GFIYD"?) ?

Cannot distinguish between an extended symbol and
repetitions of the symbol

X, X] X, X; X, Xs X, X, Xq

* Option 1: Simply select the most probable symbol at each
time
— Merge adjacent repeated symbols, and place the actual emission
of the symbol in the final instant 82

/AH/ | Yo Y1) Y3 Ya Vs Ve Y7 Vs
/Bl | 3 Vi V3 Vi vs Y4 Y7 Vs
/o/ | ¥3 y3 v3 v3 v3 y3 y3
/EH/ | o i Y2 V3 Vi Vs Ve y7 Vs
REAREARE: RE:
K| Y6 Y1 Y3 Y3 ys ys vé y7 Y8
/G/ | Yo y{ Y3 3 i e Ve y7 Vs

1 1 | | 1 1 1 1 |

X, X, X, X, X, Xs X, X, Xq

Finding the best output

1

1

1

* Option 2: Impose external constraints on what sequences are allowed
— E.g. only allow sequences corresponding to dictionary words
— E.g. Sub-symbol units (like in HW1 — what were they?)
— E.g. using special “separating” symbols to separate repetitions

Finding the best output

1

1

/AH/ | Yo Y1 Y2 V3 Vi Vs Ve V7 Vs
/B/ | v5 Y3 y3 Vi vs Y6 y7 Vs
o) | ¥ y3 v3 v3 v3 y3 y2
JEH/ | Yo i Y2 Y3 Vi Vs Yo Y7 Vs
| v yi y5 Y5 y5
F| Yo | | or Y3 y3 ys ys Yé y7 Y8
e/ ¥ | || We will refer to the process 7| | 7
t . |
__. of obtaining an output from —.

the network as decoding =

L1 L] L] L1 L1 [I

* Option 2: Impose external constraints on what sequences are allowed
— E.g. only allow sequences corresponding to dictionary words
— E.g. Sub-symbol units (like in HW1 — what were they?)
— E.g. using special “separating” symbols to separate repetitions

Decoding

17NV s T I Z el B V2 B I 7l O 7t O O V- I 7 O 7 I O Vo
/B/ Y3 yi Vs Y6 y7 Y8
o/ | ¥ yP y? y? yP yP yP
JEH/ | yEH pz I I 7 yvel | | yE" | |weT | | yiT | | ve"
rraicaical ra el cal va REa R
/Fl | yE yi Vs Vs Vi Ve 4 vy 3
/G | ¥§ %t y: ys§ Vi s Ve %ed Vs

| | 1 1 | | | | !

X, X, X, X, X, X< X, X, Xq

* Thisisin fact a suboptimal decode that actually finds the most likely time-synchronous
output sequence

— Which is not necessarily the most likely order-synchronous sequence
* The “merging” heuristics do not guarantee optimal order-synchronous sequences

— We will return to this topic later

85

The sequence-to-sequence problem

/B/ /AH/ /T/
t 1 1 + 1 1 1t
Lt o > > . . —»> £ Ld
t ¢+ ¢+ [¢t ¢+ t ¢t t 1
Xo| | %] |X2| |/ IPar"riaIIy Addressed \{(8 Xo

/A We will revisit this though
°[-<ow do we know when to output symbols

— In fact, the network produces outputs at every time
— Which of these are the real outputs

e How do we train these models?

Training

/B/ /AH/
t t
t ¢+ ¢t 1T t ¢+ t t 1

Xo| | X | [X% | Xs| [x| | Xs| (X! [X] | Xe

* Training data: input sequence + output sequence

— Output sequence length <= input sequence length

* Given output symbols at the right locations
— The phoneme /B/ ends at X,, /AH/ at X, /T/ at X,

The “alignment” of labels

* The time-stamps of the output symbols give us the “alignment” of the
output sequence to the input sequence

— Which portion of the input aligns to what symbol

* Simply knowing the output sequence does not provide us the alignment
— This is extra information

Training with alighment

/B/ /AH/
1 1
¢t ¢+ 1+t *+ 1+ 1+ 1

Xo| | X | [X% | Xs| [x| | Xs| (X! [X] | Xe

* Training data: input sequence + output sequence

— Output sequence length <= input sequence length

* Given the alignment of the output to the input
— The phoneme /B/ ends at X,, /AH/ at X, /T/ at X,

e o JAH/
& Trammg&
Y, Y,

t t 1

t ¢+ ¢+ 17 ¢+ ¢t ¢t t ¢+ 1

Xo| | X | [X% | Xs| [x| | Xs| (X! [X] | Xs| | Xo

* Either just define Divergence as:
DIV = KL(Y,, B) + KL(Y,, AH) + KL(Ys, T)

e Or.

SR LT R

6 Ye Yo
t 1 1 t 1 1 't
- |) — —» | | —» - -
t ¢+ ¢+ [t ¢t ¢t t t 1
X | | x| [%] [x| x| | x| (x| [%] | x| | X6

* Either just define Divergence as:
DIV = Xent(Y,,B) + Xent(Y,;, AH) + Xent(Yy, T)

* Or repeat the symbols over their duration

DIV = z KL(Y;, symbol;) = — z logY(t, symbol,)
t t

91

Problem: No timing information provided
/B/ [AH/ [T/
P PP 2 22 2 27?27

Yo oy 31 [Ya Y5 | |Ye Y; Yg | |¥o
A A A A A A A A A A

Xo | 1% 1% | [x| (x| x| 1% | [X, | [Xs| | Xo

* Only the sequence of output symbols is provided for the
training data

— But no indication of which one occurs where

* How do we compute the divergence?

— And how do we compute its gradient w.r.t. Y; o

Training without alignment

 We know how to train if the alignment is
provided

* Problem: Alignment is not provided

e Solution:
1. Guess the alignment

2. Consider all possible alighnments

Solution 1: Guess the alignment

/B/ /8] [N/ /Y[/IY/ [F/ /F/ /F/ [E[1Y/
2 P P Y ? PR,

Guess an initial alignment and iteratively refine it as the model improves

Initialize: Assign an initial alignment

— Either randomly, based on some heuristic, or any other rationale
Iterate:

— Train the network using the current alignment

— Reestimate the alignment for each training instance

94

Solution 1: Guess the alignment

/B/ /8] [N/ /Y[/IY/ [F/ /F/ /F/ [E[1Y/
2 P P Y ? PR,

Guess an initial alignment and iteratively refine it as the model improves

Initialize: Assign an initial alignment

— Either randomly, based on some heuristic, or any other rationale
Iterate:

— Train the network using the current alignment

— Reestimate the alignment for each training instance

95

Characterizing the alighment

* An alignment can be represented as a repetition of
symbols

— Examples show different alignments of /B/ /AH/ /T/ to
Xp ... Xg

96

Estimating an alighment

* Given:
— The unaligned K-length symbol sequence § = S, ... Sx_1 (e.g.
/B/ /\Y] [F] /1Y])
— An N-length input (N = K)
— And a (trained) recurrent network

* Find:
— An N-length expansion s; ... s)y—1 comprising the symbolsin Sin
strict order
¢ e.g. 505151555553 ... Sx_1
— i.e.59 = 8o, 52 = 51,53 = 51,54 = 55,55 = 83, ...Sy_1 = Sk_1

 E.g. /B/ /B/ /WY /WY /Y] [¥] [} [F] [F] N1Y] ..

 QOutcome: an alignment of the target symbol sequence

So - Sg_q tothe input Xy ... Xpy_1

Estimating an alighment

* Alignment problem:

* Find
argmax P(sg, S1, -, Sn—11S0, 51, -, Sk, X0, X1, o) Xn—1)
— Such that
compress(Sg, S1, -, Sy—1) = S0, 51, -, Sk

* compress() is the operation of compressing
repetitions into one

Recall: The actual output of the network

VA I I e B U 7 o N 12 o I 7 (O I 7 I 6 75 B I B I 7
/8/ | ¥§ yr Y2 y3 Vi ye ve y7 Vs
/D) | Yo VP vy s Vi s e y7 Ve
JEH/ L ys™ | ye] v | ET | e | e | wET | |y | s
/| Yo yi© 2 | | vs Va© s Ve vy Vg
/Fl | ¥ yi Y3 3 Ya s Ye y7 Vg
/G | ¥§ %t y: ys§ Vi s Ve %ed Vs
1 1 | | 1 1 1 1 |
X, X, X, X, X, Xs X, X, Xq

* At each time the network outputs a probability
for each output symbol

99

Recall: unconstrained decoding

JAH/ y3© || et yet | |yt | vg"
/B/ | ¥§ yr y2 y3 Vi ys ye y7 Y
/o/ | Yo % V7 Vs Y6 y7 Vg
R A A A A R A R A B
/o |vol | (v | |y | vs | |y | |ys | | e
IF | ¥ yi Yz V3 Vi s Ye %l Vs
/6] | ¥§ %t vy v§ Vi s Ve ed %3

We find the most likely sequence of symbols

— (Conditioned oninput X ... Xjy_1)

This may not correspond to an expansion of the desired symbol

sequence

— E.g. the unconstrained decode may be

/AH//AH//AH//D//D//AR/[F//IYI/1Y]

— Whereas we want an expansion of /B//IY//F//IY/

* Contracts to /AH/ /D/ /AH/ /F/ /IY/

100

Constraining the alignment: Try 1

* Block out all rows that do not include symbols
from the target sequence

— E.g. Block out rows that are not /B/ /IY/ or /F/

/B/
/IY/
/F/

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

Compute the entire output (for all symbols)
Copy the output values for the target symbols into the secondary reduced structure

Blocking out unnecessary outputs

B B B B

Yo V1 V5 vy V4 ye 4 V7 Vg
1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y
Yo Y1 %) Y3 Ya Vs Ve Y7 Vs

F F F F F F F F F
Yo Vi Y2 Y3 Y4 Vs Yo Y7 B4
y§tH yit ysH yiH yit yiH yéH yiH ygH
vé Yy vy y5 ye ye Ve Ve Ve
ve y? v y3 Vs ye 74 yP Ve
yo Y vyt y5H Ve yer Vel yH ve
v&¥ yi¥ y3Y y3Y ys¥ yi¥ yeY y3¥ y&¥
v§ yi % vi v yE Ve % v
Vs yi ys vs Vs ye Ve % d Vs
| | | 1]]]] |

| | | I | | | I |
X, X, X, X5 X, X< X X X4

102

Constraining the alignment: Try 1

/B/ | yE 2k Vs vy Ve Ve Vo vy Vg
/WY |y yi' vs' Vs Vi ye' Ve yyr vg'
/Fl | yE vi ys ys Vs Ve Ve yE Ve

* Only decode on reduced grid

— We are now assured that only the appropriate
symbols will be hypothesized

103

Constraining the alighment: Try 1

/B/MH ot |] 2] [se) [o7] |8
/Y/ y' | [va | |y | lwet] [

/F/ y(’f yf Y3 m yi | | ¥ y7 | | ¥

* Only decode on reduced grid

— We are now assured that only the appropriate symbols will
be hypothesized

* Problem: This still doesn’t assure that the decode
sequence correctly expands the target symbol sequence

— E.g. the above decode is not an expansion of /B//IY//F//IY/

e Still needs additional constraints on

Try 2: Explicitly arrange the constructed

/B/
/IY/
/F/
/IY/

/AH/
/8/
/D/
/EH/
1Y/
/F/
/G/

table

B B B B B B B B B
Yo Vi) Y3 2 Vs Yo Y7 s
1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y
Yo Y1 %) Y3 Ya Vs Yo Y7 Vs
F F F F F F F F F
Yo Vi Y2 Y3 Y4 Vs Y6 Y7 B4
1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y
Yo Y1 Y2 Y3 Ya Vs Yo Y7 Vs
e o y i o Py yéH Sl yH vt
Ve Vi vy ye ve yg vE Ve Ve,
& Vi vy 3 Ve v ve v yE
y&H yiH yEH yEH viH yeH yEH y5H yEH
v& vi¥ ya¥ yiY vi¥ yi¥ v&¥ ys¥ yi¥
v vy v yE Vi yE vE v y&
s 0% 4 vs s & yE vé Vs v§

Arrange the constructed table so that from top to bottom it has the exact
sequence of symbols required

| E—|

| E—

|

—

j—

—

E—

[—

—

Try 2: Explicitly arrange the constructed
table

/B/ | y& vy v Vs Vs ye Ve vy Vg
/| vy yi" y5' v3' Vi ye' Ve vy Ve
/F | yE yi ya ys Vi Ve Ve vy Ve
/| vl yi" ys' v3' Vi ye' Ve vy Ve
Note: If a symbol occurs multiple times, we repeat the

row in the appropriate location.
E.g. the row for /IY/ occurs twice, in the 2" and 4t positions

/B/ Vo yr vz y3 Yi Vs Yé y7 Vs,
/D/ & Vi vy e Ve v ve v yE

JEH/ | yEH yid yEH yEH yviH yeH yEH y5H yEH
ny/ | ¥ vi¥ 3 yiY vi¥ yi¥ v&¥ v3¥ ¥
/F/ v Vi yE yE Vi yE vE Vi v

/G/ & 0% 4 vs s & yE ve v v§

Yo

S N e
Arrange the constructed table so that from top to bottom it has the exact
sequence of symbols required

[- —n e e e e Iy =

Composing the graph

#N is the number of symbols in the target output
#S (i) is the ith symbol in target output
#T = length of input

#First create output table
For 1 = 1:N

/B/
/IY/
/F/
/IY/

s(l:T,1) = y(1:T, S(1))

107

Explicitly constrain alighment

/8! | ¥§ e V2 Vs Vi Ye Ye y7 Vs
/Y| vo' i | Lo T | [] |] (o
[Fl | ¥§ yi Y3 V3 L E Y6 %] V8
/Y| ye" yi' vz | [v3" Vi v T - =

e Constrain that the first symbol in the decode must be the top left
block

* The last symbol must be the bottom right

* The rest of the symbols must follow a sequence that monotonically

travels down from top left to bottom right
— l.e. symbol chosen at any time is at the same level or at the next level to
the symbol at the previous time
* This guarantees that the sequence is an expansion of the target
sequence
— /B/ /1Y/ /F/ /IY/ in this case

108

Explicitly constrain alighment

/B/ | ¥ k 1l vs \ y3 X i | vE K| Ve y7 Vg
7B yiwo v (s v s 13 ve y7 Ve
/Fl | Y6 yr %4 §y§ 3 Vi 5' s e S“ v; | | v
N | ye” " v | Vs S» Ya B\ Y5 Ve S» yr S‘ Ve

« Compose a graph such that every path in the graph from source to
sink represents a valid alignment

— Which maps on to the target symbol sequence (/B//1Y//F//IY/)
e Edge scoresarel

* Node scores are the probabilities assigned to the symbols by the
neural network

109

Path Score (probability)

Ve vy Vg

Y x y7 | |vs'
Y Y7 \ | 8

> B:!
Y6 7 S‘ Vg

« Compose a graph such that every path in the graph from source to sink
represents a valid alignment

— Which maps on to the target symbol sequence (/B//1Y//F//I1Y/)
e Edgescoresarel

A 4

* Node scores are the probabilities assigned to the symbols by the neural
network

 The “score” of a path is the product of the probabilities of all nodes along
the path

* E.g. the probability of the marked path is
Scr(Path) = y5yry3' vi' vi

110

/B/
/IY/
/F/
/IY/

Path Score (probability)

) ; v, [vs K| e :: ve (| Ye v7 Ve
Yo' e B V3 Vs vs Ve v7 Vg
Yo yi Vs Vi A L A vi L | vé
Yo yi¥ vy s’ S» Vs g Ve Y 2

Compose a graph such that every path in the graph from source to sink
represents a valid alignment
— Which maps on to the target symbol sequence (/B//1Y//F//I1Y/)

Edge scores are 1

Node scores are the probabilities assigned to the symbols by the neural
network

The “score” of a path is the product of the probabilities of all nodes along
the path

Figure shows a typical end-to-end path. There are an exponential number of
such paths. Challenge: Find the path with the highest score (probability)

111

Explicitly constrain alighment

/B/ 2 ? v, [l ys K| ve :: ye | ve y7 Vg
/| v e B o IZ Vi ys £ Ve y7 Ve
/F | v yi %4 Vs A L A v: | | vé
/Y| yo" i vy | " S» Ya ys ¥ Ye " 2

* Find the most probable path from source to
sink using any dynamic programming algorithm

— E.g. The Viterbi algorithm

112

/B/
/IY/
/F/
/IY/

Viterbi algorithm: Basic idea

vE 1 [oE T [aE] [ve] [0] [o2
Yo' Cld L |
¥§ 1 vi || ¥ ¥é % v
Yo A B/ - e y7 || vs

The best path to any node must be an extension of

the best path to one of its parent nodes

— Any other path would necessarily have a lower
probability

The best parent is simply the parent with the best-

scoring best path

113

Viterbi algorithm: Basic idea

/8/ N ENE Y6 y7 Vs
/N | vo Nyl ¥y |y Yo' y7 Vg
/Fl| v 1 Yi || ¥ Ve %] Vs
/Y| yo" yi' | |ve | o|ys | |[ve yrw o vE"

BestPath(y§ — y§) = BestPath(y§ — yi")y%
or BestPath(y§ - y)ys:

BestPath(y§ — yL) = BestPath(yE — BestParent)y}

* The best parent is simply the parent with the best-scoring best path
BestParent

= ArgmaXp, ent €3 .y3) (Score(BestPath (yg — Parent)))

114

Viterbi algorithm

/B/ \ i lys NK12% y7 Vs

/| o . a. < vs Ve S“ y7 Vs

K| v vy : Vs 5' Ve Ve S, vi | | vh

N/ | vl yi' Vi B\ ye' Ve yyr 51 vg'
e Dynamically track the best path (and the score of the

best path) from the source node to every node in the
graph
— At each node, keep track of

* The best incoming parent edge

* The score of the best path from the source to the node through this
best parent edge

* Eventually compute the best path from source to sink

115

/B/
/IY/
/F/
/IY/

Viterbi algorithm

Ve vy Vg

\ 4

!

o
»

ye

B B B o B | B
Yo Vi Y2 \ V3 Vi
: ; Y

vo' o V3" 3 V4 vS: ve Ve S“ yyr vg'
¥$ vy ys v O yi O ye Ve S‘ vi | | vh
vo' | |1 | |z | Vs S» Vi’ B\ Vs PMYe M7 51 Ve

First, some notation:

ytS(r) is the probability of the target symbol assigned to the r-th row

in the t-th time (given inputs X ... X;)
— E.g., S(0) = /B/
* The scores in the Ot row have the form yf
— E.g.S(1) =5(3) = J1Y/
* The scores in the 15t and 3" rows have the form y{Y
— E.g.S(2)=/F/
* The scores in the 2" row have the form y{

116

Viterbi algorithm

vi K7 ve O vs Ve K’ ve | Ve vy Ve
A I v Syl Syl Oy v7 Vg
yi Vs vs Vs 3 Ve Ve §y5 L vé
y1* ys' y3' v’ Sw v’ V' y7° 31 Vg

BP := Best Parent

* |nitialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1

Bscr := Bestpath Score to node

117

Viterbi algorithm

v: [l vs K| vr K’ ve | Ve vy Ve
PSR N AR
Vs v3 Vs 3 Ve Ve vy Ve
ys' y3' v’ Sw v’ V' y7° Vg

* Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1

e fort =1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t —1,0) X yf(o)

 E—

118

Viterbi algorithm

B

o I Kt Ko Koe | [of | ok
4 1Y IY 1Y ‘I_> IY 1Y 2% %

Y2 Y3 3 Va Vs P Vs vy v

v | Nod > i 3‘ AN S‘ Y

* Initialization:

BP(0,i) = null, i=0..K—-1

Bscr(0,0) = yg(o), Bscr(0,i) = —o0, i = 1..K—1
e fort =1..T—-1

BP(t, 0) = 0; BSCT(t, O) = BSCT(t — 1’0) X ytS(O)
forl =1..K—-1

« BP(t,]) = <l —1: if (Bser(t—1, ll—. ;)S: Bscr(t—1,0)) 1 - 1;)

R

119

* Bscr(t,l) = Bscr(BP(t,l)) thS(D

Viterbi algorithm

B |— B B t B (—| .,B B B
Y2 \ Y3 Ya Ys Ye Y7 Vg
J 1Y Iy | 1y | Iy | IY Iy %

V4

Y2 Y3 3 Vs Ve Y7 B4
va ys ¥ Vi 3 Ve Ve §y5 L ove
y2' | Vs S» Vi' Sw Vs PMYe M7 31 Ve

* Initialization:
BP(0,i) = null, i=0..K—-1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1
e fort =1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t —1,0) x y;
forl =1..K—-1

. BP(LD) = <l—1: if (Bscr(t—1,1—1) > Bscr(t —1,1)) [—1;) :

[:else

« Bscr(t,1) = Bscr(BP(t, 1)) xy7® 0

Viterbi algorithm

| vé y7 Vs
Ve v Vg
Ve %l Ve
Yo v g

* |nitialization:

BP(0,i) = null, i=0..K—-1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1
e fort = 1..T -1

BP(t,0) = 0;Bscr(t,0) = Bscr(t—1,0) x yf(o) <:|
forl =1..K—-1

« BP(t,]) = <l —1: if (Bscr(t -1, ll—. ell)S: Bscr(t — 1,1)) [—1; >

* Bscr(t,l) = Bscr(BP(t,1)) ny(l) 121

algorithm

Vi K’ ye | ve y7 Vs
vyl Syl y7 Ve
Vi 3 s Ve %l Vs
Vs Sw Y5 Ve yr Vs

* Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1
e fort =1..T—-1
BP(t,0) = 0; Bscr(t,0) = Bscr(t—1,0) X yf(o)
forl =1..K—-1
* BP(t, 1) = (if (Bscr(t — 1,1l —1) > Bscr(t —1, l)) [—1; else l)

e

122

 Bscr(t,l) = Bscr(BP(t,1)) ths(l)

Viterbi algorithm

| Yo Y7 yg

1Y 1Y 1Y

Ve Y7 Vs
Ve §y5 L vs
Ve yy¥ S« Vg

* Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1
e fort =1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t —1,0) x y;
forl =1..K—-1
« BP(t,1) = (if (Bscr(t—1,1—1) > Bscr(t —1,1)) L —1; elsel)

« Bscr(t,l) = Bscr(BP(t, 1) xy7® } :

123

Viterbi algorithm

> B B B
Yo Y7 Vs
2% 3% 8%

* Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = y(.)s(o), Bscr(0,i) = —oo, i = 1..K—-1
e fort =1..T—-1

BP(t,0) = 0; Bscr(t,0) = Bscr(t —1,0) x y;
forl =1..K—-1
« BP(t,1) = (if (Bscr(t—1,1—1) > Bscr(t —1,1)) L —1; elsel)

« Bscr(t,l) = Bscr(BP(t, 1) xy7® } :

124

Viterbi algorithm

| Ve Y7

yg

IY 1Y

Iy
B4

Ve Y7
Ve §‘ Y7 Vs
Yo y7 S‘ yiY

* Initialization:

BP(0,i) = null, i=0..K—-1

Bscr(0,0) = yg(o), Bscr(0,i) = —o0, i = 1..K—1
e fort =1..T—-1

BP(t; 0) = 0; BSCT‘(t, O) = BSCT(t — 1’0) X ys(o) —

t
forl =1..K—1

« BP(t,]) = <l —1: if (Bser(t—1, ll—. ;)S: Bscr(t—1,0)) 1 - 1;)

* Bscr(t,l) = Bscr(BP(t,l)) ><ytS(l)

125

Viterbi algorithm

| Ve Y7

yg

IY 1Y

Iy
B4

Ve Y7
Ve §‘ Y7 Vs
Yo y7 S‘ yiY

* Initialization:

BP(0,i) = null, i=0..K—-1

Bscr(0,0) = yg(o), Bscr(0,i) = —o0, i = 1..K—1
e fort =1..T—-1

BP(t; 0) = 0; BSCT‘(t, O) = BSCT(t — 1’0) X ys(o) —

t
forl =1..K—1

« BP(t,]) = <l —1: if (Bser(t—1, ll—. ;)S: Bscr(t—1,0)) 1 - 1;)

* Bscr(t,l) = Bscr(BP(t,l)) ><ytS(l)

126

Viterbi algorithm

e |Initialization:
BP(0,i) = null, i=0..K—1
Bscr(0,0) = 3@, Bscr(0,i) = ~oo, i = 1..K 1
e fort =1..T—1
BP(t,0) = 0; Bscr(t,0) = Bscr(t —1,0) X yf(o) _
forl =1..K—-1
. BP(LI) = (l —1: if (Bscr(t — 1,1 —1) > Bscr(t —1,1)) [—1; > ><:|

[:else

* Bscr(t,l) = Bscr(BP(t,l)) ><ytS(l)
127

Viterbi algorithm

¢« s(T—1) = S(K—1)

128

Viterbi algorithm

e s(T—1) = S(K—-1)
e fort = T —1downto 1
s(t—1) = BP(s(t))

129

Viterbi algorithm

/B/ I N Vs Vi Vs Ve 7

7R yi" \ V3" Vi ve' Ve yi¥
/Fl| v % vi | NGB [0 vi | |
N yo |\l | |2 | e | s

e s(T—1) = S(K—-1)
e fort = T —1downto 1
s(t—1) = BP(s(t))

/B/ /B /Y]] [R[Y] TN Y] /1Y

130

VITERBI

#N is the number of symbols in the target output
#S (i) is the ith symbol in target output
#T = length of input

#First create output table
For 1 = 1:N
s(l:T,1i) = y(1:T, S(1i))

#Now run the Viterbi algorithm
First, at t =1

BP(1,1) = -1
Bscr(1l,1) = s(1,1)
Bscr(l,2:N) = —-infty
for t = 2:T
BP(t,1) = 1;
Bscr(t,1l) = Bscr(t-1,1)*s(t,1)
for i = 1l:min(t,N)
BP(t,1) = Bscr(t-1,i) > Bscr(t-1,i-1) 2 i : 1i-1
Bscr(t,1) = Bscr(t-1,BP(t,1))*s(t,1)

Backtrace
AlignedSymbol (T)
for t = T downto

= N
2
AlignedSymbol (t-1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

VITERBI

#N is the number of symbols in the target output
#S (i) is the ith symbol in target output
#T = length of input

#First create output table
For 1 = 1:N

s(1:T,1) = y(1:T, 5(1)) Do not need explicit construction of output
#Now run the Viterbi algorithm table
First, at t =1
P(1,1) = -1 Information about order already in symbol
Bscr(l,1) = s(1,1) sequence S(i), so we can use y(t,S(i)) instead of
Bscr(l,2:N) = ~infty composing s(t,i) = y(t,S(i)) and using s(t,i)
for t = 2:T ! ! !
BP(t,1l) = 1;
Bscr(t,l) = Bscr(t-1,1)*s(t,1)
for i = 2:min(t,N)
BP(t,1) = Bscr(t—l,i) > Bscr(t-1,i-1) 2 i : i-1
Bscr(t,l) = Bscr(t-1,BP(t,1))*s(t,1)

Backtrace

AlignedSymbol (T) =

for t = T downto 2
AlignedSymbol (t

N

-1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input
Without explicit construction of output table
First, at t =1

P(1,1) = -1
Bscr(1l,1) = v(1,S(1))
Bscr(1l,2:N) = -infty
for t = 2:T
BpP(t,1) = 1;
Bscr(t,l) = Bscr(t-1,1)*y(t,S(1))
for 1 = 2:min (t,N)
BP(t,i1) = Bscr(t-1,1i) > Bscr(t-1,1i-1) 2 1 : 1-1
Bscr(t,1) = Bscr(t-1,BP(t,1))*y(t,S(1))

Backtrace

AlignedSymbol (T) =

for t = T downto 2
AlignedSymbol (t-

N

1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Assumed targets for training with the

/B/
/IY/
/F/
/IY/

Viterbi algorithm

FANEARE: Vi v vé 7 Vs
Yo i’ \ s yi' ys | |ve 7 Vs
y§ i vE INGE =G [»F | | vF yr y§
w |] D]] B Nl

/B/ /B[/IY]]

ATV AN

E7 EA EA] EREREE e B

1 1] 1
| N S S S N N S |
Xol [x| [X2 | | Xs| | Xul [Xs| [Xo| | X0| | Xg

Gradients from the alighment

/B/ A N 7 Ve Ve ye y5 Ve

7R yi" \ V3" Vi ve' Ve ya¥ vg'
/F/ | Yo yi vi | NGB [0 yE yr vE
/A I B A I 7S I A I 7

/B/ /B /Y]] [R[Y[TN Y] /1Y

DIV = ZKL (Yo, symbolf ") = ZIOgY (£ symbol** ")
e The gradlent w.r.t the t-th output vector Yt
! 0 0
V.. DIV =|0 0 -
Yt Y(t Symb lbestpath)

— Zeros except at the component corresponding to the target in the estimated
alignment

135

Iterative Estimate and Training

/B/ /B/ [IY] [F/ /F/ 1Y/ /|Y/ /Y)Y 1Y/
7P 2 2 7 ? 2 Q2 7

Yo oy 31 [Ya Y5 | |Ye Y; Yg | |¥o

Train model with Decode to obtain

given alignments alignments

Initialize
alignments

The "decode” and "train” steps may be combined into a single "decode, find alignment
compute derivatives” step for SGD and mini-batch updates

Iterative update

* Option 1:
— Determine alignments for every training instance

— Train model (using SGD or your favorite approach) on the
entire training set

— |terate

* Option 2:

— During SGD, for each training instance, find the alignment
during the forward pass

— Use in backward pass

Iterative update: Problem

* Approach heavily dependent on initial
alignment

* Prone to poor local optima

e Alternate solution: Do not commit to an
alignment during any pass..

Next Class

* Training without explicit alighment..
— Connectionist Temporal Classification
— Separating repeated symbols

e The CTC decoder..

