Deep Learning

Sequence to Sequence models: Connectionist Temporal Classification
Sequence-to-sequence modelling

• Problem:
 – A sequence $X_1 \ldots X_N$ goes in
 – A different sequence $Y_1 \ldots Y_M$ comes out

• E.g.
 – Speech recognition: Speech goes in, a word sequence comes out
 • Alternately output may be phoneme or character sequence
 – Machine translation: Word sequence goes in, word sequence comes out
 – Dialog: User statement goes in, system response comes out
 – Question answering: Question comes in, answer goes out

• In general $N \neq M$
 – No synchrony between X and Y.
Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output
 – May even not even maintain order of symbols
 • E.g. “I ate an apple” → “Ich habe einen apfel gegessen”
 – Or even seem related to the input
 • E.g. “My screen is blank” → “Please check if your computer is plugged in.”
Sequence to sequence

- Sequence goes in, sequence comes out
- No notion of “time synchrony” between input and output
 - May even not even maintain order of symbols
 - E.g. “I ate an apple” → “Ich habe einen apfel gegessen”
 - Or even seem related to the input
 - E.g. “My screen is blank” → “Can you check if your computer is plugged in?”
Case 1: Order-aligned but not time synchronous

- The input and output sequences happen in the same order
 - Although they may not be *time synchronous*, they can be “aligned” against one another
 - E.g. Speech recognition
 - The input speech can be aligned to the phoneme sequence output
Problems

• How do we perform *inference* on such a model
 – How to output time-asynchronous sequences

• How do we *train* such models
Problems

• How do we perform *inference* on such a model
 – How to output time-asynchronous sequences

• How do we *train* such models
The inference problem

- Objective: Given a sequence of inputs, asynchronously output a sequence of symbols – “Decoding”
Recap: Inference

- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs?
The actual output of the network

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

- At each time the network outputs a probability for each output symbol given all inputs until that time
 - E.g. $y_4^D = \text{prob}(s_4 = D | X_0 ... X_4)$
Overall objective

• Find most likely symbol sequence given inputs

\[S_0 \ldots S_{K-1} = \arg\max \ \text{prob}(S'_0 \ldots S'_{K-1}|X_0 \ldots X_{N-1}) \]

\[S'_0 \ldots S'_{K-1} \]
Finding the best output

- Option 1: Simply select the most probable symbol at each time
Finding the best output

- Option 1: Simply select the most probable symbol at each time
 - Merge adjacent repeated symbols, and place the actual emission of the symbol in the final instant
Simple pseudocode

• Assuming \(y(t,i), t = 1 \ldots T, i = 1 \ldots N \) is already computed using the underlying RNN

\[
n = 1 \\
\text{best}(1) = \arg\max_i (y(1,i)) \\
\text{for } t = 1:T \\
\qquad \text{best}(t) = \arg\max_i (y(t,i)) \\
\qquad \text{if } \text{best}(t) \neq \text{best}(t-1) \\
\qquad \qquad \text{out}(n) = \text{best}(t-1) \\
\qquad \qquad \text{time}(n) = t-1 \\
\qquad n = n+1
\]
The actual output of the network

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y^A_0</th>
<th>y^A_1</th>
<th>y^A_2</th>
<th>y^A_3</th>
<th>y^A_4</th>
<th>y^A_5</th>
<th>y^A_6</th>
<th>y^A_7</th>
<th>y^A_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y^B_0</td>
<td>y^B_1</td>
<td>y^B_2</td>
<td>y^B_3</td>
<td>y^B_4</td>
<td>y^B_5</td>
<td>y^B_6</td>
<td>y^B_7</td>
<td>y^B_8</td>
</tr>
<tr>
<td>/D/</td>
<td>y^D_0</td>
<td>y^D_1</td>
<td>y^D_2</td>
<td>y^D_3</td>
<td>y^D_4</td>
<td>y^D_5</td>
<td>y^D_6</td>
<td>y^D_7</td>
<td>y^D_8</td>
</tr>
<tr>
<td>/EH/</td>
<td>y^E_0</td>
<td>y^E_1</td>
<td>y^E_2</td>
<td>y^E_3</td>
<td>y^E_4</td>
<td>y^E_5</td>
<td>y^E_6</td>
<td>y^E_7</td>
<td>y^E_8</td>
</tr>
<tr>
<td>/IY/</td>
<td>y^I_0</td>
<td>y^I_1</td>
<td>y^I_2</td>
<td>y^I_3</td>
<td>y^I_4</td>
<td>y^I_5</td>
<td>y^I_6</td>
<td>y^I_7</td>
<td>y^I_8</td>
</tr>
<tr>
<td>/F/</td>
<td>y^F_0</td>
<td>y^F_1</td>
<td>y^F_2</td>
<td>y^F_3</td>
<td>y^F_4</td>
<td>y^F_5</td>
<td>y^F_6</td>
<td>y^F_7</td>
<td>y^F_8</td>
</tr>
<tr>
<td>/G/</td>
<td>y^G_0</td>
<td>y^G_1</td>
<td>y^G_2</td>
<td>y^G_3</td>
<td>y^G_4</td>
<td>y^G_5</td>
<td>y^G_6</td>
<td>y^G_7</td>
<td>y^G_8</td>
</tr>
</tbody>
</table>

Option 1: Simply select the most probable symbol at each time

- *Merge* adjacent repeated symbols, and place the actual emission of the symbol in the final instant
Greedy Decoding: Recap

This is in fact a suboptimal decode that actually finds the most likely time-synchronous output sequence

- Which is not necessarily the most likely order-synchronous sequence
- We will return to this topic later
The sequence-to-sequence problem

- How do we know when to output symbols
 - In fact, the network produces outputs at every time
 - Which of these are the real outputs

- How do we train these models?
Recap: Training with alignment

- Training data: input sequence + output sequence
 - Output sequence length <= input sequence length

- Given the *alignment* of the output to the input
 - The phoneme /B/ ends at X_2, /AH/ at X_6, /T/ at X_9
Recap: Characterizing an alignment

- Given only the order-synchronous sequence and its time stamps
 - $S_0(T_0), S_1(T_1), ..., S_{K-1}(T_{K-1})$
 - E.g. $S_0 = /B/ (3)$, $S_1 = /B/ (7)$, $S_2 = /T/ (9)$,
Recap: Characterizing an alignment

- Given only the order-synchronous sequence and its time stamps
 - $S_0(T_0), S_1(T_1), ..., S_{K-1}(T_{K-1})$
 - E.g. $S_0 = /B/ (3), S_1 = /B/ (7), S_2 = /T/ (9)$,

- Repeat symbols to convert it to a time-synchronous sequence
 - $s_0, s_1, ..., s_{N-1} = S_0, S_0, ..., (T_0 \text{ times}), S_1, S_1, ..., (T_1 \text{ times}), ..., S_{K-1}$
 - E.g. $s_0, s_1, ..., s_9 = /B//B//B//B//AH//AH//AH//AH//AH//T//T//T$
Recap: Characterizing an alignment

- Given only the order-synchronous sequence and its time stamps
 - \(S_0(T_0), S_1(T_1), \ldots, S_{K-1}(T_{K-1}) \)
 - E.g. \(S_0 = /B/ (3), \ S_1 = /B/ (7), \ S_2 = /T/ (9) \),

- Repeat symbols to convert it to a time-synchronous sequence
 - \(s_0 = S_0, s_1 = S_0, \ldots, s_{T_0} = S_0, s_{T_0+1} = S_1, \ldots, s_{T_1} = S_1, s_{T_1+1} = S_2, \ldots, s_{N-1} = S_{K-1} \)
 - E.g. \(s_0, s_1, \ldots, s_9 = /B//B//B//B//AH//AH//AH//AH//AH//T//T/ \)

- For our purpose an alignment of \(S_0 \ldots S_{K-1} \) to an input of length \(N \) has the form
 - \(s_0, s_1, \ldots, s_{N-1} = S_0, S_0, \ldots, S_0, S_1, S_1, \ldots, S_1, S_2, \ldots, S_{K-1} \) (of length \(N \))

- Any sequence of this kind of length \(N \) that contracts (by eliminating repetitions) to \(S_0 \ldots S_{K-1} \) is a candidate alignment of \(S_0 \ldots S_{K-1} \)
Recap: Training with alignment

- Given the order-aligned output sequence with timing
Given the order aligned output sequence with timing
 – Convert it to a time-synchronous alignment by repeating symbols

Compute the divergence from the time-aligned sequence

\[DIV = \sum_t KL(Y_t, symbol_t) = -\sum_t \log Y(t, symbol_t) \]
\[DIV = \sum_t KL(Y_t, symbol_t) = - \sum_t \log Y(t, symbol_t) \]

- The gradient w.r.t the \(t \)-th output vector \(Y_t \)
 \[
 \nabla_{Y_t} DIV = \begin{bmatrix}
 0 & 0 & \ldots & -\frac{1}{Y(t, symbol_t)} & 0 & \ldots & 0
 \end{bmatrix}
 \]
 - Zeros except at the component corresponding to the target aligned to that time
Problem: Alignment not provided

• Only the sequence of output symbols is provided for the training data
 – But no indication of which one occurs where

• How do we compute the divergence?
 – And how do we compute its gradient w.r.t. Y_t
Recap: Training without alignment

• We know how to train if the alignment is provided
• Problem: Alignment is not provided

• Solution:
 1. Guess the alignment
 2. Consider all possible alignments
Solution 1: Guess the alignment

- **Initialize:** Assign an initial alignment
 - Either randomly, based on some heuristic, or any other rationale
- **Iterate:**
 - Train the network using the current alignment
 - *Reestimate* the alignment for each training instance
 - Using the Viterbi algorithm
Recap: Estimating the alignment: Step 1

Arrange the constructed table so that from top to bottom it has the exact sequence of symbols required.
Recap: Viterbi algorithm

- Initialization:
 \[BP(0, i) = \text{null}, \ i = 0 \ldots K - 1 \]
 \[Bscr(0,0) = y_0^{S(0)}, \ Bscr(0, i) = -\infty, \ i = 1 \ldots K - 1 \]
- for \(t = 1 \ldots T - 1 \)
 \[BP(t, 0) = 0; \ Bscr(t, 0) = Bscr(t - 1, 0) \times y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(BP(t, l) = \begin{cases} l - 1 : & \text{if } (Bscr(t - 1, l - 1) > Bscr(t - 1, l)) \ l - 1; \\ l : & \text{else} \end{cases} \)
 - \(Bscr(t, l) = Bscr(BP(t, l)) \times y_t^{S(l)} \)
Recap: Viterbi algorithm

- $s(T - 1) = S(K - 1)$
- for $t = T - 1$ down to 1
 - $s(t - 1) = BP(s(t))$
VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

#First create output table
For i = 1:N
 s(1:T,i) = y(1:T, S(i))

#Now run the Viterbi algorithm
First, at t = 1
BP(1,1) = -1
Bscr(1,1) = s(1,1)
Bscr(1,2:N) = -infty
for t = 2:T
 BP(t,1) = 1;
 Bscr(t,1) = Bscr(t-1,1)*s(t,1)
 for i = 1:min(t,N)
 BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
 Bscr(t,i) = Bscr(t-1,BP(t,i))*s(t,i)

Backtrace
AlignedSymbol(T) = N
for t = T downto 2
 AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
VITERBI

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#T = length of input

First, at t = 1
BP(1,1) = -1
Bscr(1,1) = y(1,S(1))
Bscr(1,2:N) = -infty
for t = 2:T
 BP(t,1) = 1;
 Bscr(t,1) = Bscr(t-1,1)*y(t,S(1))
 for i = 2:min(t,N)
 BP(t,i) = Bscr(t-1,i) > Bscr(t-1,i-1) ? i : i-1
 Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,S(i))

Backtrace
AlignedSymbol(T) = N
for t = T downto 2
 AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

Without explicit construction of output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Recap: Iterative Estimate and Training

The "decode" and "train" steps may be combined into a single "decode, find alignment, compute derivatives" step for SGD and mini-batch updates
Iterative update: Problem

• Approach heavily dependent on initial alignment

• Prone to poor local optima

• Alternate solution: Do not commit to an alignment during any pass.
Recap: Training *without* alignment

• We know how to train if the alignment is provided
• Problem: Alignment is *not* provided

• Solution:
 1. *Guess* the alignment
 2. Consider *all possible* alignments
The reason for suboptimality

- We commit to the single “best” estimated alignment
 - The most likely alignment

\[
DIV = - \sum_t \log Y(t, symbol_{bestpath}^t)
\]

- This can be way off, particularly in early iterations, or if the model is poorly initialized
The reason for suboptimality

- We commit to the single “best” estimated alignment
 - The most likely alignment
 \[
 \text{DIV} = - \sum_t \log Y(t, \text{symbol}_{bestpath}^t)
 \]
 - This can be way off, particularly in early iterations, or if the model is poorly initialized

- Alternate view: there is a probability distribution over alignments of the target Symbol sequence (to the input)
 - Selecting a single alignment is the same as drawing a single sample from it
 - Selecting the most likely alignment is the same as deterministically always drawing the most probable value from the distribution
Averaging over all alignments

- Instead of only selecting the most likely alignment, use the statistical expectation over all possible alignments

\[\text{DIV} = E \left[- \sum_t \log Y(t, s_t) \right] \]

- Use the entire distribution of alignments
- This will mitigate the issue of suboptimal selection of alignment
The expectation over all alignments

$$DIV = E \left[- \sum_t \log Y(t, s_t) \right]$$

- Using the linearity of expectation

$$DIV = - \sum_t E[\log Y(t, s_t)]$$

- This reduces to finding the expected divergence at each input

$$DIV = - \sum_t \sum_{S \in S_1 \ldots S_K} P(s_t = S|S, X) \log Y(t, s_t = S)$$
The expectation over all alignments

The probability of aligning the specific symbol s at time t, given that unaligned sequence $S = S_0 \ldots S_{K-1}$ and given the input sequence $X = X_0 \ldots X_{N-1}$.

We need to be able to compute this:

$$DIV = - \sum_t E [\log Y(t, s_t)]$$

- This reduces to finding the expected divergence at each input.

$$DIV = - \sum_t \sum_{S \in S_1 \ldots S_K} P(s_t = S|S, X) \log Y(t, s_t = S)$$
A posteriori probabilities of symbols

\[
P(s_t = S_r | \mathbf{S}, \mathbf{X}) \propto P(s_t = S_r, \mathbf{S} | \mathbf{X})
\]

- \(P(s_t = S_r, \mathbf{S} | \mathbf{X}) \) is the total probability of all valid paths in the graph for target sequence \(\mathbf{S} \) that go through the symbol \(S_r \) (the \(r^{th} \) symbol in the sequence \(S_0 \ldots S_{K-1} \)) at time \(t \)

- We will compute this using the “forward-backward” algorithm
A posteriori probabilities of symbols

- \(P(s_t = S_r, S | X) \) can be decomposed as
 \[P(s_t = S_r, S | X) = P(S_0, ..., S_{K-1}, s_t = S_r | X) \]
A posteriori probabilities of symbols

- $P(s_t = S_r, S|X)$ can be decomposed as

$$P(s_t = S_r, S|X) = P(S_0, ..., S_r, ..., S_{K-1}, s_t = S_r|X)$$

$$= P(S_0 ... S_r, s_t = S_r, s_{t+1} \in succ(S_r), succ(S_r), ..., S_{K-1}, |X)$$

- Where $succ(S_r)$ is a symbol that can follow S_r in a sequence
 - Here it is either S_r or S_{r+1} (red blocks in figure)
 - The equation literally says that after the blue block, either of the two red arrows may be followed
A posteriori probabilities of symbols

- $P(s_t = S_r, S|X)$ can be decomposed as

\[
P(s_t = S_r, S|X) = P(S_1, ..., S_r, ..., S_K, s_t = S_r|X)
= P(S_0 ... S_r, s_t = S_r, s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_{K-1}, |X)
\]

- Where $\text{succ}(S_r)$ is a symbol that can follow S_r in a sequence
 - Here it is either S_r or S_{r+1} (red blocks in figure)
 - The equation literally says that after the blue block, either of the two red arrows may be followed
• $P(s_t = S_r, S|X)$ can be decomposed as

\[
P(s_t = S_r, S|X) = P(S_0, ..., S_r, ..., S_{K-1}, S_t = S_r|X) = P(S_0, ..., S_r, S_t = S_r, s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_{K-1}|X)
\]

• Using Bayes Rule

\[
= P(S_0, ..., S_r, S_t = S_r|X)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_{K-1}|S_0, ..., S_r, s_t = S_r|X)
\]

• The probability of the subgraph in the blue outline, times the conditional probability of the red-encircled subgraph, given the blue subgraph
• $P(s_t = S_r, S \mid X)$ can be decomposed as

$$P(s_t = S_r, S \mid X) = P(S_0, ..., S_{r-1}, s_t = S_r \mid X)$$

$$= P(S_0 \ldots S_r, s_t = S_r, s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), \ldots, S_{K-1} \mid X)$$

• Using Bayes Rule

$$= P(S_0 \ldots S_r, s_t = S_r \mid X)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), \ldots, S_{K-1} \mid S_0 \ldots S_r, s_t = S_r X)$$

• For a recurrent network without feedback from the output we can make the conditional independence assumption:

$$P(s_t = S_r, S \mid X) = P(S_0 \ldots S_r, s_t = S_r \mid X)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), \ldots, S_{K-1} \mid X)$$

Assuming past output symbols do not directly feed back into the net
Conditional independence

• **Dependency graph:** Input sequence \(X = X_0 \ X_1 \ldots X_{N-1} \) governs hidden variables \(H = H_0 \ H_1 \ldots H_{N-1} \)

• Hidden variables govern output predictions \(y_0, y_1, \ldots y_{N-1} \) individually

• \(y_0, y_1, \ldots y_{N-1} \) are conditionally independent given \(H \)

• Since \(H \) is deterministically derived from \(X \), \(y_0, y_1, \ldots y_{N-1} \) are also conditionally independent given \(X \)

 – This wouldn’t be true if the relation between \(X \) and \(H \) were not deterministic or if \(X \) is unknown, or if the \(y \)s at any time went back into the net as inputs
A posteriori symbol probability

\[
P(s_t = S_r, S | X) = P(S_0 ... S_r, s_t = S_r | X)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_{K-1} | X)
\]

- We will call the first term the \textit{forward probability} \(\alpha(t, r)\)
- We will call the second term the \textit{backward probability} \(\beta(t, r)\)
A posteriori symbol probability

\[
P(s_t = S_r, S|X) = P(S_0 \ldots S_r, s_t = S_r |X)P(s_{t+1} \in succ(S_r), succ(S_r), \ldots, S_{K-1} |X)
\]

- We will call the first term the \textit{forward probability} \(\alpha(t, r)\)
- We will call the second term the \textit{backward probability} \(\beta(t, r)\)
Computing $\alpha(t, r)$: Forward algorithm

\[\alpha(t, r) = P(S_0 \ldots S_r, s_t = S_r | X) \]

- The $\alpha(t, r)$ is the total probability of the subgraph shown
 - The total probability of all paths leading to the alignment of S_r to time t
Computing $\alpha(t, r)$: Forward algorithm

\[\alpha(3, IY) = P(S_0 \ldots S_r, s_t = S_r | X)\]

\[\alpha(3, IY) = P(\text{subgraph ending at (2, B)}) y_3^{IY} + P(\text{subgraph ending at (2, IY)}) y_3^{IY}\]

\[\alpha(t, r) = \sum_{q : S_q \in \text{pred}(S_r)} P(\text{subgraph ending at (t−1, q)}) Y_t^{S(r)}\]

- Where $\text{pred}(S_r)$ is any symbol that is permitted to come before an S_r and may include S_r
- q is its row index, and can take values r and $r − 1$ in this example
Computing $\alpha(t, r)$: Forward algorithm

Where $\text{pred}(S_r)$ is any symbol that is permitted to come before an S_r and may include S_r

q is its row index, and can take values r and $r - 1$ in this example

$$\alpha(t, r) = P(S_0 \ldots S_r, s_t = S_r | X)$$

$$\alpha(3, IY) = \alpha(2, B) y_3^{IY} + \alpha(2, IY) y_3^{IY}$$

$$\alpha(t, r) = \sum_{q : q\in \text{pred}(S_r)} \alpha(t - 1, q) Y_t^{S(r)}$$
The \(\alpha(t, r) \) is the total probability of the subgraph shown.
Forward algorithm

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1))y_t^{S(r)} \]
Forward algorithm

- **Initialization:**
 \[\alpha(0,0) = y_0^{S(0)}, \quad \alpha(0, r) = 0, \quad r > 0 \]
- **for** \(t = 1 \ldots T - 1 \)
 \[\alpha(t, 0) = \alpha(t - 1,0)y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 \[\alpha(t, l) = (\alpha(t - 1, l) + \alpha(t - 1, l - 1))y_t^{S(l)} \]
Forward algorithm

- Initialization:
 \[
 \alpha(0,0) = y_0^{S(0)}, \quad \alpha(0,r) = 0, \quad r > 0
 \]
- for \(t = 1 \ldots T - 1 \)
 \[
 \alpha(t,0) = \alpha(t-1,0)y_t^{S(0)}
 \]
 for \(l = 1 \ldots K - 1 \)
 - \(\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \)
Forward algorithm

- Initialization:
 \[\alpha(0,0) = y_0^{S(0)}, \quad \alpha(0, r) = 0, \quad r > 0 \]
- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t, 0) = \alpha(t - 1, 0)y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(\alpha(t, l) = (\alpha(t - 1, l) + \alpha(t - 1, l - 1))y_t^{S(l)} \)
Forward algorithm

- Initialization:
 \[\alpha(0,0) = y_0^{S(0)}, \quad \alpha(0, r) = 0, \ r > 0 \]
- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t, 0) = \alpha(t - 1, 0)y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(\alpha(t, l) = (\alpha(t - 1, l) + \alpha(t - 1, l - 1))y_t^{S(l)} \)
Forward algorithm

- Initialization:
 \[\alpha(0,0) = y_0^{S(0)}, \quad \alpha(0, r) = 0, \; r > 0 \]
- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t, 0) = \alpha(t - 1, 0)y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)

 - \(\alpha(t, l) = (\alpha(t - 1, l) + \alpha(t - 1, l - 1))y_t^{S(l)} \)
Forward algorithm

- Initialization:
 \[\alpha(0,0) = y_0^{S(0)}, \quad \alpha(0,r) = 0, \quad r > 0 \]
- for \(t = 1 \ldots T - 1 \)
 \[\alpha(t,0) = \alpha(t-1,0)y_t^{S(0)} \]
 for \(l = 1 \ldots K - 1 \)
 - \(\alpha(t,l) = (\alpha(t-1,l) + \alpha(t-1,l-1))y_t^{S(l)} \)
In practice..

- The recursion
 \[\alpha(t, l) = (\alpha(t - 1, l) + \alpha(t - 1, l - 1))y_t^{S(l)} \]
 will generally underflow

- Instead we can do it in the log domain
 \[
 \log \alpha(t, l) \\
 = \log(e^{\log \alpha(t-1,l)} + e^{\log \alpha(t-1,l-1)}) + \log y_t^{S(l)}
 \]
 – This can be computed entirely without underflow
The algorithm can also be stated as follows which separates the graph probability from the observation probability. This is needed to compute derivatives.

Initialization:
\[\hat{\alpha}(0,0) = 1, \quad \hat{\alpha}(0,r) = 0, \quad r > 0 \]
\[\alpha(0,r) = \hat{\alpha}(0,r) y_0^{S(r)}, \quad 0 \leq r \leq K - 1 \]

for \(t = 1 \ldots T - 1 \)
\[\hat{\alpha}(t,0) = \alpha(t-1,0) \]
for \(l = 1 \ldots K - 1 \)
\[\hat{\alpha}(t,l) = \alpha(t-1,l) + \alpha(t-1,l-1) \]
\[\alpha(t,r) = \hat{\alpha}(t,r) y_t^{S(r)}, \quad 0 \leq r \leq K - 1 \]
The final forward probability $\alpha(t, r)$

$$\alpha(T - 1, K - 1) = P(S_0 \ldots S_{K-1} | \mathbf{X})$$

- The probability of the entire symbol sequence is the alpha at the bottom right node
SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N
 s(1:T,i) = y(1:T, S(i))

#The forward recursion
First, at t = 1
alpha(1,1) = s(1,1)
alpha(1,2:N) = 0
for t = 2:T
 alpha(t,1) = alpha(t-1,1)*s(t,1)
 for i = 2:N
 alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
 alpha(t,i) *= s(t,i)

Can actually be done without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the network output for the ith symbol at time t
#T = length of input

#The forward recursion
First, at t = 1
alpha(1,1) = y(1,S(1))
alpha(1,2:N) = 0
for t = 2:T
 alpha(t,1) = alpha(t-1,1)*y(t,S(1))
 for i = 2:N
 alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i) * y(t,S(i))

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
We have seen how to compute this

\[
P(s_t = S_r, S|X) = P(S_0 \ldots S_r, s_t = S_r |X) P(s_{t+1} \in succ(S_r), succ(S_r), \ldots, S_{K-1} |X)
\]

- We will call the first term the \textit{forward probability} \(\alpha(t, r)\)
- We will call the second term the \textit{backward probability} \(\beta(t, r)\)
We will call the first term the forward probability $\alpha(t, r)$

We will call the second term the backward probability $\beta(t, r)$

\[P(s_t = S_r, S | X) = \alpha(t, r)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), \ldots, S_{K-1} | X) \]
We will call the first term the **forward probability** \(\alpha(t, r) \)

We will call the second term the **backward** probability \(\beta(t, r) \)

\[
P(s_t = S_r, S | X) = \alpha(t, r) P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_{K-1} | X)
\]
\[\beta(t, r) = P(s_{t+1} \in succ(S_r), succ(S_r), ..., S_{K-1} | \mathbf{X}) \]

- \(\beta(t, r) \) is the probability of the exposed subgraph, not including the orange shaded box.
Backward probability

\[
\beta(3,1) = P(y_4^IY) + P(y_4^F) \quad (t = 0, 1, 2, 3, 4, 5, 6, 7, 8)
\]
Backward probability

\[y_{4}^{IY} P \]
\[\beta(3,1) = + y_{4}^{F} P \]
$y_4^{IY} \beta(4,1)$

$\beta(3,1) = +

y_4^F \beta(4,2)$
Backward algorithm

\[\beta(t, r) = y_{t+1}^{S(r)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \]
Backward algorithm

\[\beta(t, r) = \sum_{q : S_q \in \text{succ}(S_r)} \beta(t + 1, q) y_{t+1}^{S_q} \]

- The \(\beta(t, r) \) is the total probability of the subgraph shown
- The \(\beta(t, r) \) terms at any time \(t \) are defined recursively in terms of the \(\beta(t + 1, q) \) terms at the next time
Backward algorithm

- Initialization:
 \[\beta(T - 1, K - 1) = 1, \quad \beta(T - 1, r) = 0, \quad r < K - 1 \]
- for \(t = T - 2 \) down to 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(r = K - 2 \ldots 0 \)
 - \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
Backward algorithm

- Initialization:
 \[\beta(T - 1, K - 1) = 1, \quad \beta(T - 1, r) = 0, \quad r < K - 1 \]
- for \(t = T - 2 \) down to 0
 \[\beta(t, K) = \beta(t + 1, K) \gamma_{t+1}^{S(K)} \]
 for \(r = K - 2 \ldots 0 \)
 - \[\beta(t, r) = \gamma_{t+1}^{S(l)} \beta(t + 1, r) + \gamma_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \]
Backward algorithm

- **Initialization:**
 \[\beta(T - 1, K - 1) = 1, \quad \beta(T - 1, r) = 0, \quad r < K - 1 \]

- **for** \(t = T - 2 \) **downto** 0

 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]

 for \(r = K - 2 \ldots 0 \)

 - \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
Backward algorithm

- Initialization:
 \[\beta(T - 1, K - 1) = 1, \quad \beta(T - 1, r) = 0, \quad r < K - 1 \]

- for \(t = T - 2 \) down to 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(r = K - 2 \ldots 0 \)
 \[\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \]
Backward algorithm

- Initialization:
 \[\beta(T - 1, K - 1) = 1, \beta(T - 1, r) = 0, \ r < K - 1 \]
- for \(t = T - 2 \) downto 0
 \[\beta(t, K) = \beta(t + 1, K) y_{t+1}^{S(K)} \]
 for \(r = K - 2 \ldots 0 \)
 - \(\beta(t, r) = y_{t+1}^{S(l)} \beta(t + 1, r) + y_{t+1}^{S(r+1)} \beta(t + 1, r + 1) \)
SIMPLE BACKWARD ALGORITHM

\(N \) is the number of symbols in the target output
\(S(i) \) is the \(i \)th symbol in target output
\(y(t,i) \) is the output of the network for the \(i \)th symbol at time \(t \)
\(T \) = length of input

First create output table
For \(i = 1:N \)
\[
 s(1:T,i) = y(1:T, S(i))
\]

The backward recursion
First, at \(t = T \)
\[
 \beta(T,N) = 1
\]
\[
 \beta(T,1:N-1) = 0
\]
for \(t = T-1 \) downto 1
\[
 \beta(t,N) = \beta(t+1,N) * s(t+1,N)
\]
for \(i = N-1 \) downto 1
\[
 \beta(t,i) = \beta(t+1,i) * s(t+1,i) + \beta(t+1,i+1) * s(t+1,i+1)
\]

Can actually be done without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
BACKWARD ALGORITHM

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,1:N-1) = 0
for t = T-1 downto 1
 beta(t,N) = beta(t+1,N)*y(t+1,S(N))
 for i = N-1 downto 1
 beta(t,i) = beta(t+1,i)*y(t+1,S(i)) + beta(t+1,i+1))*y(t+1,S(i+1))

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Some implementations of the backward algorithm will use the above formula

\[\hat{\beta}(t, r) = y_t^{S(r)}(\hat{\beta}(t + 1, r) + \hat{\beta}(t + 1, r + 1)) \]

- Some implementations of the backward algorithm will use the above formula
- Note that here the probability of the observation at t is also factored into beta
- It will have to be unfactored later (we’ll see how)
The joint probability

\[
P(s_t = S_r, S|X) = \alpha(t, r)P(s_{t+1} \in \text{succ}(S_r), \text{succ}(S_r), ..., S_{K-1} |X)
\]

- We will call the first term the \textit{forward probability} \(\alpha(t, r)\)
- We will call the second term the \textit{backward probability} \(\beta(t, r)\)
We will call the first term the *forward* probability \(\alpha(t, r) \).

We will call the second term the *backward* probability \(\beta(t, r) \).

\[
P(s_t = S_r, S|X) = \alpha(t, r) \beta(t, r)
\]
The posterior probability

\[P(s_t = S_r, S|X) = \alpha(t, r)\beta(t, r) \]

- The posterior is given by

\[
P(s_t = S_r|S, X) = \frac{P(s_t = S_r, S|X)}{\sum_{S_r'} P(s_t = S_r', S|X)} = \frac{\alpha(t, r)\beta(t, r)}{\sum_{r'} \alpha(t, r')\beta(t, r')}
\]
The posterior probability

Let the posterior $P(s_t = S_r | S, X)$ be represented by $\gamma(t, r)$

$$\gamma(t, r) = \frac{\alpha(t, r) \beta(t, r)}{\sum_{r'} \alpha(t, r') \beta(t, r')}$$
COMPUTING POSTERIORS

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

#Now compute the posteriors
for t = 1:T
 sumgamma(t) = 0
 for i = 1:N
 gamma(t,i) = alpha(t,i) * beta(t,i)
 sumgamma(t) += gamma(t,i)
 end
 for i=1:N
 gamma(t,i) = gamma(t,i) / sumgamma(t)
end

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
The posterior probability

\[P(s_t = S_r, S|X) = \alpha(t, r)\beta(t, r) \]

- **The posterior** is given by

\[\gamma(t, r) = \frac{\alpha(t, r)\beta(t, r)}{\sum_{r'} \alpha(t, r')\beta(t, r')} \]

- We can also write this using the modified beta formula as (you will see this in papers)

\[\gamma(t, r) = \frac{1}{y_t} \alpha(t, r)\hat{\beta}(t, r) \]

\[\gamma(t, r) = \frac{\sum_{r'} \frac{1}{s(r)} \alpha(t, r)\hat{\beta}(t, r)}{\sum_{r'} \frac{1}{y_t} \frac{1}{s(r)} \alpha(t, r)\hat{\beta}(t, r)} \]
The expected divergence

\[
DIV = - \sum_t \left(\sum_{s \in S_0 \ldots S_{k-1}} P(s_t = s | S, X) \log Y(t, s_t = s) \right) \\
DIV = - \sum_t \sum_r \gamma(t, r) \log y_t^{S(r)}
\]
The expected divergence

\[
DIV = - \sum_t \sum_{s \in S_0 \ldots S_{K-1}} P(s_t = s | S, X) \log Y(t, s_t = s)
\]

\[
DIV = - \sum_t \sum_r \gamma(t, r) \log y_t^{s(r)}
\]

- The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[
\nabla_{Y_t} DIV = \begin{bmatrix}
\frac{dDIV}{dy_t^{s_0}} & \frac{dDIV}{dy_t^{s_1}} & \ldots & \frac{dDIV}{dy_t^{s_{L-1}}}
\end{bmatrix}
\]

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

\[\text{DIV} = - \sum_{t} \sum_{s \in S_0 \ldots S_{K-1}} P(s_t = s | S, X) \log Y(t, s_t = s) \]

\[\text{DIV} = - \sum_{t} \sum_{r} \gamma(t, r) \log y^s_t^{S(r)} \]

- The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[\nabla_{Y_t} \text{DIV} = \left[\frac{d\text{DIV}}{dy_t^{s_0}} \frac{d\text{DIV}}{dy_t^{s_1}} \ldots \frac{d\text{DIV}}{dy_t^{s_n}} \right] \]

- Components will be non-zero only for symbols that occur in the training instance.

Must compute these terms from here
The expected divergence

\[
\frac{dDIV}{dy_t^l} = - \sum_{r:S(r)=l} \frac{d}{dy_t^l} \gamma(t, r) \log y_t^l
\]

\[
DIV = - \sum_t \sum_r \gamma(t, r) \log y_t^{S(r)}
\]

- The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[
\nabla_{Y_t} DIV = \left[\frac{dDIV}{dy_t^{s_0}} \frac{dDIV}{dy_t^{s_1}} \ldots \frac{dDIV}{dy_t^{s_n}} \right]
\]

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

The derivatives at both these locations must be summed to get \(\frac{dDIV}{dy^I_4} \)

\[
\frac{dDIV}{dy^l_t} = - \sum_{r : S(r) = l} \frac{d}{dy^l_t} \gamma(t, r) \log y^l_t
\]

- The derivative of the divergence w.r.t the output \(Y_t \) of the net at any time:

\[
\nabla_{Y_t} DIV = \begin{bmatrix}
\frac{dDIV}{dy^l_t}^{S_0} & \frac{dDIV}{dy^l_t}^{S_1} & \cdots & \frac{dDIV}{dy^l_t}^{S_{L-1}}
\end{bmatrix}
\]

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

/B/	y_0^B	y_1^B	y_2^B	y_3^B	y_4^B	y_5^B	y_6^B	y_7^B	y_8^B
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	y_5^{IY}	y_6^{IY}	y_7^{IY}	y_8^{IY}
/F/	y_0^F	y_1^F	y_2^F	y_3^F	y_4^F	y_5^F	y_6^F	y_7^F	y_8^F
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	y_5^{IY}	y_6^{IY}	y_7^{IY}	y_8^{IY}

The derivatives at both these locations must be summed to get $\frac{d \text{DIV}}{d y_t^l}$

$$\frac{d \text{DIV}}{d y_t^l} = - \sum_{r : S(r) = t} \frac{d}{d y_t^l} \gamma(t, r) \log y_t^l$$

- The derivative of the divergence w.r.t the output Y_t of the net at any time:

$$\nabla_{Y_t} \text{DIV} = \begin{bmatrix} \frac{d \text{DIV}}{d y_t^{s_0}} & \frac{d \text{DIV}}{d y_t^{s_1}} & \cdots & \frac{d \text{DIV}}{d y_t^{s_{L-1}}} \end{bmatrix}$$

- Components will be non-zero only for symbols that occur in the training instance
The expected divergence

<table>
<thead>
<tr>
<th>B</th>
<th>IY</th>
<th>F</th>
<th>IY</th>
<th>y₀</th>
<th>y₁</th>
<th>y₂</th>
<th>y₃</th>
<th>y₄</th>
<th>y₅</th>
<th>y₆</th>
<th>y₇</th>
<th>y₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y₀</td>
<td>y₁</td>
<td>y₂</td>
<td>y₃</td>
<td>y₄</td>
<td>y₅</td>
<td>y₆</td>
<td>y₇</td>
<td>y₈</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/IY/</td>
<td>y₀</td>
<td>y₁</td>
<td>y₂</td>
<td>y₃</td>
<td>y₄</td>
<td>y₅</td>
<td>y₆</td>
<td>y₇</td>
<td>y₈</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/F/</td>
<td>y₀</td>
<td>y₁</td>
<td>y₂</td>
<td>y₃</td>
<td>y₄</td>
<td>y₅</td>
<td>y₆</td>
<td>y₇</td>
<td>y₈</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/IY/</td>
<td>y₀</td>
<td>y₁</td>
<td>y₂</td>
<td>y₃</td>
<td>y₄</td>
<td>y₅</td>
<td>y₆</td>
<td>y₇</td>
<td>y₈</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The derivatives at both these locations must be summed to get \(\frac{dDIV}{dy₄^{lY}} \):

\[
\frac{dDIV}{dy₄^{l}} = - \sum_{r : S(r) = l} \frac{d}{dy₄^{l}} \gamma(t, r) \log y₄^{l}
\]

- Components will be non-zero only for symbols that occur in the training instance.
The expected divergence

The derivatives at both these locations must be summed to get $\frac{d\text{DIV}}{dy_4^{ly}}$

\[
\frac{d\text{DIV}}{dy_t^l} = - \sum_{r : S(r) = l} \frac{d}{dy_t^l} y(t, r) \log y_t^l
\]

- The derivative of the expected divergence w.r.t. the output of the net at any time:

\[
\frac{d}{dy_t^l} y(t, r) \log y_t^l \approx \frac{\gamma(t, r)}{y_t^l}
\]

The approximation is exact if we think of this as a maximum-likelihood estimate
The derivative of the divergence w.r.t any particular output of the network must sum over all instances of that symbol in the target sequence.

The derivatives at both these locations must be summed to get \(\frac{dDIV}{dy_4^{IY}} \)

\[
DIV = - \sum_t \sum_r \gamma(t,r) \log y_t^{S(r)}
\]

- The derivative of the divergence w.r.t any particular output of the network must sum over all instances of that symbol in the target sequence.

\[
\frac{dDIV}{dy_t^l} = - \frac{1}{y_t^l} \sum_{r : S(r)=l} \gamma(t,r)
\]

- E.g. the derivative w.r.t \(y_t^{IY} \) will sum over both rows representing /IY/ in the above figure.
COMPUTING DERIVATIVES

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

Compute derivatives
for t = 1:T
 dy(t,1:L) = 0 # Initialize all derivatives at time t to 0
 for i = 1:N
 dy(t,S(i)) -= gamma(t,i) / y(t,S(i))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Overall training procedure for Seq2Seq case 1

• Problem: Given input and output sequences without alignment, train models
Overall training procedure for Seq2Seq case 1

• **Step 1**: Setup the network
 – Typically many-layered LSTM

• **Step 2**: Initialize all parameters of the network
Overall Training: Forward pass

• Foreach training instance
 • **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time
Overall training: Backward pass

- Foreach training instance
 - **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time
 - **Step 4**: Construct the graph representing the specific symbol sequence in the instance. This may require having multiple rows of nodes with the same symbol scores
Overall training: Backward pass

- Foreach training instance:
 - **Step 5:** Perform the forward backward algorithm to compute $\alpha(t, r)$ and $\beta(t, r)$ at each time, for each row of nodes in the graph. Compute $\gamma(t, r)$.
 - **Step 6:** Compute derivative of divergence $\nabla_{Y_t} DIV$ for each Y_t
Overall training: Backward pass

• Foreach instance
 – **Step 6:** Compute derivative of divergence $\nabla_{Y_t} DIV$ for each Y_t

 $$
 \nabla_{Y_t} DIV = \left[\frac{dDIV}{dy_t^0} \quad \frac{dDIV}{dy_t^1} \quad \cdots \quad \frac{dDIV}{dy_t^{L-1}} \right]
 $$

 $$
 \frac{dDIV}{dy_t^l} = - \sum_{r : S(r) = l} \frac{\gamma(t, r)}{y_t^l}
 $$

• **Step 7:** Backpropagate $\frac{dDIV}{dy_t^l}$ and aggregate derivatives over minibatch and update parameters
Story so far: CTC models

- Sequence-to-sequence networks which irregularly output symbols can be “decoded” by Viterbi decoding
 - Which assumes that a symbol is output at each time and **merges** adjacent symbols

- They require alignment of the output to the symbol sequence for training
 - This alignment is generally not given

- Training can be performed by iteratively estimating the alignment by Viterbi-decoding and time-synchronous training

- Alternately, it can be performed by optimizing the expected error over all possible alignments
 - Posterior probabilities for the expectation can be computed using the forward backward algorithm
A key **decoding** problem

- Consider a problem where the output symbols are characters
- We have a decode: R R R E E E E E D
- Is this the compressed symbol sequence RED or REED?
We’ve seen this before

/AH/	y_0^{AH}	y_1^{AH}	y_2^{AH}	y_3^{AH}	y_4^{AH}	y_5^{AH}	y_6^{AH}	y_7^{AH}	y_8^{AH}
/B/	y_0^B	y_1^B	y_2^B	y_3^B	y_4^B	y_5^B	y_6^B	y_7^B	y_8^B
/D/	y_0^D	y_1^D	y_2^D	y_3^D	y_4^D	y_5^D	y_6^D	y_7^D	y_8^D
/EH/	y_0^{EH}	y_1^{EH}	y_2^{EH}	y_3^{EH}	y_4^{EH}	y_5^{EH}	y_6^{EH}	y_7^{EH}	y_8^{EH}
/IY/	y_0^{IY}	y_1^{IY}	y_2^{IY}	y_3^{IY}	y_4^{IY}	y_5^{IY}	y_6^{IY}	y_7^{IY}	y_8^{IY}
/F/	y_0^F	y_1^F	y_2^F	y_3^F	y_4^F	y_5^F	y_6^F	y_7^F	y_8^F
/G/	y_0^G	y_1^G	y_2^G	y_3^G	y_4^G	y_5^G	y_6^G	y_7^G	y_8^G

Cannot distinguish between an extended symbol and repetitions of the symbol

- /G/ /F/ /F/ /IY/ /D/ or /G/ /F/ /IY/ /D/ ?

• /G/ /F/ /F/ /IY/ /D/ or /G/ /F/ /IY/ /D/ ?
A key decoding problem

- We have a decode: R R E E E E E D
- Is this the symbol sequence RED or REED?

- Solution: Introduce an explicit extra symbol which serves to separate discrete versions of a symbol
 - A “blank” (represented by “-”)
 - RRR---EE---DDD = RED
 - RR-E--EED = REED
 - RR-R---EE---D-DD = RREDD
 - R-R-R---E-EDD-DDDD-D = RRRREEDDD

- The next symbol at the end of a sequence of blanks is always a new character
- When a symbol repeats, there must be at least one blank between the repetitions

- The symbol set recognized by the network must now include the extra blank symbol
 - Which too must be trained
A key **decoding** problem

- We have a decode: R R R E E E E E D
- Is this the symbol sequence RED or REED?

- Solution: Introduce an explicit extra symbol which serves to separate discrete versions of a symbol
 - A “blank” (represented by “-”)
 - RRR---EE---DDD = RED
 - RR-E--EED = REED
 - RR-R---EE---D-DD = RREDD
 - R-R-R---E-EDD-DDDD-D = RRREEDDD
 - The next symbol at the end of a sequence of blanks is always a new character
 - When a symbol repeats, there must be at least one blank between the repetitions

- The symbol set recognized by the network must now include the extra blank symbol
 - Which too must be trained
The modified forward output

- Note the extra “blank” at the output
The modified forward output

- Note the extra “blank” at the output
The modified forward output

- Note the extra “blank” at the output

<table>
<thead>
<tr>
<th>/B/ /IY/ /F/ /IY/</th>
</tr>
</thead>
<tbody>
<tr>
<td>/AH/</td>
</tr>
<tr>
<td>(y_0^{AH})</td>
</tr>
<tr>
<td>(y_1^{AH})</td>
</tr>
<tr>
<td>(y_2^{AH})</td>
</tr>
<tr>
<td>(y_3^{AH})</td>
</tr>
<tr>
<td>(y_4^{AH})</td>
</tr>
<tr>
<td>(y_5^{AH})</td>
</tr>
<tr>
<td>(y_6^{AH})</td>
</tr>
<tr>
<td>(y_7^{AH})</td>
</tr>
<tr>
<td>(y_8^{AH})</td>
</tr>
<tr>
<td>/B/</td>
</tr>
<tr>
<td>(y_0^B)</td>
</tr>
<tr>
<td>(y_1^B)</td>
</tr>
<tr>
<td>(y_2^B)</td>
</tr>
<tr>
<td>(y_3^B)</td>
</tr>
<tr>
<td>(y_4^B)</td>
</tr>
<tr>
<td>(y_5^B)</td>
</tr>
<tr>
<td>(y_6^B)</td>
</tr>
<tr>
<td>(y_7^B)</td>
</tr>
<tr>
<td>(y_8^B)</td>
</tr>
<tr>
<td>/D/</td>
</tr>
<tr>
<td>(y_0^D)</td>
</tr>
<tr>
<td>(y_1^D)</td>
</tr>
<tr>
<td>(y_2^D)</td>
</tr>
<tr>
<td>(y_3^D)</td>
</tr>
<tr>
<td>(y_4^D)</td>
</tr>
<tr>
<td>(y_5^D)</td>
</tr>
<tr>
<td>(y_6^D)</td>
</tr>
<tr>
<td>(y_7^D)</td>
</tr>
<tr>
<td>(y_8^D)</td>
</tr>
<tr>
<td>/EH/</td>
</tr>
<tr>
<td>(y_0^{EH})</td>
</tr>
<tr>
<td>(y_1^{EH})</td>
</tr>
<tr>
<td>(y_2^{EH})</td>
</tr>
<tr>
<td>(y_3^{EH})</td>
</tr>
<tr>
<td>(y_4^{EH})</td>
</tr>
<tr>
<td>(y_5^{EH})</td>
</tr>
<tr>
<td>(y_6^{EH})</td>
</tr>
<tr>
<td>(y_7^{EH})</td>
</tr>
<tr>
<td>(y_8^{EH})</td>
</tr>
<tr>
<td>/IY/</td>
</tr>
<tr>
<td>(y_0^{IY})</td>
</tr>
<tr>
<td>(y_1^{IY})</td>
</tr>
<tr>
<td>(y_2^{IY})</td>
</tr>
<tr>
<td>(y_3^{IY})</td>
</tr>
<tr>
<td>(y_4^{IY})</td>
</tr>
<tr>
<td>(y_5^{IY})</td>
</tr>
<tr>
<td>(y_6^{IY})</td>
</tr>
<tr>
<td>(y_7^{IY})</td>
</tr>
<tr>
<td>(y_8^{IY})</td>
</tr>
<tr>
<td>/F/</td>
</tr>
<tr>
<td>(y_0^F)</td>
</tr>
<tr>
<td>(y_1^F)</td>
</tr>
<tr>
<td>(y_2^F)</td>
</tr>
<tr>
<td>(y_3^F)</td>
</tr>
<tr>
<td>(y_4^F)</td>
</tr>
<tr>
<td>(y_5^F)</td>
</tr>
<tr>
<td>(y_6^F)</td>
</tr>
<tr>
<td>(y_7^F)</td>
</tr>
<tr>
<td>(y_8^F)</td>
</tr>
<tr>
<td>/G/</td>
</tr>
<tr>
<td>(y_0^G)</td>
</tr>
<tr>
<td>(y_1^G)</td>
</tr>
<tr>
<td>(y_2^G)</td>
</tr>
<tr>
<td>(y_3^G)</td>
</tr>
<tr>
<td>(y_4^G)</td>
</tr>
<tr>
<td>(y_5^G)</td>
</tr>
<tr>
<td>(y_6^G)</td>
</tr>
<tr>
<td>(y_7^G)</td>
</tr>
<tr>
<td>(y_8^G)</td>
</tr>
</tbody>
</table>

Diagram:

- \(X_0 \) to \(X_8 \) connections for each \(y_i \) output.
The modified forward output

- Note the extra “blank” at the output
Composing the graph for training

- The original method without blanks

- Changing the example to /B/ /IY/ /IY/ /F/ from /B/ /IY/ /F/ /IY/ for illustration
Composing the graph for training

<table>
<thead>
<tr>
<th></th>
<th>y_{0}^{b}</th>
<th>y_{1}^{b}</th>
<th>y_{2}^{b}</th>
<th>y_{3}^{b}</th>
<th>y_{4}^{b}</th>
<th>y_{5}^{b}</th>
<th>y_{6}^{b}</th>
<th>y_{7}^{b}</th>
<th>y_{8}^{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_{0}^{B}</td>
<td>y_{1}^{B}</td>
<td>y_{2}^{B}</td>
<td>y_{3}^{B}</td>
<td>y_{4}^{B}</td>
<td>y_{5}^{B}</td>
<td>y_{6}^{B}</td>
<td>y_{7}^{B}</td>
<td>y_{8}^{B}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_{0}^{IY}</td>
<td>y_{1}^{IY}</td>
<td>y_{2}^{IY}</td>
<td>y_{3}^{IY}</td>
<td>y_{4}^{IY}</td>
<td>y_{5}^{IY}</td>
<td>y_{6}^{IY}</td>
<td>y_{7}^{IY}</td>
<td>y_{8}^{IY}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_{0}^{IY}</td>
<td>y_{1}^{IY}</td>
<td>y_{2}^{IY}</td>
<td>y_{3}^{IY}</td>
<td>y_{4}^{IY}</td>
<td>y_{5}^{IY}</td>
<td>y_{6}^{IY}</td>
<td>y_{7}^{IY}</td>
<td>y_{8}^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_{0}^{F}</td>
<td>y_{1}^{F}</td>
<td>y_{2}^{F}</td>
<td>y_{3}^{F}</td>
<td>y_{4}^{F}</td>
<td>y_{5}^{F}</td>
<td>y_{6}^{F}</td>
<td>y_{7}^{F}</td>
<td>y_{8}^{F}</td>
</tr>
<tr>
<td></td>
<td>y_{0}</td>
<td>y_{1}</td>
<td>y_{2}</td>
<td>y_{3}</td>
<td>y_{4}</td>
<td>y_{5}</td>
<td>y_{6}</td>
<td>y_{7}</td>
<td>y_{8}</td>
</tr>
</tbody>
</table>

- With blanks
- Note: a row of blanks between any two symbols
- Also blanks at the very beginning and the very end
Composing the graph for training

- Add edges such that all paths from initial node(s) to final node(s) unambiguously represent the target symbol sequence
Composing the graph for training

- The first and last column are allowed to also end at initial and final blanks
Composing the graph for training

- The first and last column are allowed to also end at initial and final blanks
- Skips are permitted across a blank, but only if the symbols on either side are different
 - Because a blank is mandatory between repetitions of a symbol but not required between distinct symbols
Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output

#Compose an extended symbol sequence Sext from S, that has the blanks
#in the appropriate place
#Also keep track of whether an extended symbol Sext(j) is allowed to connect
directly to Sext(j-2) (instead of only to Sext(j-1)) or not

function [Sext,skipconnect] = extendedsequencewithblanks(S)
 j = 1
 for i = 1:N
 Sext(j) = 'b' # blank
 skipconnect(j) = 0
 j = j+1
 Sext(j) = S(i)
 if (i > 1 && S(i) != S(i-1))
 skipconnect(j) = 1
 else
 skipconnect(j) = 0
 j = j+1
 end
 Sext(j) = 'b'
 skipconnect(j) = 0
 return Sext, skipconnect

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
MODIFIED VITERBI ALIGNMENT WITH BLANKS

\[[\text{Sext}, \text{skipconnect}] = \text{extendedsequencewithblanks}(S)\]
\[N = \text{length}(\text{Sext}) \quad \# \text{length of extended sequence}\]

\# Viterbi starts here
BP(1,1) = -1
Bscr(1,1) = y(1,\text{Sext}(1)) \quad \# \text{Blank}
Bscr(1,2) = y(1,\text{Sext}(2))
Bscr(1,2:N) = -\infty
for \(t = 2:T\)
 \[BP(t,1) = BP(t-1,1)\]
 \[Bscr(t,1) = Bscr(t-1,1) * y(t,\text{Sext}(1))\]
for \(i = 1:N\)
 if skipconnect(i)
 \[BP(t,i) = \text{argmax}_i(Bscr(t-1,i), Bscr(t-1,i-1), Bscr(t-1,i-2))\]
 else
 \[BP(t,i) = \text{argmax}_i(Bscr(t-1,i), Bscr(t-1,i-1))\]
 \[Bscr(t,i) = Bscr(t-1,BP(t,i)) * y(t,\text{Sext}(i))\]

\# Backtrace
AlignedSymbol(T) = Bscr(T,N) > Bscr(T,N-1) ? N, N-1;
for \(t = T\) down to 1
 \[\text{AlignedSymbol}(t-1) = BP(t,\text{AlignedSymbol}(t))\]

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Modified Forward Algorithm

Initialization:

- \(\alpha(0,0) = y_0^b \), \(\alpha(0,1) = y_0^b \), \(\alpha(0,r) = 0 \) \(r > 1 \)
Modified Forward Algorithm

- Iteration:

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1)) y_t^{S(r)} \]

- If \(S(r) = "-" \) or \(S(r) = S(r - 2) \)

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1) + \alpha(t - 1, r - 2)) y_t^{S(r)} \]

- Otherwise
Modified Forward Algorithm

• Iteration:

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1)) y_t^{S(r)} \]

• If \(S(r) = "-" \) or \(S(r) = S(r - 2) \)

\[\alpha(t, r) = (\alpha(t - 1, r) + \alpha(t - 1, r - 1) + \alpha(t - 1, r - 2)) y_t^{S(r)} \]

• Otherwise
FORWARD ALGORITHM (with blanks)

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The forward recursion
First, at t = 1
alpha(1,1) = y(1,Sext(1)) #This is the blank
alpha(1,2) = y(1,Sext(2))
alpha(1,3:N) = 0
for t = 2:T
 alpha(t,1) = alpha(t-1,1)*y(t,Sext(1))
 for i = 2:N
 alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i))
 if (skipconnect(i))
 alpha(t,i) += alpha(t-1,i-2)
 alpha(t,i) *= y(t,Sext(i))

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Modified Backward Algorithm

- y_0^b
- y_0^B
- y_0^{IY}
- y_0^F
- y_0

Initialization:

\[
\beta(T - 1, 2K - 1) = \beta(T - 1, 2K - 2) = 1 \\
\beta(T - 1, r) = 0 \quad r < 2K - 2
\]
Modified Backward Algorithm

- Iteration:

\[\beta(t, r) = \beta(t + 1, r) y_{t+1}^{S(r)} + \beta(t + 1, r + 1) y_{t+1}^{S(r+1)} \]

- If \(S(r) = "-" \) or \(S(r) = S(r + 2) \)

\[\beta(t, r) = \beta(t + 1, r) y_{t+1}^{S(r)} + \beta(t + 1, r + 1) y_{t+1}^{S(r+1)} + \beta(t + 1, r + 2) y_{t+1}^{S(r+2)} \]

- Otherwise
BACKWARD ALGORITHM WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,N-1) = 1
beta(T,1:N-2) = 0
for t = T-1 downto 1
 beta(t,N) = beta(t+1,N)*y(t+1,Sext(N))
 for i = N-1 downto 1
 beta(t,i) = beta(t+1,i)*y(t+1,Sext(i)) + beta(t+1,i+1)*y(t+1,Sext(i+1))
 if (i<N-2 && skipconnect(i+2))
 beta(t,i) += beta(t+1,i+2)*y(t+1,Sext(i+2))

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
The rest of the computation

- Posteriors and derivatives are computed exactly as before

- But using the extended graphs with blanks
COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

#Now compute the posteriors
for t = 1:T
 sumgamma(t) = 0
 for i = 1:N
 gamma(t,i) = alpha(t,i) * beta(t,i)
 sumgamma(t) += gamma(t,i)
 end
 for i=1:N
 gamma(t,i) = gamma(t,i) / sumgamma(t)
end

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T
 dy(t,1:L) = 0 #Initialize all derivatives at time t to 0
 for i = 1:N
 dy(t,Sext(i)) -= gamma(t,i) / y(t,Sext(i))

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation
Overall training procedure for Seq2Seq with blanks

Problem: Given input and output sequences without alignment, train models
Overall training procedure

• **Step 1**: Setup the network
 – Typically many-layered LSTM

• **Step 2**: Initialize all parameters of the network
 – Include a “blank” symbol in vocabulary
Overall Training: Forward pass

- Foreach training instance
 - **Step 3:** Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time, including blanks.
Overall training: Backward pass

- Foreach training instance
 - **Step 3**: Forward pass. Pass the training instance through the network and obtain all symbol probabilities at each time
 - **Step 4**: Construct the graph representing the specific symbol sequence in the instance. Use appropriate connections if blanks are included
• Foreach training instance:

 – **Step 5:** Perform the forward backward algorithm to compute $\alpha(t, r)$ and $\beta(t, r)$ at each time, for each row of nodes in the graph using the modified forward-backward equations. Compute a posteriori probabilities $\gamma(t, r)$ from them

 – **Step 6:** Compute derivative of divergence $\nabla_{Yt} DIV$ for each Y_t
Overall training: Backward pass

• Foreach instance

 – **Step 6:** Compute derivative of divergence $\nabla_{Y_t} \text{DIV}$ for each Y_t

 $$
 \nabla_{Y_t} \text{DIV} = \begin{bmatrix}
 \frac{d\text{DIV}}{dY_t^0} & \frac{d\text{DIV}}{dY_t^1} & \cdots & \frac{d\text{DIV}}{dY_t^{L-1}}
 \end{bmatrix}
 $$

 $$
 \frac{d\text{DIV}}{dY_t^l} = - \sum_{r : S(r) = l} \frac{\gamma(t, r)}{Y_t^S(r)}
 $$

• **Step 7:** Backpropagate $\frac{d\text{DIV}}{dY_t^l}$ and aggregate derivatives over minibatch and update parameters
CTC: Connectionist Temporal Classification

• The overall framework we saw is referred to as CTC

• Applies to models that output order-aligned, but time-asynchronous outputs
Returning to an old problem:

Decoding

<table>
<thead>
<tr>
<th>/AH/</th>
<th>y_0^{AH}</th>
<th>y_1^{AH}</th>
<th>y_2^{AH}</th>
<th>y_3^{AH}</th>
<th>y_4^{AH}</th>
<th>y_5^{AH}</th>
<th>y_6^{AH}</th>
<th>y_7^{AH}</th>
<th>y_8^{AH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B/</td>
<td>y_0^B</td>
<td>y_1^B</td>
<td>y_2^B</td>
<td>y_3^B</td>
<td>y_4^B</td>
<td>y_5^B</td>
<td>y_6^B</td>
<td>y_7^B</td>
<td>y_8^B</td>
</tr>
<tr>
<td>/D/</td>
<td>y_0^D</td>
<td>y_1^D</td>
<td>y_2^D</td>
<td>y_3^D</td>
<td>y_4^D</td>
<td>y_5^D</td>
<td>y_6^D</td>
<td>y_7^D</td>
<td>y_8^D</td>
</tr>
<tr>
<td>/EH/</td>
<td>y_0^{EH}</td>
<td>y_1^{EH}</td>
<td>y_2^{EH}</td>
<td>y_3^{EH}</td>
<td>y_4^{EH}</td>
<td>y_5^{EH}</td>
<td>y_6^{EH}</td>
<td>y_7^{EH}</td>
<td>y_8^{EH}</td>
</tr>
<tr>
<td>/IY/</td>
<td>y_0^{IY}</td>
<td>y_1^{IY}</td>
<td>y_2^{IY}</td>
<td>y_3^{IY}</td>
<td>y_4^{IY}</td>
<td>y_5^{IY}</td>
<td>y_6^{IY}</td>
<td>y_7^{IY}</td>
<td>y_8^{IY}</td>
</tr>
<tr>
<td>/F/</td>
<td>y_0^F</td>
<td>y_1^F</td>
<td>y_2^F</td>
<td>y_3^F</td>
<td>y_4^F</td>
<td>y_5^F</td>
<td>y_6^F</td>
<td>y_7^F</td>
<td>y_8^F</td>
</tr>
<tr>
<td>/G/</td>
<td>y_0^G</td>
<td>y_1^G</td>
<td>y_2^G</td>
<td>y_3^G</td>
<td>y_4^G</td>
<td>y_5^G</td>
<td>y_6^G</td>
<td>y_7^G</td>
<td>y_8^G</td>
</tr>
</tbody>
</table>

- The greedy decode computes its output by finding the most likely symbol at each time and merging repetitions in the sequence.

- This is in fact a *suboptimal* decode that actually finds the most likely *time-synchronous* output sequence.
 - Which is not necessarily the most likely *order-synchronous* sequence.
Greedy decodes are suboptimal

- Consider the following candidate decodes
 - R R – E E D (RED, 0.7)
 - R R – – E D (RED, 0.68)
 - R R E E E D (RED, 0.69)
 - T T E E E D (TED, 0.71)
 - T T – E E D (TED, 0.3)
 - T T – – E D (TED, 0.29)

- A greedy decode picks the most likely output: TED
- A decode that considers the sum of all alignments of the same final output will select RED
- Which is more reasonable?
Greedy decodes are suboptimal

- Consider the following candidate decodes
 - R R – E E D (RED, 0.7)
 - R R –– E D (RED, 0.68)
 - R R E E E D (RED, 0.69)
 - T T E E E D (TED, 0.71)
 - T T – E E D (TED, 0.3)
 - T T –– E D (TED, 0.29)

- A greedy decode picks the most likely output: TED
- A decode that considers the sum of all alignments of the same final output will select RED
- Which is more reasonable?
- And yet, remarkably, greedy decoding can be surprisingly effective, when using decoding with blanks
What a CTC system outputs

- Ref: Graves
- Symbol outputs peak at the ends of the sounds
 - Typical output: - - R - - - E - - - D
 - Model output naturally eliminates alignment ambiguities
- But this is still suboptimal..
Actual objective of decoding

• Want to find most likely order-aligned symbol sequence
 – **RED**
 – What greedy decode finds: most likely time synchronous symbol sequence
 • /R/ /R/ /EH//EH//D/
 • Which must be compressed

• Find the order-aligned symbol sequence $\mathbf{S} = S_0, ..., S_{K-1}$, given an input $\mathbf{X} = X_0, ..., X_{T-1}$, that is most likely
 \[= \operatorname{argmax}_S P(S_0, ..., S_{K-1} | \mathbf{X}) \]
Recall: The forward probability $\alpha(t, r)$

\[
\alpha_{S_0 \ldots S_{K-1}} (T - 1, K - 1) = P(S_0 \ldots S_{K-1} | \mathbf{X})
\]

- The probability of the entire symbol sequence is the alpha at the bottom right node
Actual decoding objective

- Find the most likely (asynchronous) symbol sequence

\[\hat{S} = \arg\max_S \alpha_S(S_{K-1}, T - 1) \]

- Unfortunately, explicit computation of this will require evaluate of an exponential number of symbol sequences

- Solution: Organize all possible symbol sequences as a (semi)tree
• The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
• Every symbol connects to every symbol other than itself
 – It also connects to a blank, which connects to every symbol including itself
• The simple structure repeats recursively
• Each node represents a unique (partial) symbol sequence!
The decoding graph for the tree

• Graph with more than 2 symbols will be similar but much more cluttered and complicated
The decoding graph for the tree

- The figure to the left is the tree, drawn in a vertical line.
- The graph is just the tree unrolled over time.
 - For a vocabulary of V symbols, every node connects out to V other nodes at the next time.
- Every node in the graph represents a unique symbol sequence.
The decoding graph for the tree

- The forward score $\alpha(r, T)$ at the final time represents the full forward score for a unique symbol sequence (including sequences terminating in blanks).
- Select the symbol sequence with the largest alpha at the final time.
Recall: Forward Algorithm

\[P(S_0, \ldots, S_{K-1} | X) = \alpha(T - 1,2K) + \alpha(T - 1,2K + 1) \]
The decoding graph for the tree

• The forward score $\alpha(r, T)$ at the final time represents the full forward score for a unique symbol sequence (including sequences terminating in blanks)

• Select the symbol sequence with the largest alpha
 – Sequences may two alphas, one for the sequence itself, one for the sequence followed by a blank
 – Add the alphas before selecting the most likely
• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and computation) manageable
 – This may cause suboptimal decodes, however
 – The fact that CTC scores peak at symbol terminations minimizes the damage due to pruning
Beamsearch Pseudocode Notes

• Retaining separate lists of paths and pathscores for paths terminating in blanks, and those terminating in valid symbols
 – Since blanks are special
 – Do not explicitly represent blanks in the partial decode strings

• Pseudocode takes liberties (particularly w.r.t null strings)
 – I.e. you must be careful if you convert this to code

• Key
 – PathScore : array of scores for paths ending with symbols
 – BlankPathScore : array of scores for paths ending with blanks
 – SymbolSet : A list of symbols not including the blank
Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols, # including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore = Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore, BeamWidth)

 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore, NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score
BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols, # including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = InitializePaths(SymbolSet, y[:,0])
BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore = Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore, BeamWidth)

 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore, NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore)
Find the path with the best score
Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols, # including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore = Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore, BeamWidth)

 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y[:,t])

 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y[:,t])
end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore, NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore)
BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols, # including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore = InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
 # Prune the collection down to the BeamWidth
 PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore = Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore, BeamWidth)
 # First extend paths by a blank
 NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y[:,t])
 # Next extend paths by a symbol
 NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y[:,t])
end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore, NewPathsWithTerminalSymbol, NewPathScore)
Pick best path
BestPath = argmax(FinalPathScore)
Beam Search InitializePaths: First Time Instan

function InitializePaths(SymbolSet, y)

InitialBlankPathScore = [], InitialPathScore = []

First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank] # Score of blank at t=1
InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for c in SymbolSet # This is the entire symbol set, without the blank
 path = c
 InitialPathScore[path] = y[c] # Score of symbol c at t=1
 InitialPathsWithFinalSymbol += path # Set addition
end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
 InitialBlankPathScore, InitialPathScore
BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
 UpdatedPathsWithTerminalBlank = {}
 UpdatedBlankPathScore = []
 # First work on paths with terminal blanks
 #(This represents transitions along horizontal trellis edges for blanks)
 for path in PathsWithTerminalBlank:
 # Repeating a blank doesn’t change the symbol sequence
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = BlankPathScore[path] * y[blank]
 end

 # Then extend paths with terminal symbols by blanks
 for path in PathsWithTerminalSymbol:
 # If there is already an equivalent string in UpdatesPathsWithTerminalBlank
 # simply add the score. If not create a new entry
 if path in UpdatedPathsWithTerminalBlank
 UpdatedBlankPathScore[path] += PathScore[path] * y[blank]
 else
 UpdatedPathsWithTerminalBlank += path # Set addition
 UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
 end
 end

 return UpdatedPathsWithTerminalBlank, UpdatedBlankPathScore
BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
 UpdatedPathsWithTerminalSymbol = {}
 UpdatedPathScore = []

 # First extend the paths terminating in blanks. This will always create a new sequence
 for path in PathsWithTerminalBlank:
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = path + c # Concatenation
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
 end

 # Next work on paths with terminal symbols
 for path in PathsWithTerminalSymbol:
 # Extend the path with every symbol other than blank
 for c in SymbolSet: # SymbolSet does not include blanks
 newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
 if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
 UpdatedPathScore[newpath] += PathScore[path] * y[c]
 else # Create new path
 UpdatedPathsWithTerminalSymbol += newpath # Set addition
 UpdatedPathScore[newpath] = PathScore[path] * y[c]
 end
 end

 return UpdatedPathsWithTerminalSymbol, UpdatedPathScore
BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
 PrunedBlankPathScore = []
 PrunedPathScore = []
 # First gather all the relevant scores
 i = 1
 for p in PathsWithTerminalBlank
 scorelist[i] = BlankPathScore[p]
 i++
 end
 for p in PathsWithTerminalSymbol
 scorelist[i] = PathScore[p]
 i++
 end

 # Sort and find cutoff score that retains exactly BeamWidth paths
 sort(scorelist) # In decreasing order
 cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

 PrunedPathsWithTerminalBlank = {}
 for p in PathsWithTerminalBlank
 if BlankPathScore[p] >= cutoff
 PrunedPathsWithTerminalBlank += p # Set addition
 PrunedBlankPathScore[p] = BlankPathScore[p]
 end
 end

 PrunedPathsWithTerminalSymbol = {}
 for p in PathsWithTerminalSymbol
 if PathScore[p] >= cutoff
 PrunedPathsWithTerminalSymbol += p # Set addition
 PrunedPathScore[p] = PathScore[p]
 end
 end

 return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore
function MergeIdenticalPaths(PathsWithTerminalBlank, BlankPathScore, PathsWithTerminalSymbol, PathScore)

 # All paths with terminal symbols will remain
 MergedPaths = PathsWithTerminalSymbol
 FinalPathScore = PathScore

 # Paths with terminal blanks will contribute scores to existing identical paths from
 # PathsWithTerminalSymbol if present, or be included in the final set, otherwise
 for p in PathsWithTerminalBlank
 if p in MergedPaths
 FinalPathScore[p] += BlankPathScore[p]
 else
 MergedPaths += p # Set addition
 FinalPathScore[p] = BlankPathScore[p]
 end
 end

 return MergedPaths, FinalPathScore
Story so far: CTC models

• Sequence-to-sequence networks which irregularly produce output symbols can be trained by
 – Iteratively aligning the target output to the input and time-synchronous training
 – Optimizing the expected error over all possible alignments: CTC training

• Distinct repetition of symbols can be disambiguated from repetitions representing the extended output of a single symbol by the introduction of blanks

• Decoding the models can be performed by
 – Best-path decoding, i.e. Viterbi decoding
 – Optimal CTC decoding based on the application of the forward algorithm to a tree-structured representation of all possible output strings
CTC caveats

• The “blank” structure (with concurrent modifications to the forward-backward equations) is only one way to deal with the problem of repeating symbols

• Possible variants:
 – Symbols partitioned into two or more sequential subunits
 • No blanks are required, since subunits must be visited in order
 – Symbol-specific blanks
 • Doubles the “vocabulary”
 – CTC can use bidirectional recurrent nets
 • And frequently does
 – Other variants possible..
Most common CTC applications

• Speech recognition
 – Speech in, phoneme sequence out
 – Speech in, character sequence (spelling out)

• Handwriting recognition
Speech recognition using Recurrent Nets

- Recurrent neural networks (with LSTMs) can be used to perform speech recognition
 - Input: Sequences of audio feature vectors
 - Output: Phonetic label of each vector
Speech recognition using Recurrent Nets

- Alternative: Directly output phoneme, character or word sequence

\[W_1 \]

\[W_2 \]

\[X(t) \]

\[t=0 \]

Time
Next up: Attention models
CNN-LSTM-DNN for speech recognition

Ensembles of RNN/LSTM, DNN, & Conv Nets (CNN):
T. Sainath, O. Vinyals, A. Senior, H. Sak.

Fig. 1. CLDNN Architecture
Translating Videos to Natural Language Using Deep Recurrent Neural Networks

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
“man in black shirt is playing guitar.”

“construction worker in orange safety vest is working on road.”

“two young girls are playing with lego toy.”

“boy is doing backflip on wakeboard.”

“a young boy is holding a baseball bat.”

“a cat is sitting on a couch with a remote control.”

“a woman holding a teddy bear in front of a mirror.”

“a horse is standing in the middle of a road.”
Not explained

• Can be combined with CNNs
 – Lower-layer CNNs to extract features for RNN

• Can be used in tracking
 – Incremental prediction