
Neural Networks

Representations
Fall 2020

Story so far

• Neural nets are universal approximators
– They can model any Boolean, categorical or real-valued function

• They can verify static inputs for patterns
• They can scan for patterns
• They can analyze time series for patterns

• They must be trained to make their predictions

• But what do they learn internally?
– What does the network actually represent?

Learning in the net

• Problem: Given a collection of input-output
pairs, learn the function

Learning for classification

• When the net must learn to classify..
– Learn the classification boundaries that separate

the training instances

x2

x1

Learning for classification

• In reality
– In general not really cleanly separated

• So what is the function we learn?

x2

In reality: Trivial linear example

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

6

6

x1

x2

Non-linearly separable data: 1-D example

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

7

x

y

Undesired Function

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

8

x

y

What if?

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

9

x

y

What if?

• What must the value of the function be at this
X?
– 1 because red dominates?

– 0.9 : The average?
10

x

y

10 instances

90 instances

What if?

• What must the value of the function be at this
X?
– 1 because red dominates?

– 0.9 : The average?
11

x

y

10 instances

90 instances

Estimate:
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

What if?

• What must the value of the function be at this
X?
– 1 because red dominates?

– 0.9 : The average?
12

x

y

10 instances

90 instances

Estimate:
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

Should an infinitesimal nudge
of the red dot change the function
estimate entirely?

If not, how do we estimate 𝑃(1|𝑋)?
(since the positions of the red and blue X
Values are different)

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point

13

x

y

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

14

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

15

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

16

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

17

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

18

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

19

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

20

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

21

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

22

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

23

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

24

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

25

x

y

The probability of y=1

The logistic regression model

26

)(1

1
)1(xwwe
xyP




y=0

y=1

x

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems

The logistic perceptron

• A sigmoid perceptron with a single input models
the a posteriori probability of the class given the
input

)(1

1
)(xwwe
xyP




ଵ

଴

Linearly inseparable data

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

28

28

x1

x2

Logistic regression

• This the perceptron with a sigmoid activation
– It actually computes the probability that the input belongs to class 1
– Decision boundaries may be obtained by comparing the probability to a threshold

• These boundaries will be lines (hyperplanes in higher dimensions)
• The sigmoid perceptron is a linear classifier

29

When X is a 2-D variable x1

x2

Decision: y > 0.5?
௜ ௜௜ ଴

ଶ

଴

ଵ

ଵ ଶ

Estimating the model

• Given the training data (many pairs
represented by the dots), estimate and
for the curve

30

x

y

)(1

1
)()(xwwe
xfxyP




Estimating the model

31

x

y

)(1

1
)1(xwwe
xyP


)(1

1
)1(xwwe
xyP




)(1

1
)(xwwye
xyP




• Easier to represent using a y = +1/-1 notation

Estimating the model

• Given: Training data

• s are vectors, s are binary (0/1) class values
• Total probability of data

೔ బ
೅

೔

32

Estimating the model

• Given: Training data

௜ ି௬೔(௪బା௪೅௑೔)
௜

௜

௜
ି௬೔(௪బା௪೅௑೔)

௜

• s are vectors, s are binary (0/1) class values
•

௜

௜
ି௬೔(௪బା௪೅௑೔)

௜

• Total probability of data

33

Estimating the model
• Log Likelihood

೔ బ
೅

೔

• Maximum likelihood estimation

బ భ

• Focusing on the bits that invoke the parameters

బ భ

೔ బ
೅

೔

34

Estimating the model
• Log Likelihood

೔ బ
೅

೔

• Maximum likelihood estimation

బ భ

• Focusing on the bits that invoke the parameters

బ భ

೔ బ
೅

೔

35

Maximum likelihood estimation
• Log Likelihood

೔ బ
೅

೔

• Maximum likelihood estimation

బ భ

• Focusing on the bits that invoke the parameters

బ భ

೔ బ
೅

೔

36

Maximum Likelihood Estimate
• Equals (note argmin rather than argmax)

• Identical to minimizing the KL divergence
between the desired output and actual output

• Cannot be solved directly, needs gradient descent

37

So what about this one?

• Non-linear classifiers..

x2

First consider the separable case..

• When the net must learn to classify..

x2

x1

First consider the separable case..

• For a “sufficient” net

x2

x1
x1 x2

First consider the separable case..

• For a “sufficient” net
• This final perceptron is a linear classifier

x2

x1
x1 x2

First consider the separable case..

• For a “sufficient” net
• This final perceptron is a linear classifier over

the output of the penultimate layer

x2

x1
x1 x2

???

ଵ ଶ

First consider the separable case..

• For perfect classification the
output of the penultimate layer must be
linearly separable

x1 x2

y2

y1

ଵ ଶ

First consider the separable case..

• The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features
– We can now attach any linear classifier above it for perfect classification
– Need not be a perceptron
– In fact, slapping on an SVM on top of the features may be more generalizable!

x1 x2

y2

y1

First consider the separable case..

• The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features
– We can now attach any linear classifier above it for perfect classification
– Need not be a perceptron
– In fact, for binary classifiers an SVM on top of the features may be more generalizable!

x1 x2

y2

y1

ଵ ଶ

First consider the separable case..

• This is true of any sufficient structure
– Not just the optimal one

• For insufficient structures, the network may attempt to transform the inputs to
linearly separable features
– Will fail to separate
– Still, for binary problems, using an SVM with slack may be more effective than a final perceptron!

x1 x2

ଵ ଶ

y2

y1

Mathematically..

• ௢௨௧
ଵ

ଵାୣ୶୮ ௕ାௐ೅௒

ଵ

ଵାୣ ௕ାௐ೅௙(௑)

• The data are (almost) linearly separable in the space of
• The network until the second-to-last layer is a non-linear function

that converts the input space of into the feature space
where the classes are maximally linearly separable

x1 x2

ଵ ଶ

௢௨௧

Story so far

• A classification MLP actually comprises two
components
– A “feature extraction network” that converts the

inputs into linearly separable features
• Or nearly linearly separable features

– A final linear classifier that operates on the
linearly separable features

An SVM at the output?

• For binary problems, using an SVM with slack may be more effective than a final
perceptron!

• How does that work??
– Option 1: First train the MLP with a perceptron at the output, then detach the feature extraction,

compute features, and train an SVM
– Option 2: Directly employ a max-margin rule at the output, and optimize the entire network

• Left as an exercise for the curious

x1 x2

y2

y1

ଵ ଶ

How about the lower layers?

• How do the lower layers respond?
– They too compute features
– But how do they look

• Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold

• Layers sequentially “straighten” the data manifold
– Until the final layer, which fully linearizes it

x1 x2

ଵ ଶ

The behavior of the layers

• Synthetic example: Feature space

The behavior of the layers

• CIFAR

The behavior of the layers

• CIFAR

When the data are not separable and
boundaries are not linear..

• More typical setting for classification
problems

x2

x1

Inseparable classes with an output
logistic perceptron

• The “feature extraction” layer transforms the data
such that the posterior probability may now be
modelled by a logistic

x1 x2

y2

y1

ଵ ଶ

Inseparable classes with an output
logistic perceptron

• The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic
– The output logistic computes the posterior probability of the class

given the input

56

x1

x2

x

y

)(1

1
)()(

xww T

e
xfxyP

 


When the data are not separable and
boundaries are not linear..

• The output of the network is
– For multi-class networks, it will be the vector of a

posteriori class probabilities

x2

x1 x2

Everything in this book may be wrong!
- Richard Bach (Illusions)

There’s no such thing as inseparable
classes

• A sufficiently detailed architecture can separate nearly any
arrangement of points
– “Correctness” of the suggested intuitions subject to various

parameters, such as regularization, detail of network, training
paradigm, convergence etc..

x2 x2

Changing gears..

x1 x2

We’ve seen what the network learns here

But what about here?

Intermediate layers

Recall: The basic perceptron

• What do the weights tell us?
– The neuron fires if the inner product between the

weights and the inputs exceeds a threshold
62

x1

x2

x3

xN

௜ ௜

௜

்

Recall: The weight as a “template”

• The perceptron fires if the input is within a specified angle of the weight
– Represents a convex region on the surface of the sphere!
– The network is a Boolean function over these regions.

• The overall decision region can be arbitrarily nonconvex

• Neuron fires if the input vector is close enough to the weight vector.
– If the input pattern matches the weight pattern closely enough

63

w
𝑻

ି𝟏

x1

x2

x3

xN

Recall: The weight as a template

• If the correlation between the weight pattern
and the inputs exceeds a threshold, fire

• The perceptron is a correlation filter!
64

W X X

Correlation = 0.57 Correlation = 0.82
𝑦 = ൞

1 𝑖𝑓 ෍ 𝑤௜x௜ ≥ 𝑇

௜

0 𝑒𝑙𝑠𝑒

Recall: MLP features

• The lowest layers of a network detect significant features in the
signal

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal 65

DIGIT OR NOT?

Making it explicit

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal

• Simply recompose the detected features
– Will this work?

66

Making it explicit

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal

• Simply recompose the detected features
– Will this work?

67

Making it explicit: an autoencoder

• A neural network can be trained to predict the input itself
• This is an autoencoder
• An encoder learns to detect all the most significant patterns in the signals
• A decoder recomposes the signal from the patterns 68

The Simplest Autencoder

• A single hidden unit

• Hidden unit has linear activation

• What will this learn? 69

The Simplest Autencoder

• This is just PCA!

70

𝐱

𝐱ො

𝒘

𝒘𝑻

Training: Learning by minimizing
L2 divergence

The Simplest Autencoder

• The autoencoder finds the direction of maximum
energy
– Variance if the input is a zero-mean RV

• All input vectors are mapped onto a point on the
principal axis 71

𝐱

𝐱ො

𝒘

𝒘𝑻

The Simplest Autencoder

• Simply varying the hidden representation will
result in an output that lies along the major
axis

72

𝐱ො

𝒘𝑻

𝒛

The Simplest Autencoder

73

𝐱

𝐱ො

𝒘

𝒖𝑻

• Simply varying the hidden representation will result in
an output that lies along the major axis

• This will happen even if the learned output weight is
separate from the input weight
– The minimum-error direction is the principal eigen vector

For more detailed AEs without a non-
linearity

• This is still just PCA
– The output of the hidden layer will be in the principal subspace

• Even if the recomposition weights are different from the “analysis”
weights 74

Find W to minimize Avg[E]

Terminology

• Terminology:
– Encoder: The “Analysis” net which computes the hidden

representation
– Decoder: The “Synthesis” which recomposes the data from the

hidden representation
75

ENCODER

DECODER

Introducing nonlinearity

• When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data
– Varying the hidden value will move along this linear manifold

• When the hidden layer has non-linear activation, the net performs nonlinear PCA
– The decoder represents the best non-linear manifold to fit the data
– Varying the hidden value will move along this non-linear manifold 76

ENCODER

DECODER

The AE

• With non-linearity
– “Non linear” PCA

– Deeper networks can capture more complicated manifolds
• “Deep” autoencoders

77

ENCODER

DECODER

Some examples

• 2-D input
• Encoder and decoder have 2 hidden layers of 100 neurons, but

hidden representation is unidimensional
• Extending the hidden “z” value beyond the values seen in training

does not continue along a helix

Some examples

• The model is specific to the training data..
– Varying the hidden layer value only generates data along the

learned manifold
• Any input will result in an output along the learned manifold

– But may not generalize beyond the manifold

The AE

• When the hidden representation is of lower dimensionality
than the input, often called a “bottleneck” network
– Nonlinear PCA
– Learns the manifold for the data

• If properly trained
80

ENCODER

DECODER

The AE

• The decoder can only generate data on the
manifold that the training data lie on

• This also makes it an excellent “generator” of the
distribution of the training data
– Any values applied to the (hidden) input to the

decoder will produce data similar to the training data
81

DECODER

The Decoder:

• The decoder represents a source-specific generative
dictionary

• Exciting it will produce typical data from the source!

82

DECODER

DECODER

The Decoder:

• The decoder represents a source-specific generative
dictionary

• Exciting it will produce typical data from the source!

83

Sax dictionary

The Decoder:

• The decoder represents a source-specific generative
dictionary

• Exciting it will produce typical data from the source!

84

DECODER

Clarinet dictionary

A cute application..

• Signal separation…

• Given a mixed sound from multiple sources,
separate out the sources

Dictionary-based techniques

• Basic idea: Learn a dictionary of “building blocks” for
each sound source

• All signals by the source are composed from entries
from the dictionary for the source

86

Compose

Dictionary-based techniques

• Learn a similar dictionary for all sources
expected in the signal

87

Compose

Dictionary-based techniques

• A mixed signal is the linear combination of
signals from the individual sources
– Which are in turn composed of entries from its

dictionary
88

Compose

Guitar
music

Drum
music

Compose

+

Dictionary-based techniques

• Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal

89

+

Dictionary-based techniques

• Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal
• The composition from the identified dictionary entries gives you

the separated signals

90

+
Compose

Guitar
music

Drum
music

Compose

Learning Dictionaries

• Autoencoder dictionaries for each source
– Operating on (magnitude) spectrograms

• For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source

𝐷ଵ(0, 𝑡) 𝐷ଵ(𝐹, 𝑡)…
…

𝐷ଶ(0, 𝑡) 𝐷ଶ(𝐹, 𝑡)…
…

…
𝐷ଵ(0, 𝑡) 𝐷෡ଵ(𝐹, 𝑡) 𝐷෡ଶ(0, 𝑡) 𝐷෡ଶ(𝐹, 𝑡)… …

ୈ୉ଵ

୉୒ଵ

ୈ୉ଶ

୉୒

91

Model for mixed signal

• The sum of the outputs of both neural
dictionaries
– For some unknown input

ୈ୉ଵ ୈ୉ଶ

𝑌(0, 𝑡) Y(𝐹, 𝑡)…𝑌(1, 𝑡)

… …

𝐼ଵ(0, 𝑡) … 𝐼ଵ(𝐻, 𝑡)

… …

𝐼ଶ(0, 𝑡) … 𝐼ଶ(𝐻, 𝑡)

Estimate ଵ and ଶ to minimize cost function

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 = ෍ 𝑋 𝑓, 𝑡 − 𝑌 𝑓, 𝑡 ଶ

𝛼 𝛽
𝛽

𝛽
𝛼

𝛼

92

Separation

• Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal
– Simple backpropagation

• Intermediate results are separated signals

Test Process

ୈ୉ଵ ୈ୉ଶ

𝑌(0, 𝑡) Y(𝐹, 𝑡)…𝑌(1, 𝑡)

… …

𝐼ଵ(0, 𝑡) … 𝐼ଵ(𝐻, 𝑡)

… …

𝐼ଶ(0, 𝑡) … 𝐼ଶ(𝐻, 𝑡) 𝐻 : Hidden layer size

Estimate ଵ and ଶ to minimize cost function

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 = ෍ 𝑋 𝑓, 𝑡 − 𝑌 𝑓, 𝑡 ଶ

𝛼 𝛽
𝛽

𝛽
𝛼

𝛼

93

Example Results

• Separating music

94

5-layer dictionary, 600 units wide

Mixture Separated

Original

Separated

Original

Story for the day
• Classification networks learn to predict the a posteriori

probabilities of classes
– The network until the final layer is a feature extractor that

converts the input data to be (almost) linearly separable
– The final layer is a classifier/predictor that operates on linearly

separable data

• Neural networks can be used to perform linear or non-
linear PCA
– “Autoencoders”
– Can also be used to compose constructive dictionaries for data

• Which, in turn can be used to model data distributions

