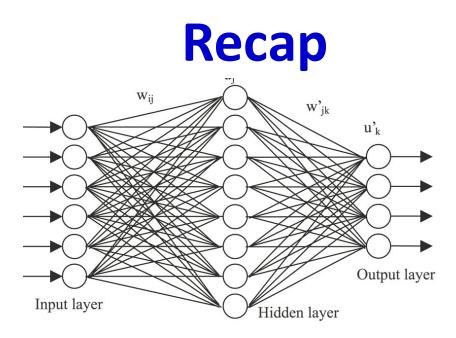
Neural Networks Learning the network: Part 1 11-785, Fall 2020

Lecture 3

Topics for the day

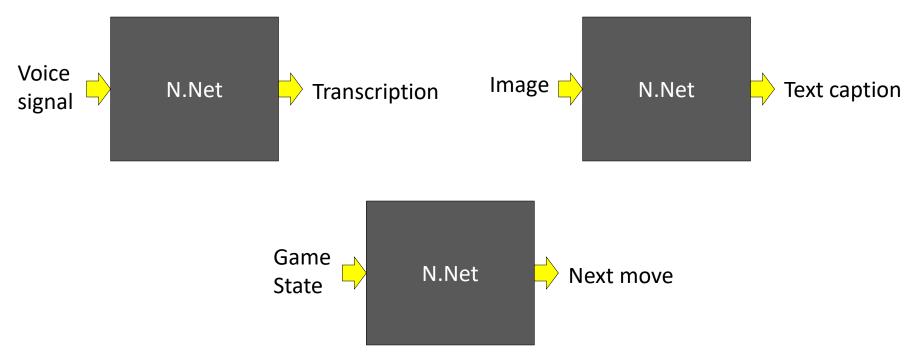
- The problem of learning
- The perceptron rule for perceptrons
 - And its inapplicability to multi-layer perceptrons
- Greedy solutions for classification networks: ADALINE and MADALINE
- Learning through Empirical Risk Minimization
- Intro to function optimization and gradient descent



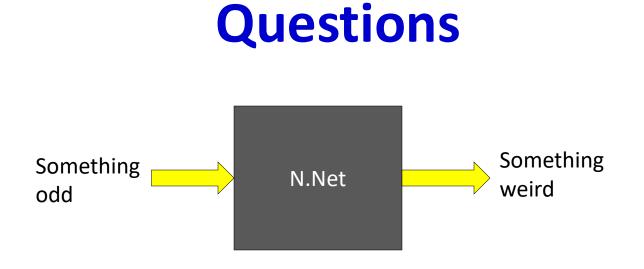
• Neural networks are universal function approximators

- Can model any Boolean function
- Can model any classification boundary
- Can model any continuous valued function
- *Provided the network satisfies minimal architecture constraints*
 - Networks with fewer than the required number of parameters can be very poor approximators

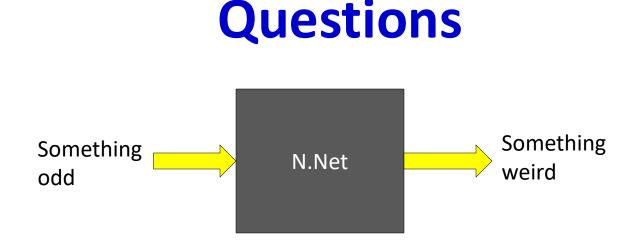
These boxes are functions



- Take an input
- Produce an output
- Can be modeled by a neural network!



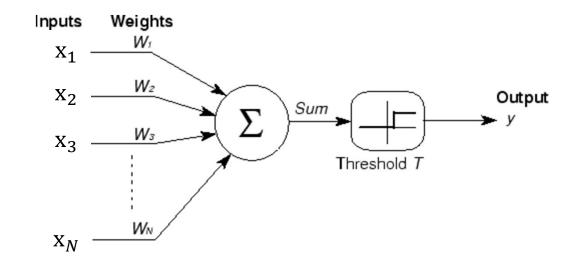
- Preliminaries:
 - How do we represent the input?
 - How do we represent the output?
- How do we compose the network that performs the requisite function?



- Preliminaries:

 - How do we retin the program How do Abit later in the input? How do Abit later in the output?
- How do we compose the network that performs the requisite function?

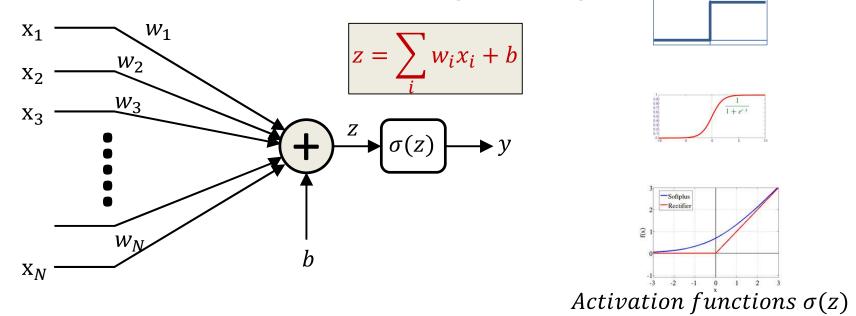
The original perceptron



• Simple threshold unit

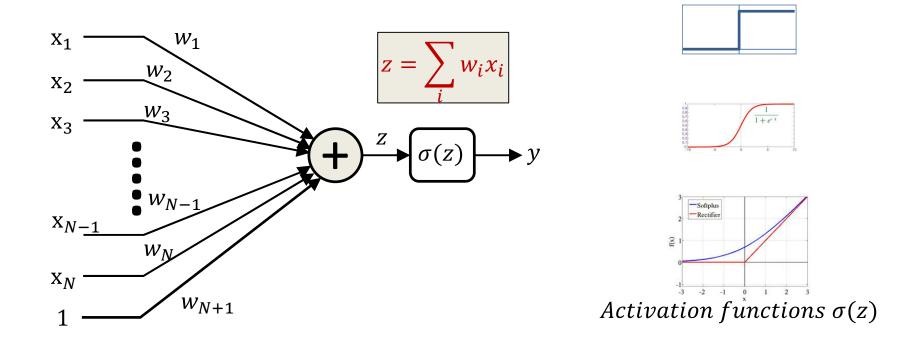
- Unit comprises a set of weights and a threshold

Preliminaries: The units in the network – the perceptron



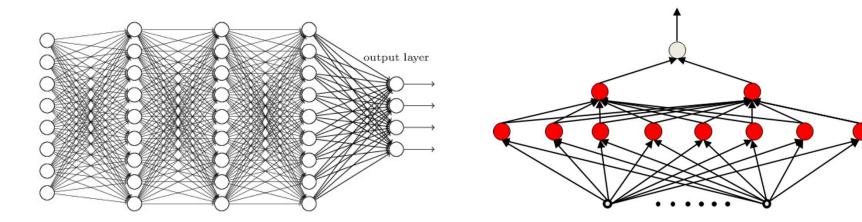
- Perceptron
 - General setting, inputs are real valued
 - A bias b representing a threshold to trigger the perceptron
 - Activation functions are not necessarily threshold functions
- The parameters of the perceptron (which determine how it behaves) are its weights and bias

Preliminaries: Redrawing the neuron



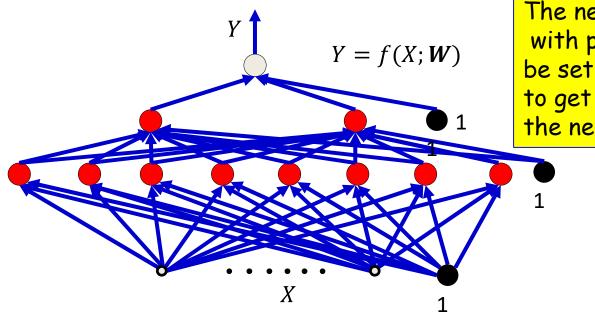
- The bias can also be viewed as the weight of another input component that is always set to 1
 - If the bias is not explicitly mentioned, we will implicitly be assuming that every perceptron has an additional input that is always fixed at 1

First: the structure of the network



- We will assume a *feed-forward* network
 - No loops: Neuron outputs do not feed back to their inputs directly or indirectly
 - Loopy networks are a future topic
- Part of the design of a network: The architecture
 - How many layers/neurons, which neuron connects to which and how, etc.
- For now, assume the architecture of the network is capable of representing the needed function

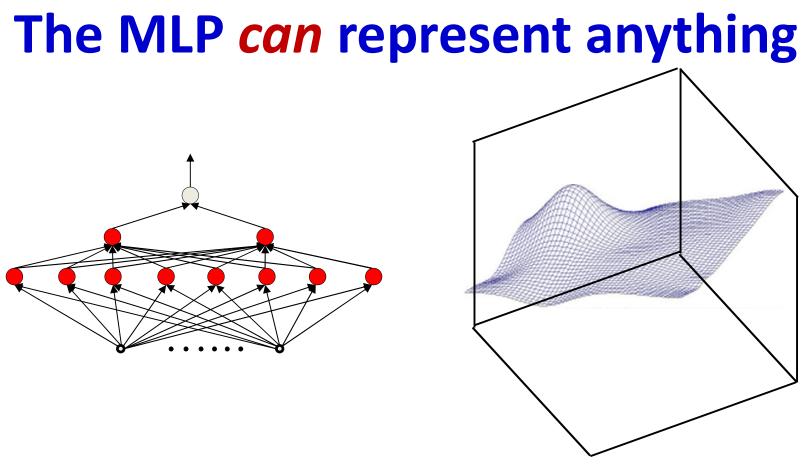
What we learn: The parameters of the network



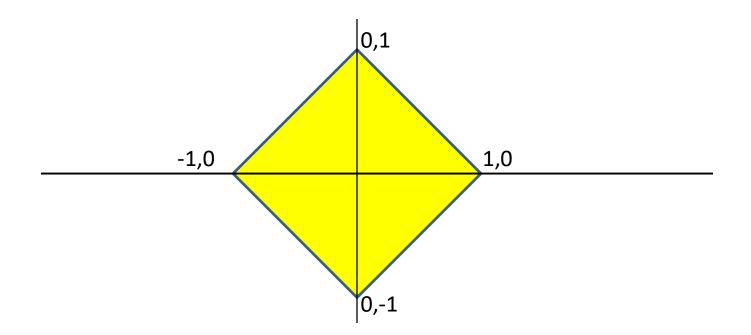
The network is a function f() with parameters W which must be set to the appropriate values to get the desired behavior from the net

- **Given:** the architecture of the network
- The parameters of the network: The weights and biases
 - The weights associated with the blue arrows in the picture
- Learning the network : Determining the values of these parameters such that the network computes the desired function

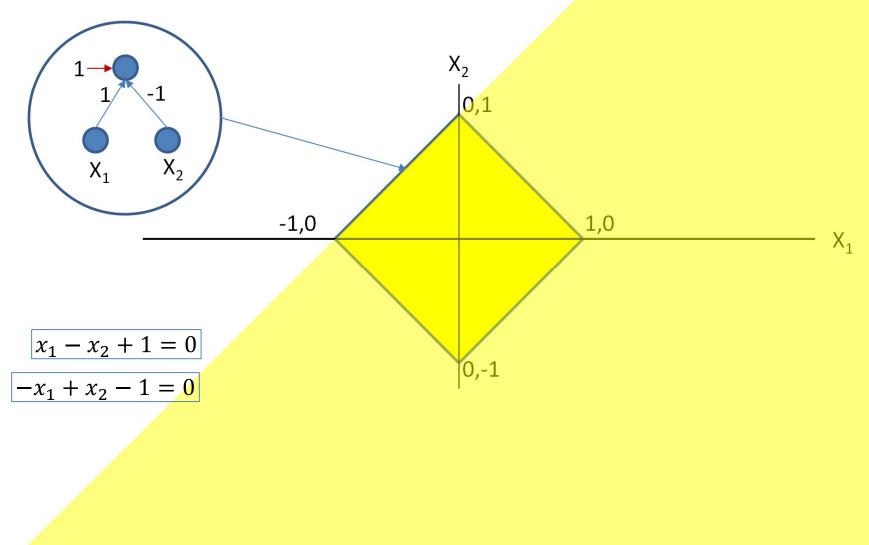
• Moving on..



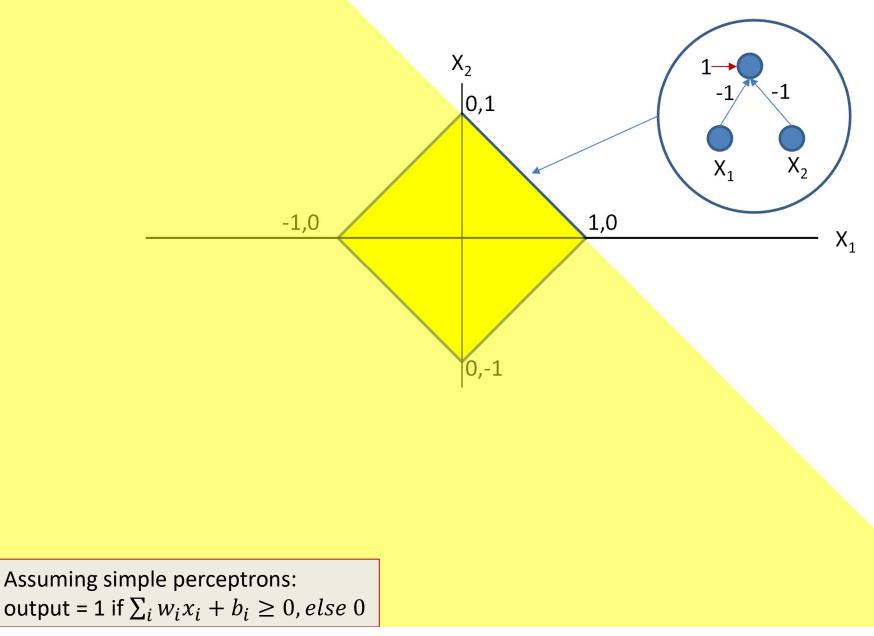
- The MLP can be constructed to represent anything
- But *how* do we construct it?



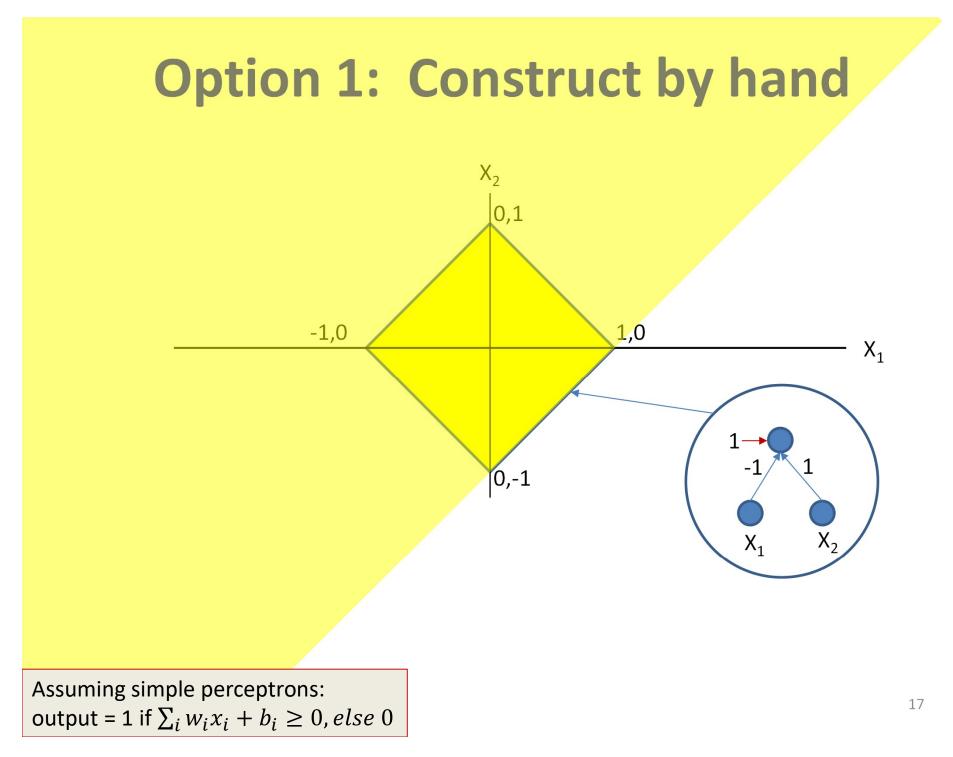
- Given a function, *handcraft* a network to satisfy it
- E.g.: Build an MLP to classify this decision boundary

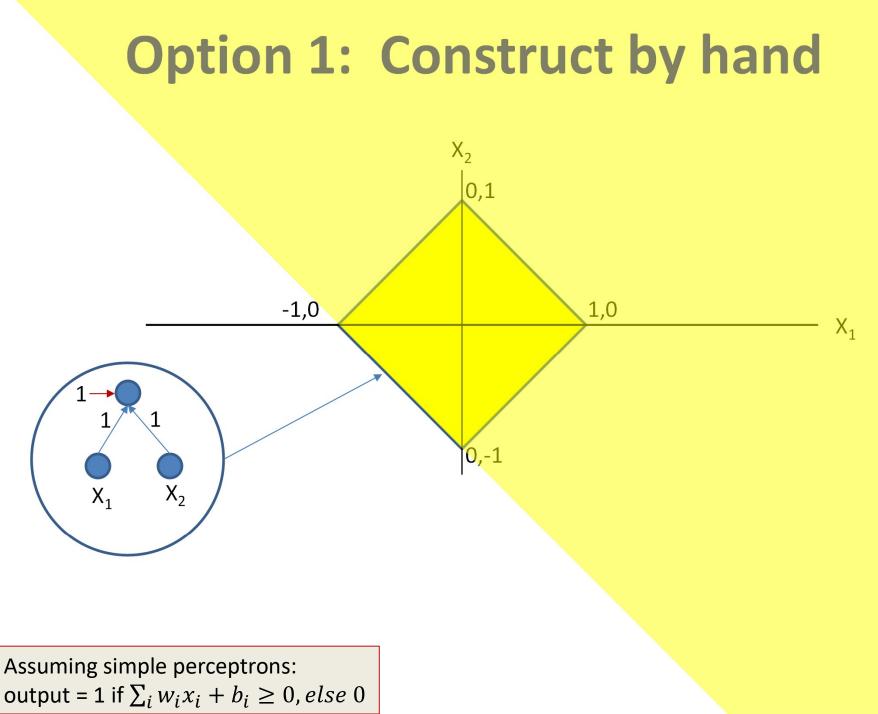


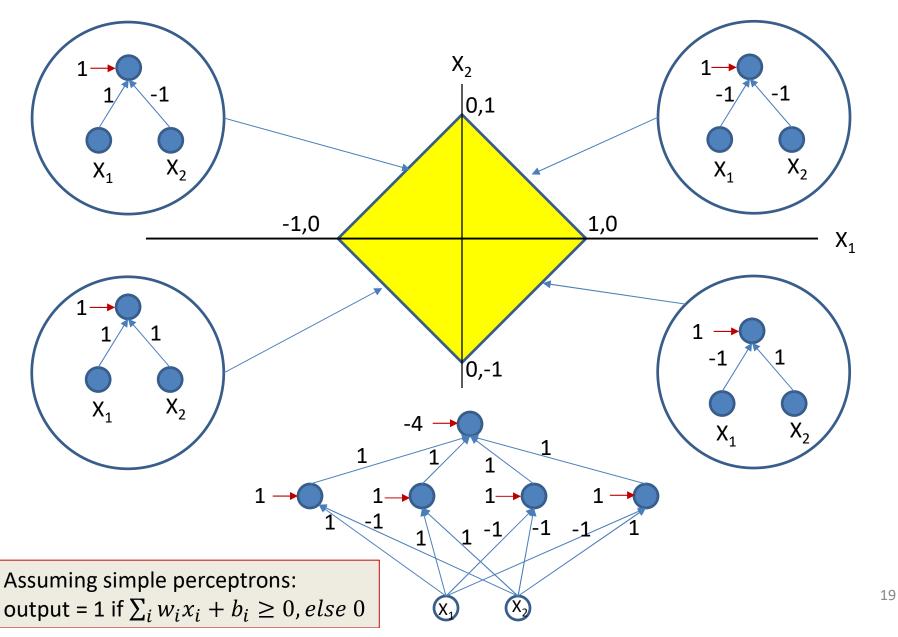
Assuming simple perceptrons: output = 1 if $\sum_i w_i x_i + b_i \ge 0$, else 0

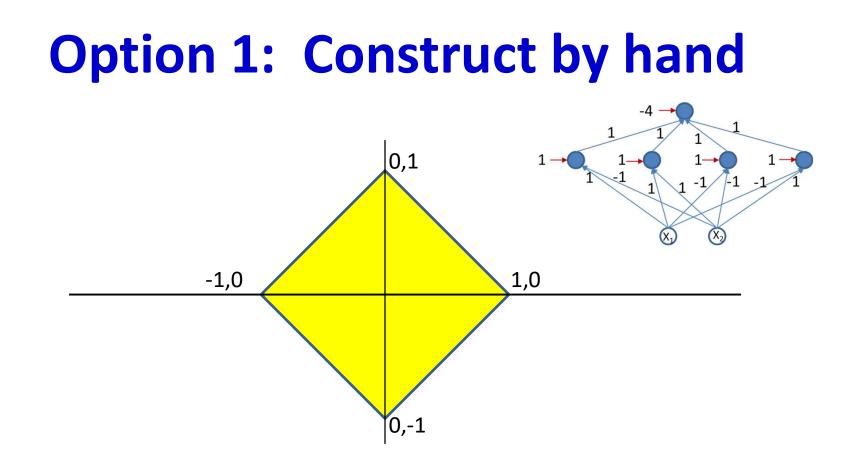


16







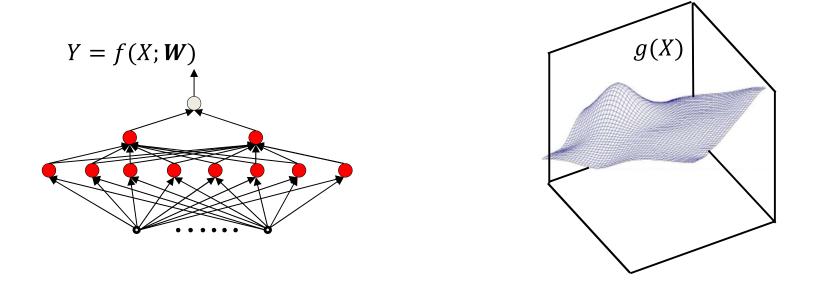


- Given a function, *handcraft* a network to satisfy it
- E.g.: Build an MLP to classify this decision boundary
- Not possible for all but the simplest problems..

Option 2: Automatic estimation of an MLP $Y = f(X; \boldsymbol{W})$ g(X)

 More generally, given the function g(X) to model, we can derive the parameters of the network to model it, through computation

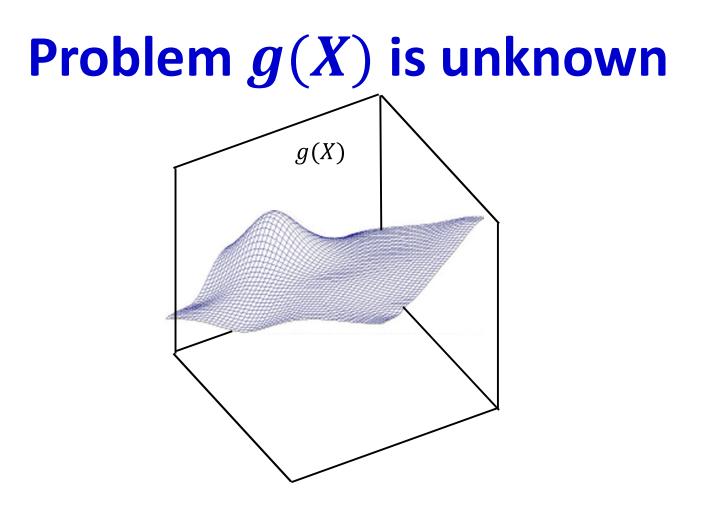
How to learn a network?



• When f(X; W) has the capacity to exactly represent g(X)

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X)) dX$$

• div() is a *divergence* function that goes to zero when f(X; W) = g(X)

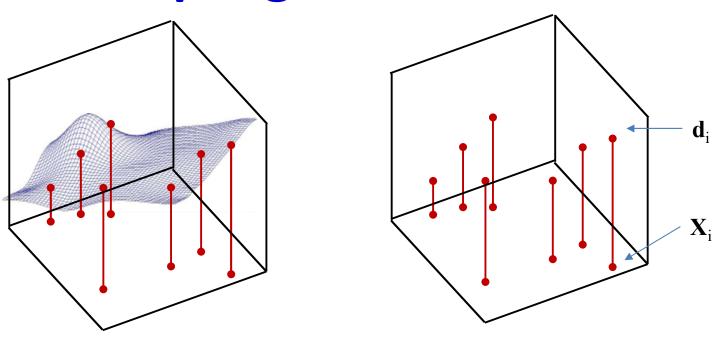


• Function g(X) must be fully specified

– Known *everywhere,* i.e. for *every* input *X*

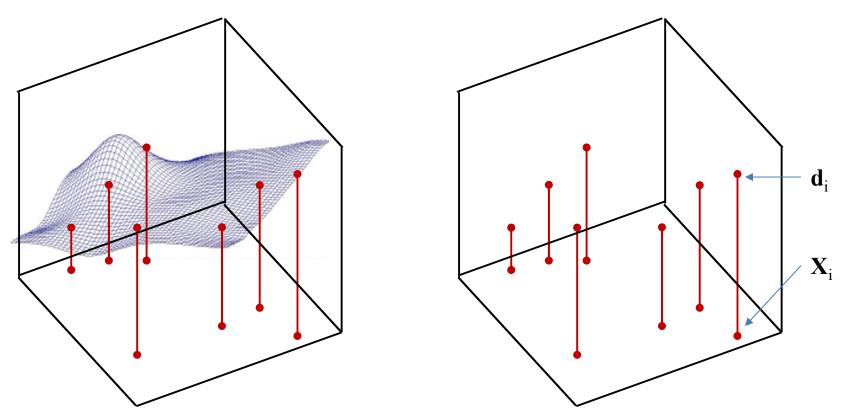
• In practice we will not have such specification

Sampling the function



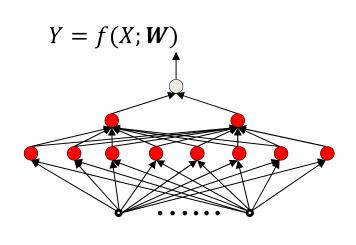
- Sample g(X)
 - Basically, get input-output pairs for a number of samples of input X_i
 - Many samples (X_i, d_i) , where $d_i = g(X_i) + noise$
 - Good sampling: the samples of X will be drawn from P(X)
- Very easy to do in most problems: just gather training data
 - E.g. set of images and their class labels
 - E.g. speech recordings and their transcription

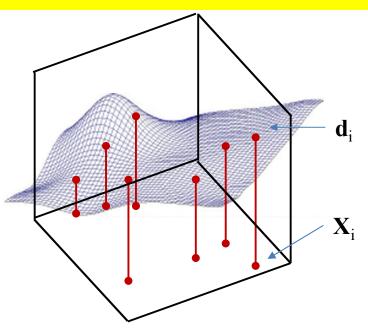
Drawing samples



- We must *learn* the *entire* function from these few examples
 - The "training" samples

Learning the function





- Estimate the network parameters to "fit" the training points exactly
 - Assuming network architecture is sufficient for such a fit
 - Assuming unique output d at any X
 - And hopefully the resulting function is also correct where we don't have training samples

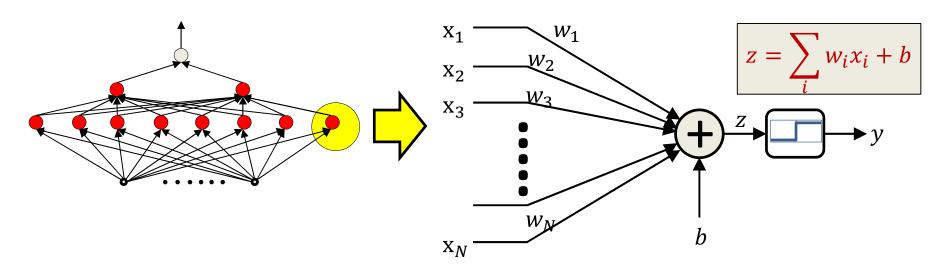
Story so far

- "Learning" a neural network == determining the parameters of the network (weights and biases) required for it to model a desired function
 - The network must have sufficient capacity to model the function
- Ideally, we would like to optimize the network to represent the desired function everywhere
- However this requires knowledge of the function everywhere
- Instead, we draw "input-output" training instances from the function and estimate network parameters to "fit" the input-output relation at these instances
 - And hope it fits the function elsewhere as well

Let's begin with a simple task

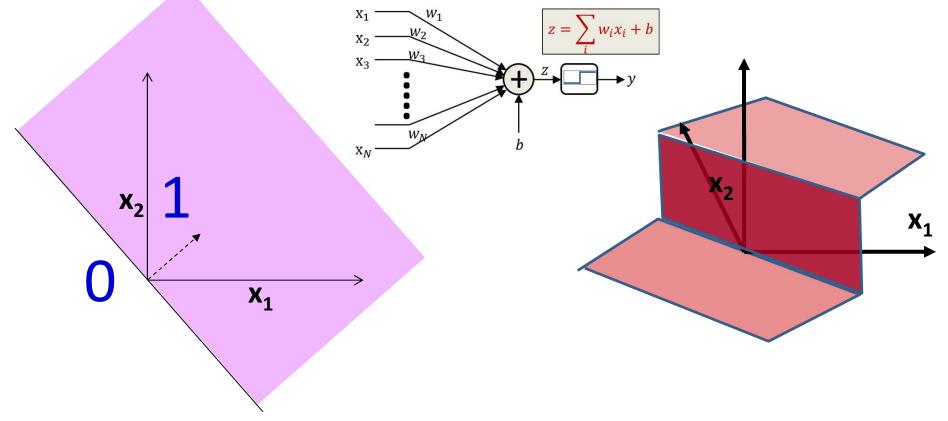
- Learning a *classifier*
 - Simpler than regressions
- This was among the earliest problems addressed using MLPs
- Specifically, consider *binary* classification
 Generalizes to multi-class

History: The original MLP



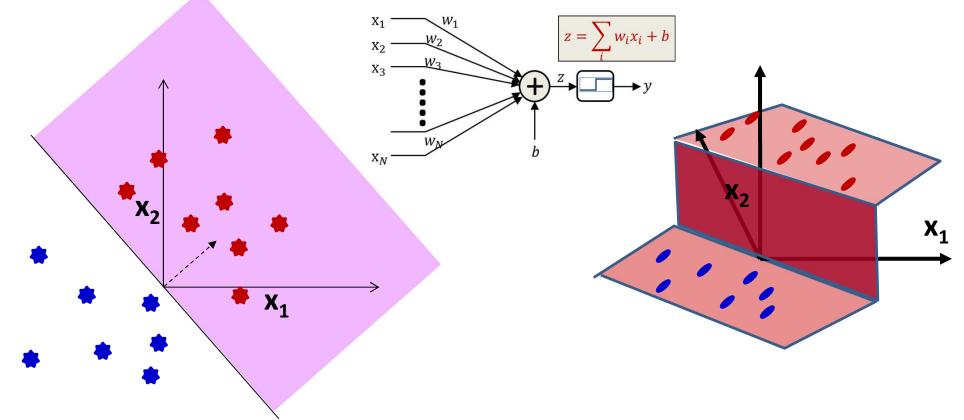
- The original MLP as proposed by Minsky: a network of threshold units
 - But how do you train it?
 - Given only "training" instances of input-output pairs

The simplest MLP: a single perceptron



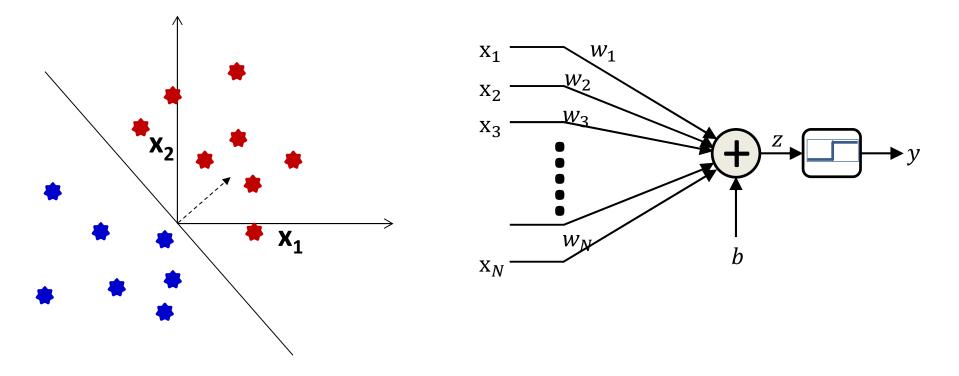
- Learn this function
 - A step function across a hyperplane

The simplest MLP: a single perceptron



- Learn this function
 - A step function across a hyperplane
 - Given only samples from it

Learning the perceptron

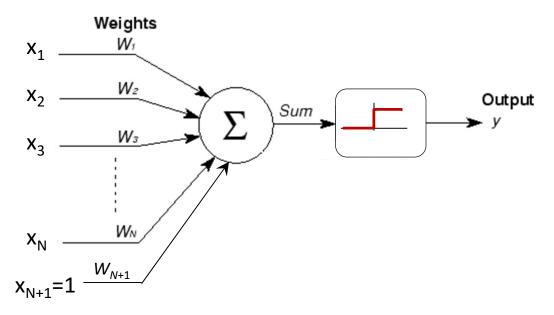


• Given a number of input output pairs, learn the weights and bias

$$- y = \begin{cases} 1 & if \quad \sum_{i=1}^{N} w_i X_i + b \ge 0 \\ 0 & otherwise \end{cases}$$

- Learn $W = [w_1 \dots w_N]^T$ and b , given several (X, y) pairs

Restating the perceptron



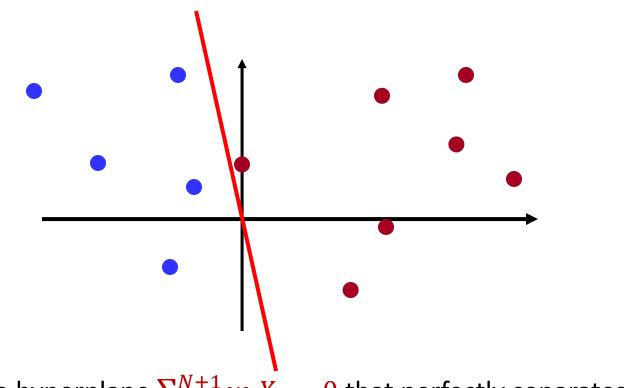
• Restating the perceptron equation by adding another dimension to X

$$y = \begin{cases} 1 & if \sum_{i=1}^{N+1} w_i X_i \ge 0\\ 0 & otherwise \end{cases}$$

where $X_{N+1} = 1$

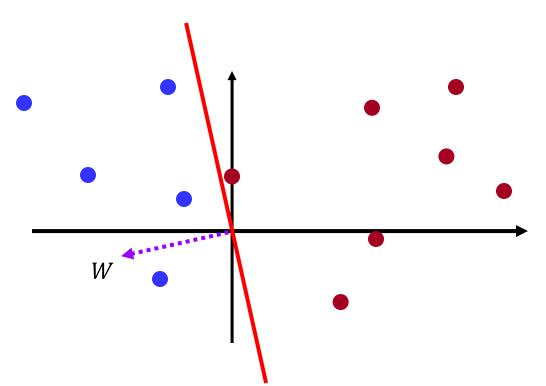
• Note that the boundary $\sum_{i=1}^{N+1} w_i X_i \ge 0$ is now a hyperplane through origin

The Perceptron Problem



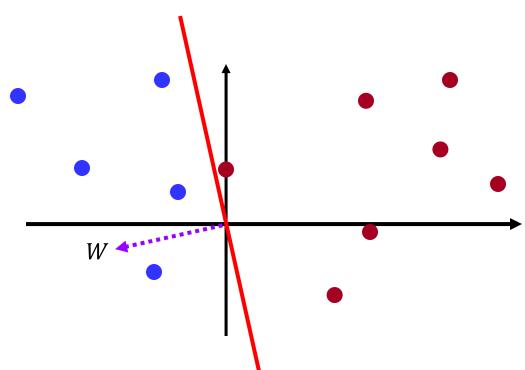
• Find the hyperplane $\sum_{i=1}^{N+1} w_i X_i = 0$ that perfectly separates the two groups of points

The Perceptron Problem



- Find the hyperplane $\sum_{i=1}^{N+1} w_i X_i = 0$ that perfectly separates the two groups of points
 - Note: $W = [w_1, w_2, ..., w_{N+1}]^T$ is a vector that is orthogonal to the hyperplane
 - In fact the equation for the hyperplane itself means "the set of all Xs that are orthogonal to W" $(\sum_{i=1}^{N+1} w_i X_i = W^T X = 0)$

The Perceptron Problem



Key: Red 1, Blue = -1

 Learning the perceptron: Find the weights vector W such that $W^T X$ is positive for all blue dots and negative for all red ones

Perceptron Algorithm: Summary

- Cycle through the training instances
- Only update *W* on misclassified instances
- If instance misclassified:
 - If instance is positive class (positive misclassified as negative)

$$W = W + X_i$$

If instance is negative class (negative misclassified as positive)

$$W = W - X_i$$

Perceptron Learning Algorithm

- Given N training instances $(X_1, y_1), (X_2, y_2), \dots, (X_N, y_N)$
- Initialize W

 $-y_i = +1 \text{ or } -1$

Using a +1/-1 representation for classes to simplify notation

- Cycle through the training instances:
- do

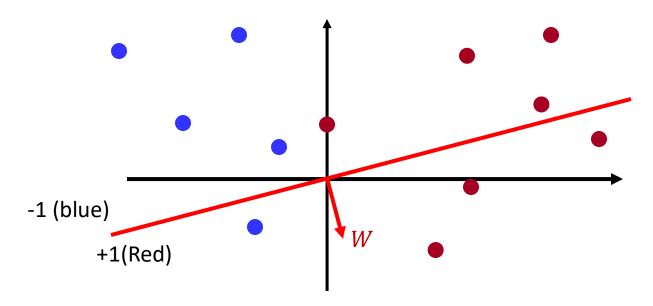
- For $i = 1 \dots N_{train}$ $O(X_i) = sign(W^T X_i)$

• If
$$O(X_i) \neq y_i$$

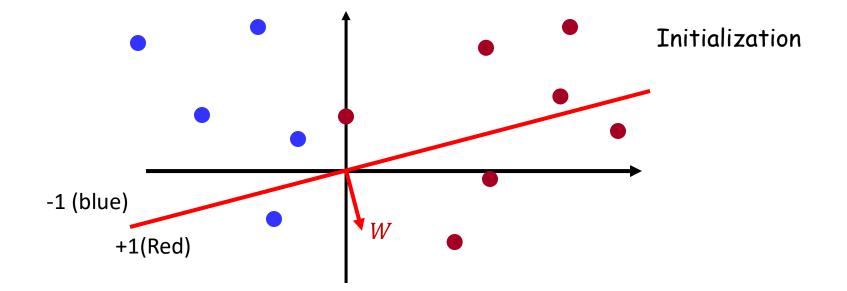
$$W = W + y_i X_i$$

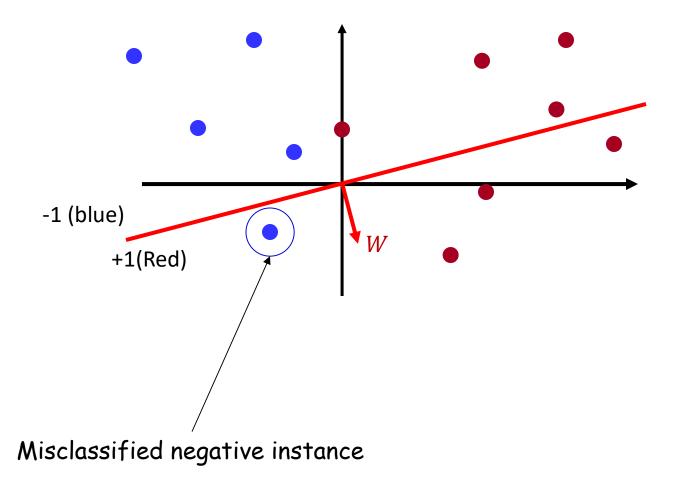
• until no more classification errors

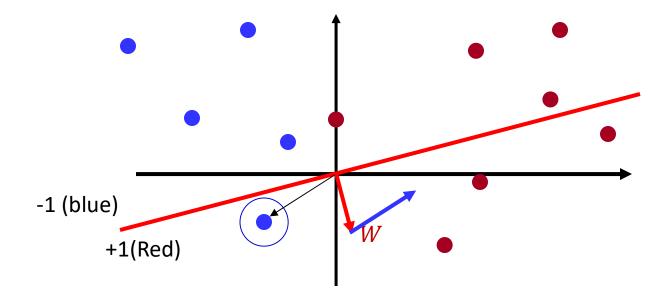
A Simple Method: The Perceptron Algorithm



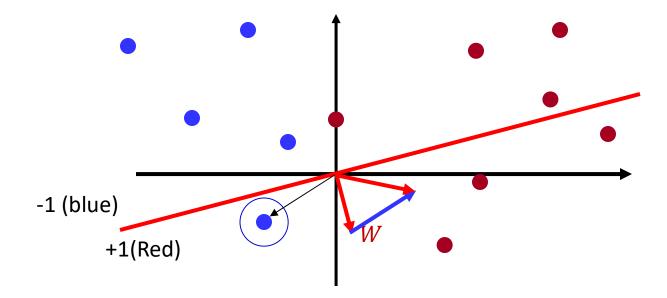
- Initialize: Randomly initialize the hyperplane
 - I.e. randomly initialize the normal vector W
- Classification rule $sign(W^T X)$
 - Vectors on the same side of the hyperplane as W will be assigned +1 class, and those on the other side will be assigned -1
- The random initial plane will make mistakes



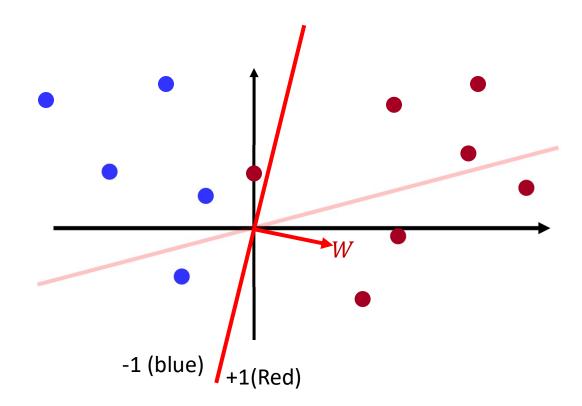




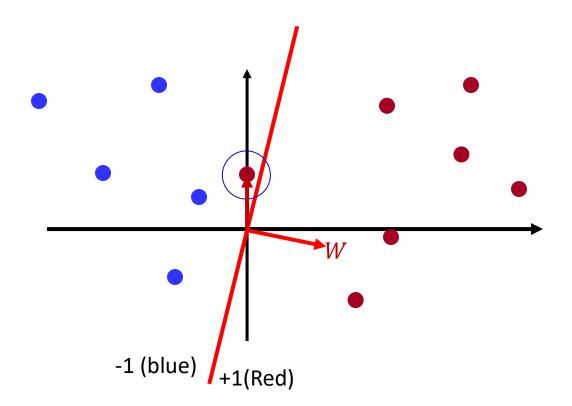
Misclassified *negative* instance, *subtract* it from W



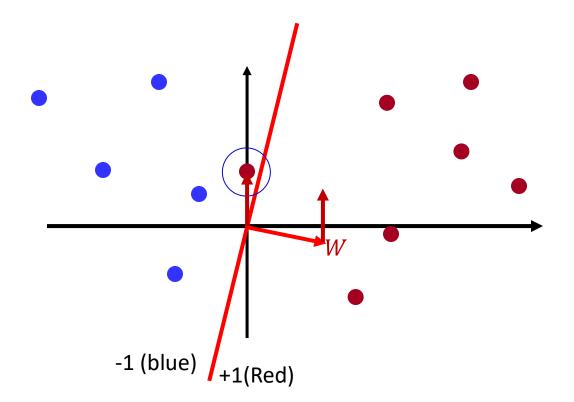
The new weight



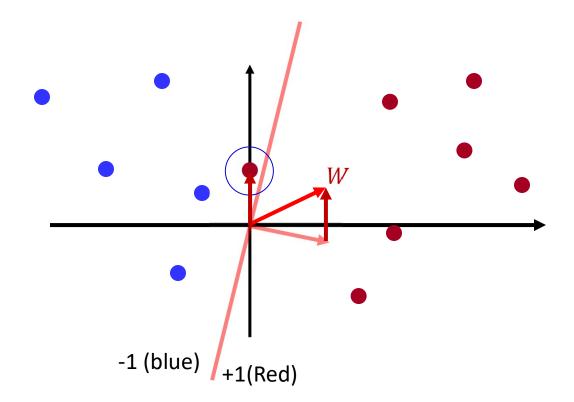
The new weight (and boundary)



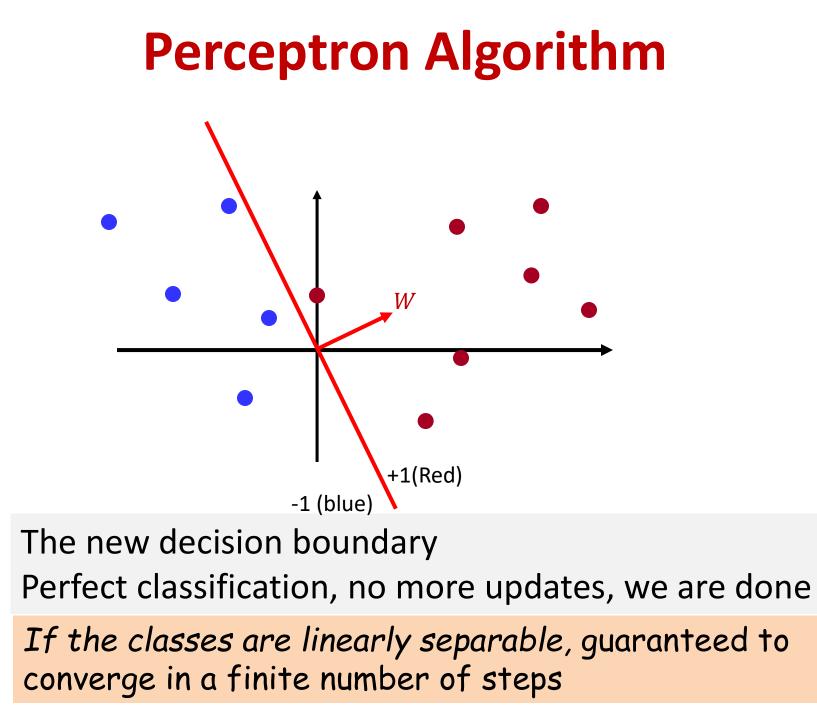
Misclassified *positive* instance



Misclassified *positive* instance, *add* it to W

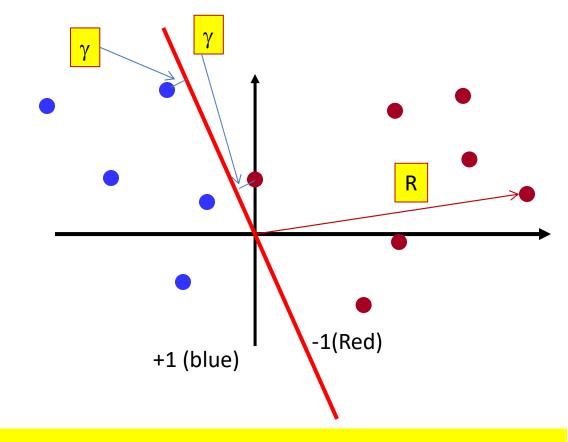


The new weight vector



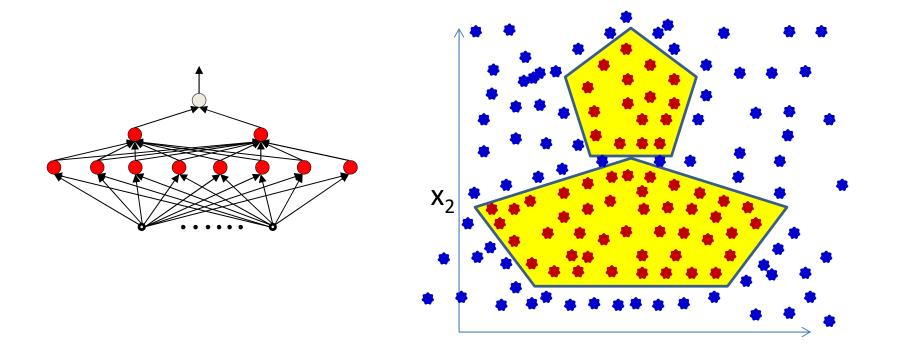
Convergence of Perceptron Algorithm

- Guaranteed to converge if classes are linearly separable
 - After no more than $\left(\frac{R}{\nu}\right)^2$ misclassifications
 - Specifically when W is initialized to 0
 - -R is length of longest training point
 - γ is the *best case* closest distance of a training point from the classifier
 - Same as the margin in an SVM
 - Intuitively takes many increments of size γ to undo an error resulting from a step of size R



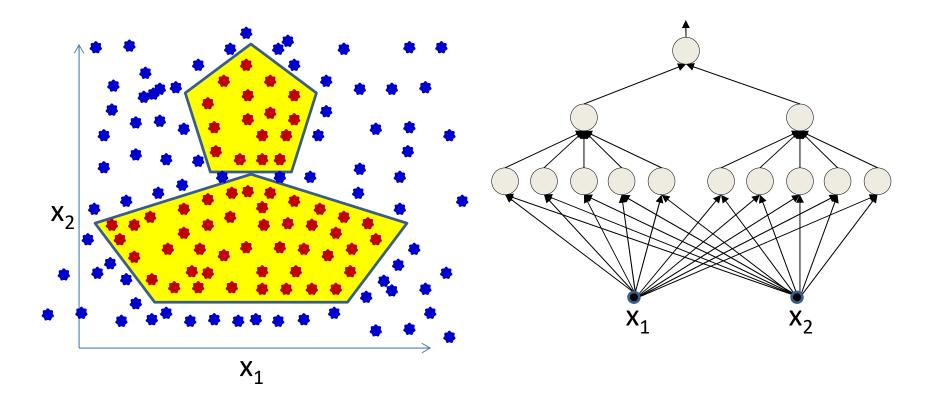
γ is the best-case marginR is the length of the longest vector

History: A more complex problem

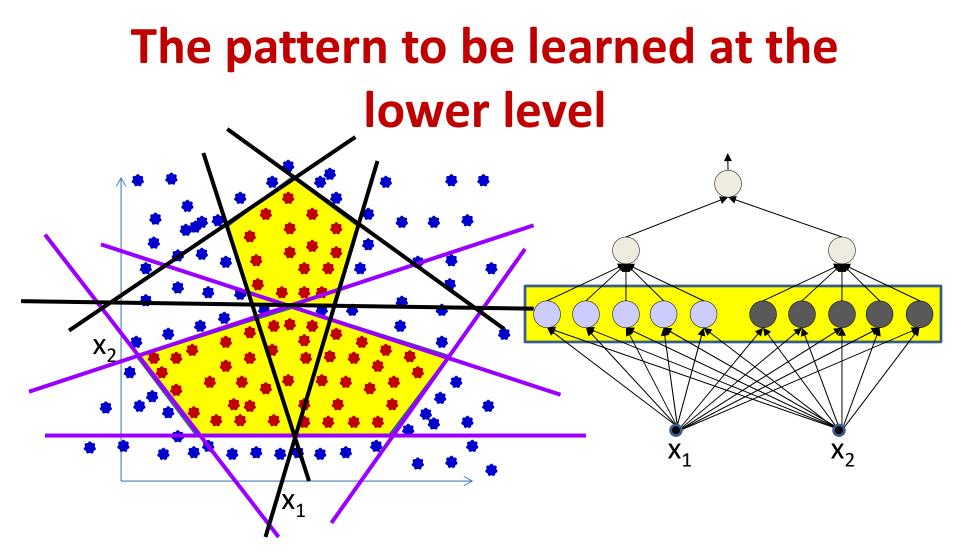


- Learn an MLP for this function
 - 1 in the yellow regions, 0 outside
- Using just the samples
- We know this can be perfectly represented using an MLP

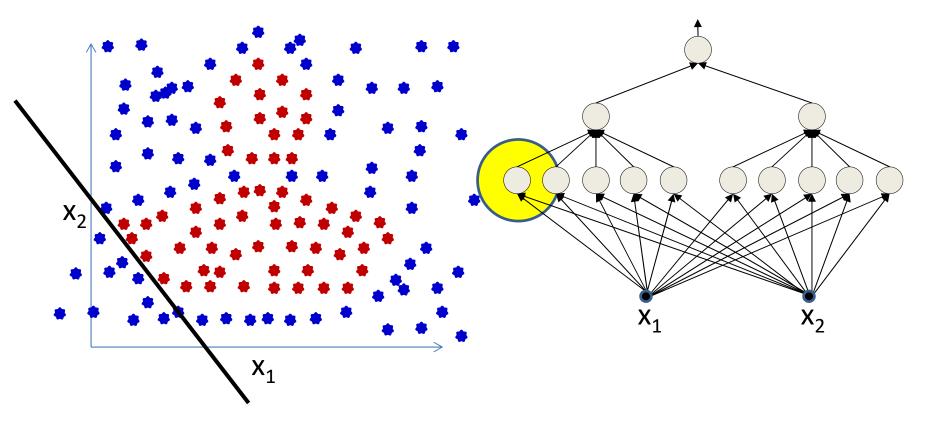
More complex decision boundaries



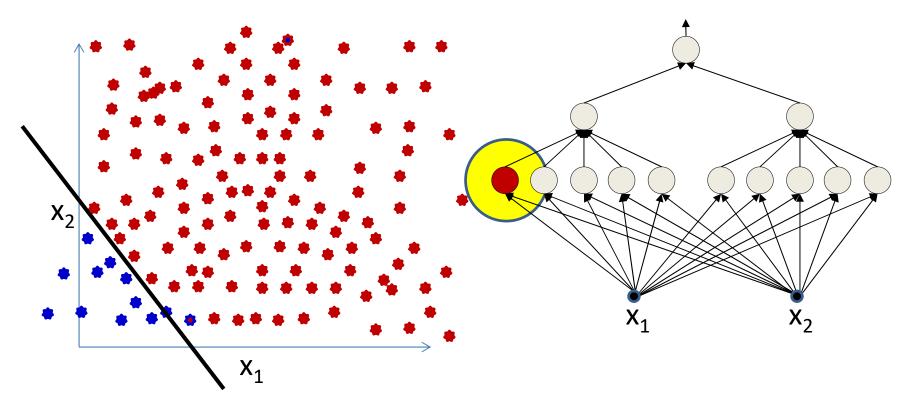
- Even using the perfect architecture
- Can we use the perceptron algorithm?
 - Making incremental corrections every time we encounter an error



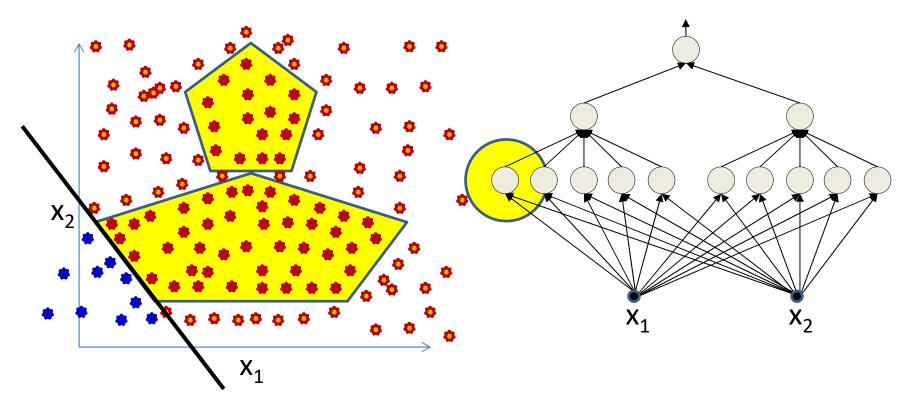
- The lower-level neurons are linear classifiers
 - They require linearly separated labels to be learned
 - The actually provided labels are not linearly separated
 - Challenge: Must also learn the labels for the lowest units! 53



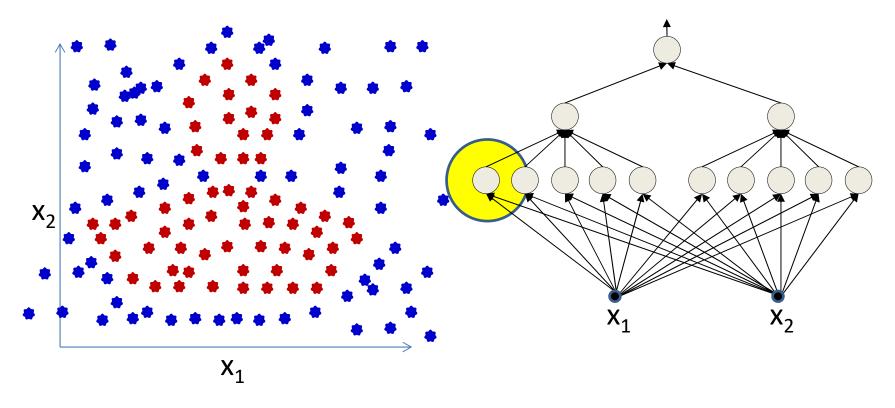
- Consider a single linear classifier that must be learned from the training data
 - Can it be learned from this data?



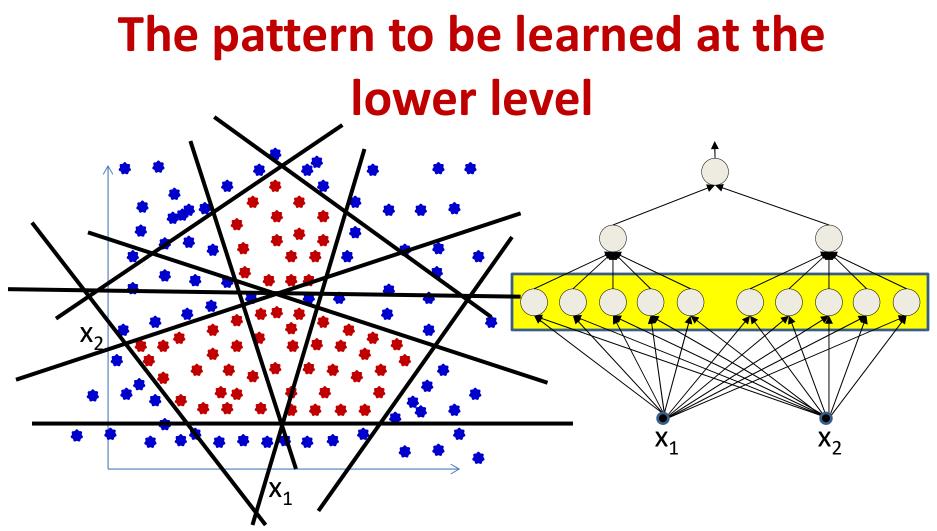
- Consider a single linear classifier that must be learned from the training data
 - Can it be learned from this data?
 - The individual classifier actually requires the kind of labelling shown here
 - Which is *not* given!!



- The lower-level neurons are linear classifiers
 - They require linearly separated labels to be learned
 - The actually provided labels are not linearly separated
 - Challenge: Must also learn the labels for the lowest units! 56

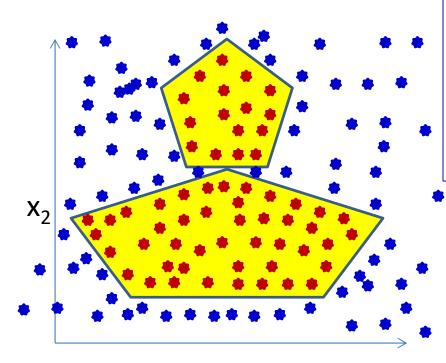


- For a single line:
 - Try out every possible way of relabeling the blue dots such that we can learn a line that keeps all the red dots on one side!



- This must be done for *each* of the lines (perceptrons)
- Such that, when all of them are combined by the higherlevel perceptrons we get the desired pattern
 - Basically an exponential search over inputs

Individual neurons represent one of the lines that compose the figure (linear classifiers)



Must know the output of every neuron for *every* training instance, in order to learn this neuron The outputs should be such that the neuron individually has a linearly separable task The linear separators must combine to

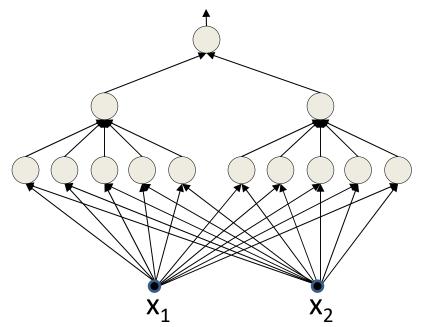
The linear separators must combine to form the desired boundary

This must be done for *every* neuron

Getting any of them wrong will result in incorrect output!

 X_{2}

Learning a *multilayer* perceptron



Training data only specifies input and output of network

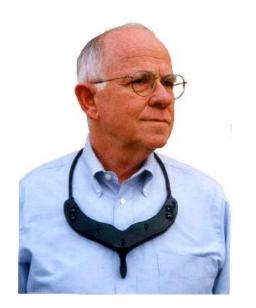
Intermediate outputs (outputs of individual neurons) are not specified

- Training this network using the perceptron rule is a combinatorial optimization problem
- We don't know the outputs of the individual intermediate neurons in the network for any training input
- Must also determine the correct output for *each* neuron for *every* training instance
- NP! Exponential time complexity

Greedy algorithms: Adaline and Madaline

- The perceptron learning algorithm cannot directly be used to learn an MLP
 - Exponential complexity of assigning intermediate labels
 - Even worse when classes are not actually separable
- Can we use a *greedy* algorithm instead?
 - Adaline / Madaline
 - On slides, will skip in class (check the quiz)

A little bit of History: Widrow



Bernie Widrow

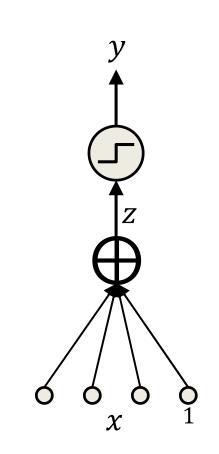
- Scientist, Professor, Entrepreneur
- Inventor of most useful things in signal processing and machine learning!

- First known attempt at an analytical solution to training the perceptron and the MLP
- Now famous as the LMS algorithm
 - Used everywhere
 - Also known as the "delta rule"

History: ADALINE

$$z = \sum_{t} w_{i} x_{i}$$
Using 1-extended vector
notation to account for bias
$$y = \begin{cases} 0, & z < 0\\ 1, & z \ge 0 \end{cases}$$

- Adaptive *linear* element (Hopf and Widrow, 1960)
- Actually just a regular perceptron
 - Weighted sum on inputs and bias passed through a thresholding function
- ADALINE differs in the *learning rule*



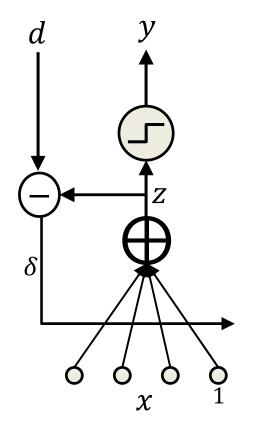
History: Learning in ADALINE

$$z = \sum_{t} w_{i} x_{i}$$

$$out = \begin{cases} 0, & z < 0\\ 1, & z \ge 0 \end{cases}$$

- During learning, minimize the squared error assuming *z* to be real output
- The desired output is still binary!

$$Err(x) = \frac{1}{2}(d-z)^{2}$$
 Error for a single input
$$\frac{dErr(x)}{dw_{i}} = -(d-z)x_{i}$$



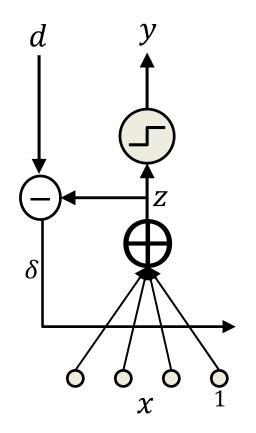
History: Learning in ADALINE

$$z = \sum_{t} w_{i}x_{i}$$

$$Err(x) = \frac{1}{2}(d-z)^{2}$$
 Error for a single input

$$\frac{dErr(x)}{dw_{i}} = -(d-z)x_{i}$$

• If we just have a single training input, the *gradient descent* update rule is



$$w_i = w_i + \eta (d - z) x_i$$

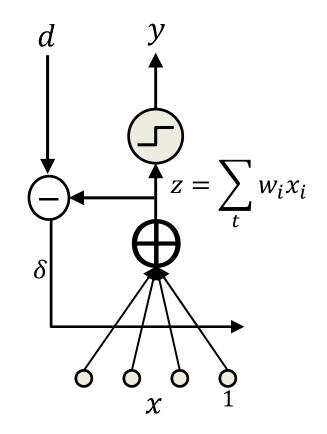
The ADALINE learning rule

- Online learning rule
- After each input x, that has target (binary) output d, compute and update:

$$\delta = d - z$$

$$w_i = w_i + \eta \delta x_i$$

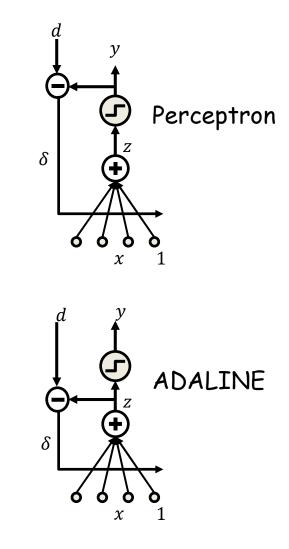
- This is the famous *delta rule*
 - Also called the LMS update rule



The Delta Rule

- In fact both the Perceptron and ADALINE use variants of the delta rule!
 - Perceptron: Output used in delta rule is y $\delta = d - y$
 - ADALINE: Output used to estimate weights is z $\delta = d - z$
- For both

$$w_i = w_i + \eta \delta x_i$$

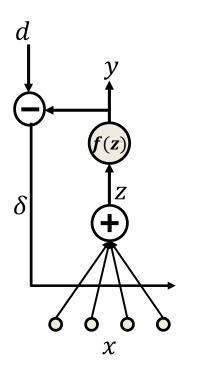


Aside: Generalized delta rule

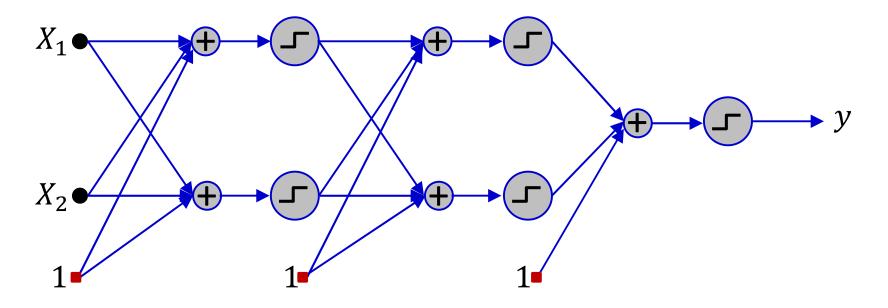
• For any differentiable activation function the following update rule is used

 $\delta = d - y$ $w_i = w_i + \eta \delta f'(z) x_i$

- This is the famous Widrow-Hoff update rule
 - Lookahead: Note that this is *exactly* backpropagation in multilayer nets if we let f(z)represent the entire network between z and y
- It is possibly the most-used update rule in machine learning and signal processing
 - Variants of it appear in almost every problem



Multilayer perceptron: MADALINE



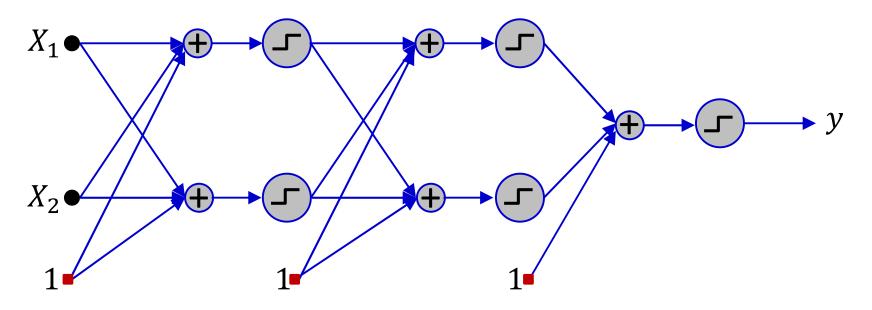
- *Multiple* Adaline
 - A multilayer perceptron with threshold activations
 - The MADALINE

MADALINE Training



- Update only on error
 - $-\delta \neq 0$
 - On inputs for which output and target values differ

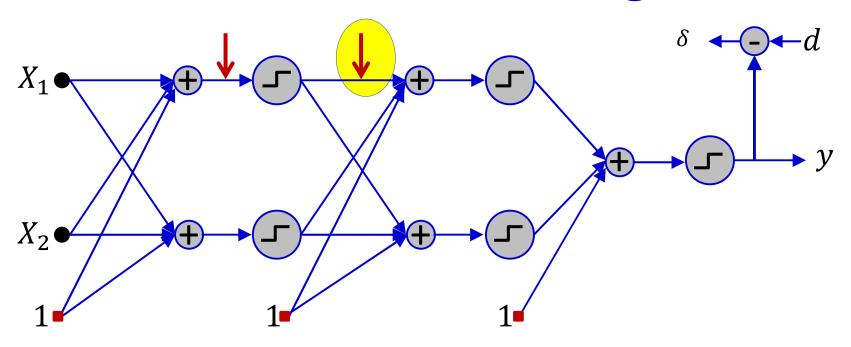
MADALINE Training



- While stopping criterion not met do:
 - Classify an input

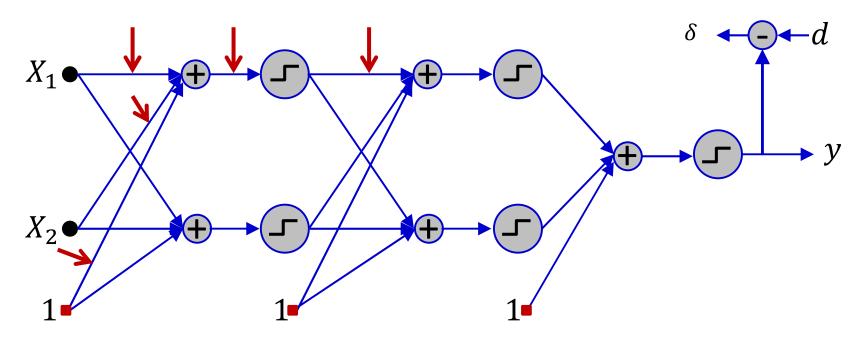
- While stopping criterion not met do:
 - Classify an input
 - If error, find the z that is closest to 0

MADALINE Training



- While stopping criterion not met do:
 - Classify an input
 - If error, find the z that is closest to 0
 - Flip the output of corresponding unit and compute new output

MADALINE Training



- While stopping criterion not met do:
 - Classify an input
 - If error, find the z that is closest to 0
 - Flip the output of corresponding unit and compute new output
 - If error reduces:
 - Set the desired output of the unit to the flipped value
 - Apply ADALINE rule to update weights of the unit

MADALINE

- Greedy algorithm, effective for small networks
- Not very useful for large nets
 - Too expensive
 - Too greedy

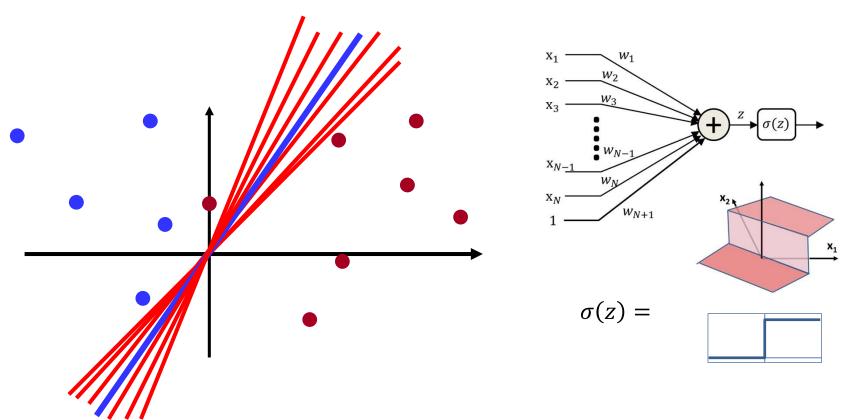
Story so far

- "Learning" a network = learning the weights and biases to compute a target function
 - Will require a network with sufficient "capacity"
- In practice, we learn networks by "fitting" them to match the input-output relation of "training" instances drawn from the target function
- A linear decision boundary can be learned by a single perceptron (with a threshold-function activation) in linear time if classes are linearly separable
- Non-linear decision boundaries require networks of perceptrons
- Training an MLP with threshold-function activation perceptrons will require knowledge of the input-output relation for every training instance, for *every* perceptron in the network
 - These must be determined as part of training
 - For threshold activations, this is an NP-complete combinatorial optimization problem

History..

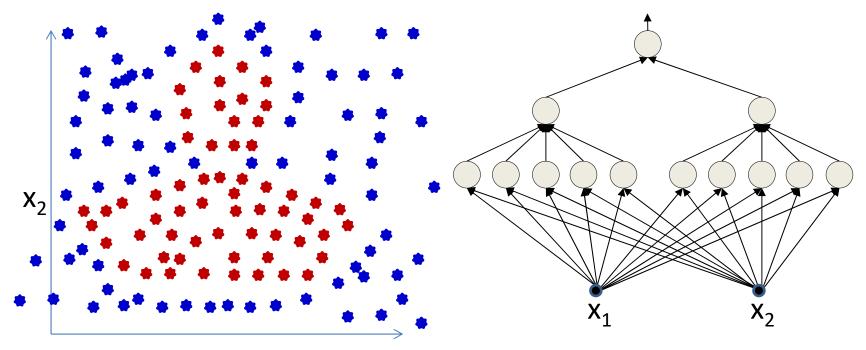
 The realization that training an entire MLP was a combinatorial optimization problem stalled development of neural networks for well over a decade!

Why this problem?



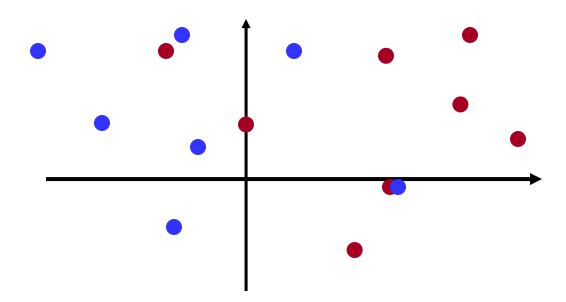
- The perceptron is a flat function with zero derivative everywhere, except at 0 where it is non-differentiable
 - You can vary the weights a *lot* without changing the error
 - There is no indication of which direction to change the weights to reduce error

This only compounds on larger problems

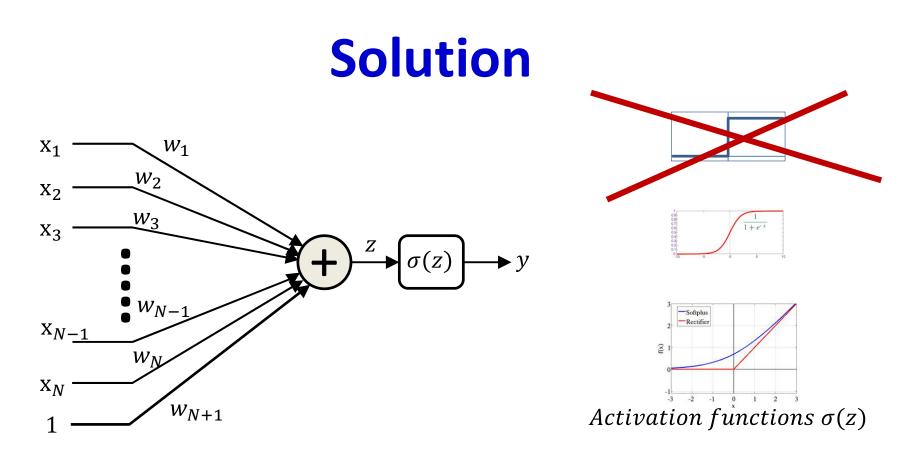


- Individual neurons' weights can change significantly without changing overall error
- The simple MLP is a flat, non-differentiable function
 - Actually a function with 0 derivative nearly everywhere, and no derivatives at the boundaries

A second problem: What we actually model

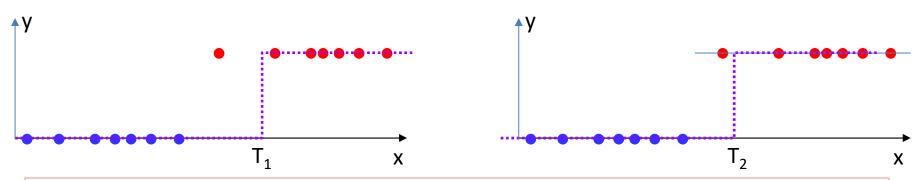


- Real-life data are rarely clean
 - Not linearly separable
 - Rosenblatt's perceptron wouldn't work in the first place



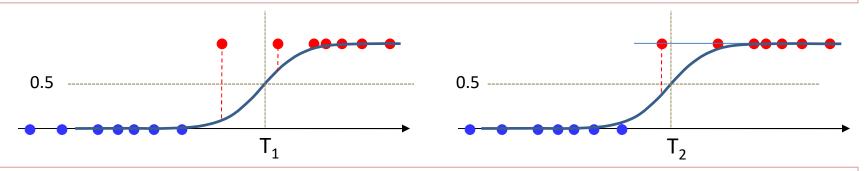
- Lets make the neuron differentiable, with non-zero derivatives over much of the input space
 - Small changes in weight can result in non-negligible changes in output
 - This enables us to estimate the parameters using gradient descent techniques..

Differentiable activation function



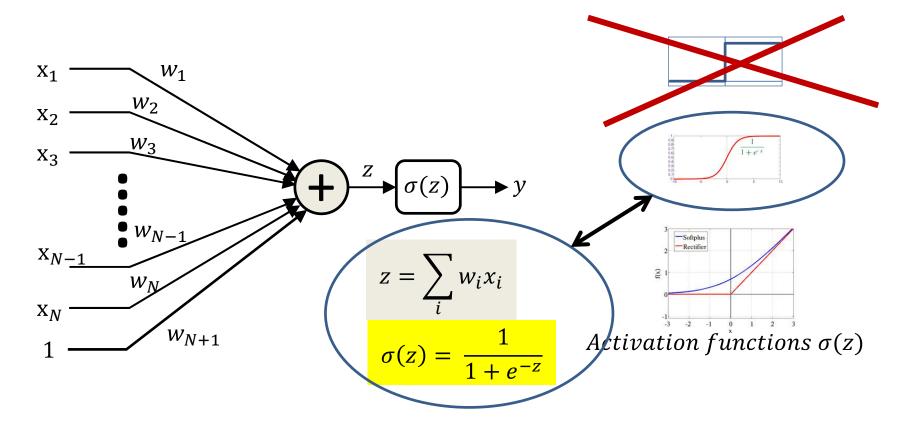
Threshold activation: shifting the threshold from T₁ to T₂ does not change classification error

Does not indicate if moving the threshold left was good or not



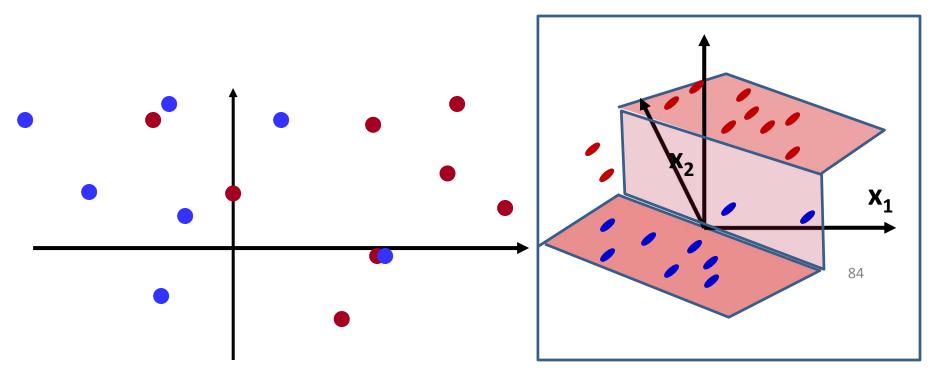
- Smooth, continuously varying activation: Classification based on whether the output is greater than 0.5 or less
 - Can now quantify *how much* the output differs from the desired target value (0 or 1)
 - Moving the function left or right changes this quantity, even if the classification error itself doesn't change
 82

The sigmoid activation is special



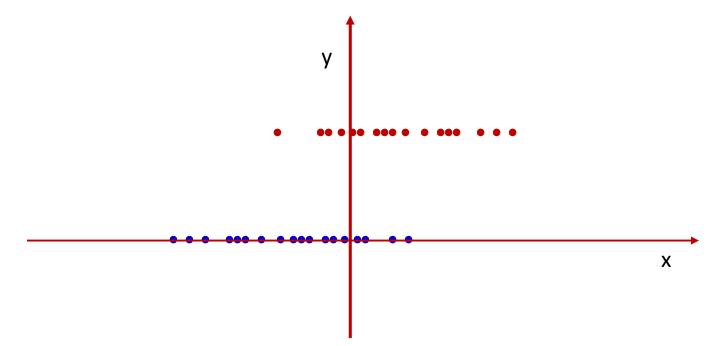
- This particular one has a nice interpretation
- It can be interpreted as P(y = 1|x)

Non-linearly separable data

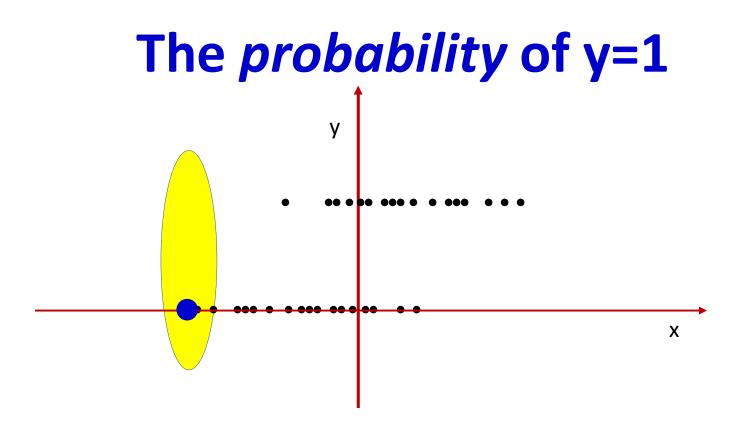


- Two-dimensional example
 - Blue dots (on the floor) on the "red" side
 - Red dots (suspended at Y=1) on the "blue" side
 - No line will cleanly separate the two colors

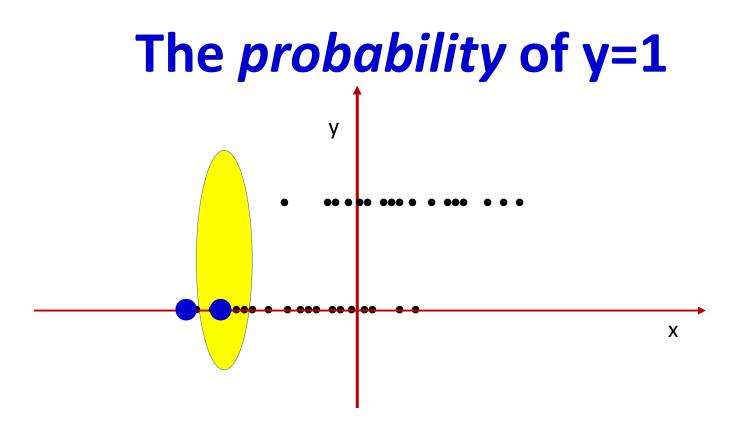
Non-linearly separable data: 1-D example



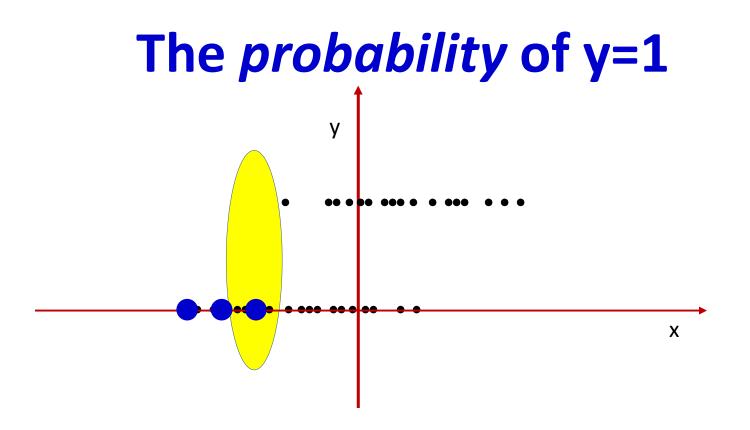
- One-dimensional example for visualization
 - All (red) dots at Y=1 represent instances of class Y=1
 - All (blue) dots at Y=0 are from class Y=0
 - The data are not linearly separable
 - In this 1-D example, a linear separator is a threshold
 - No threshold will cleanly separate red and blue dots



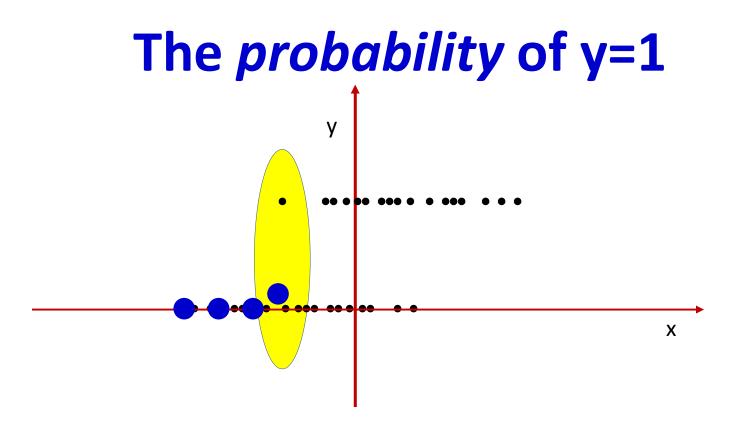
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of Y=1 at that point



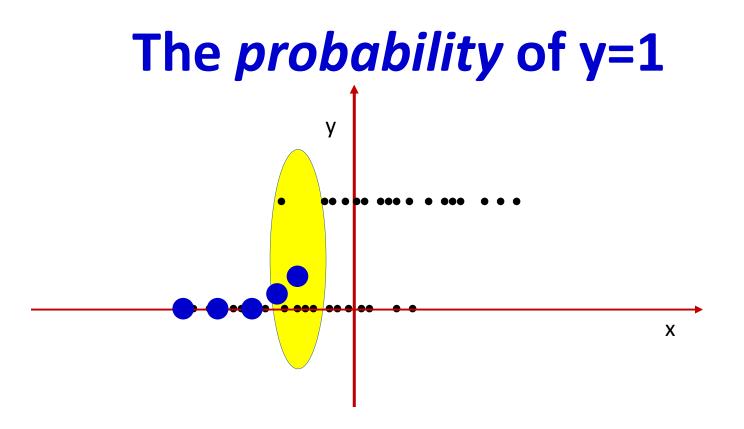
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



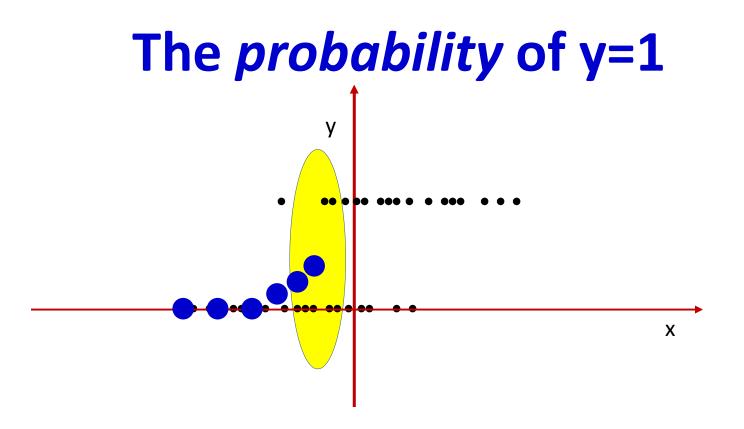
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



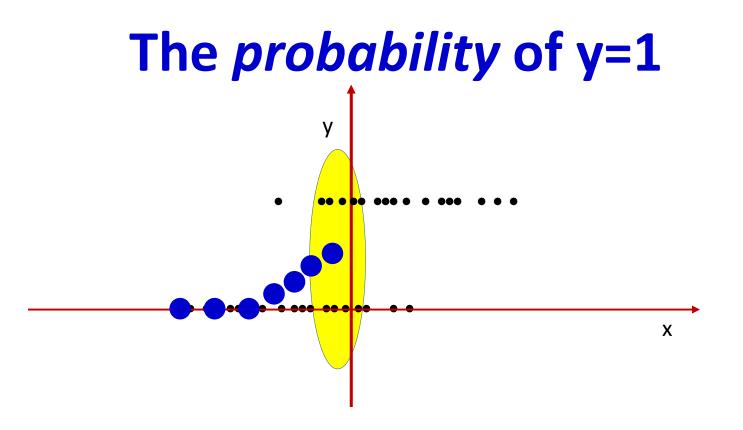
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



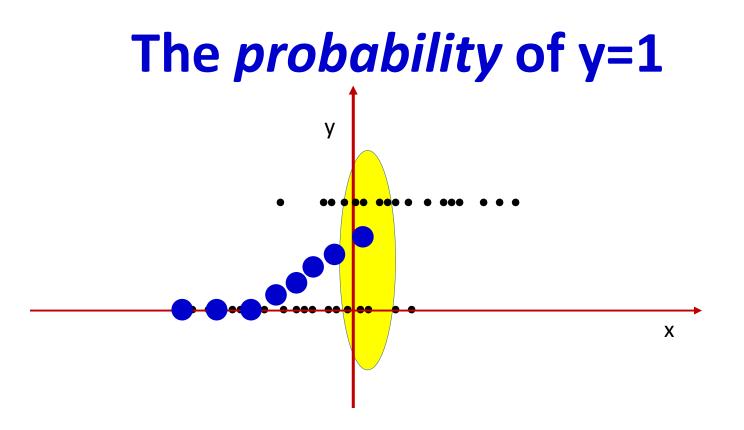
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



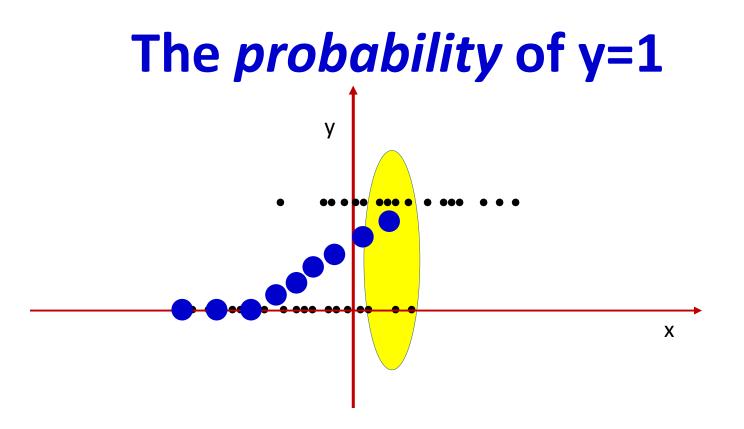
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



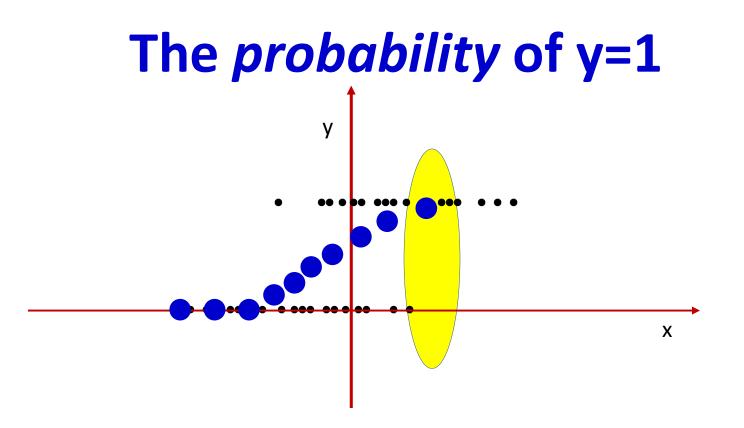
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



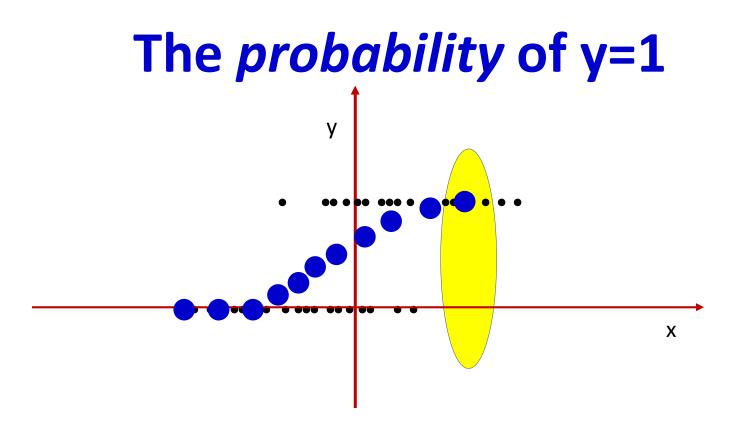
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



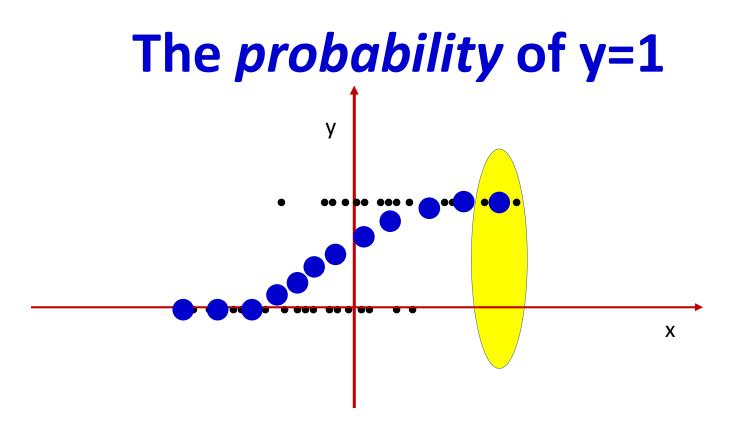
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



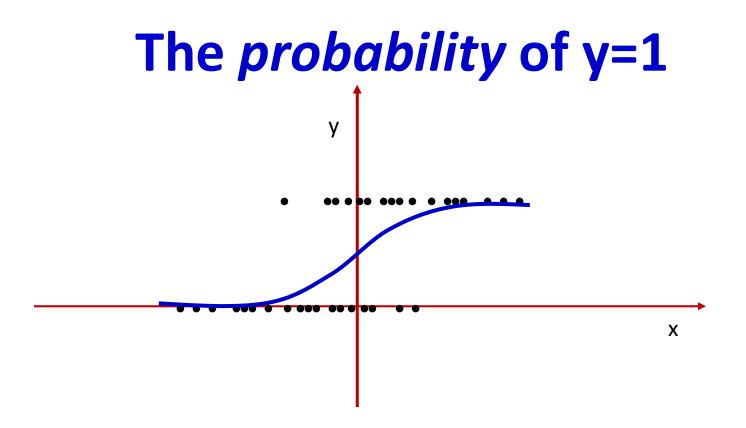
- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point

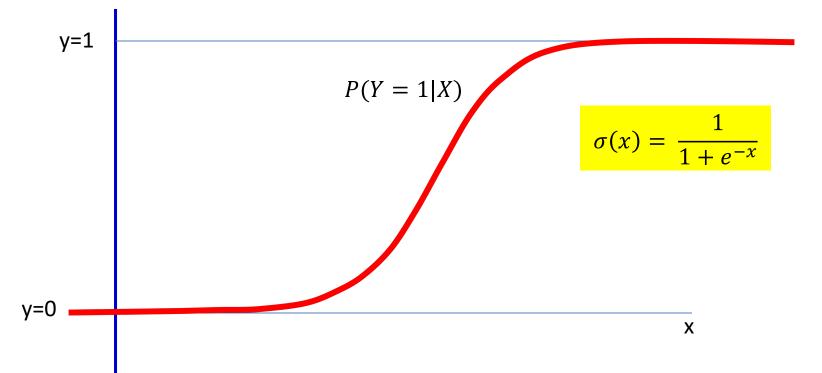


- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point



- Consider this differently: at each point look at a small window around that point
- Plot the average value within the window
 - This is an approximation of the *probability* of 1 at that point

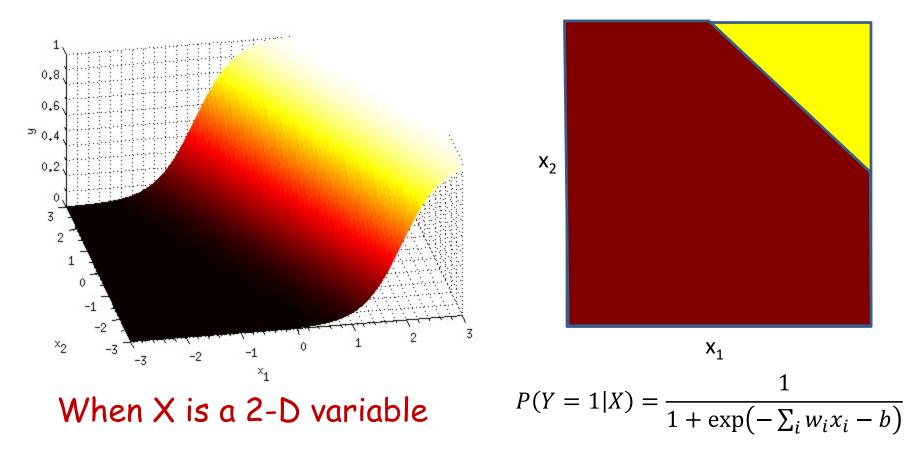
The logistic regression model



- Class 1 becomes increasingly probable going left to right
 - Very typical in many problems

Logistic regression

Decision: y > 0.5?

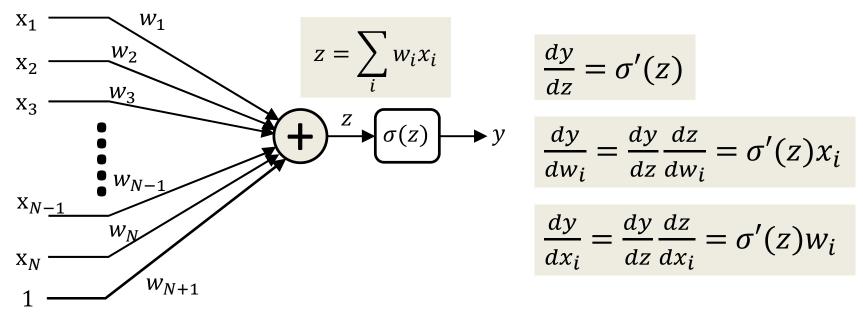


- This the perceptron with a sigmoid activation
 - It actually computes the *probability* that the input belongs to class 1

Perceptrons and probabilities

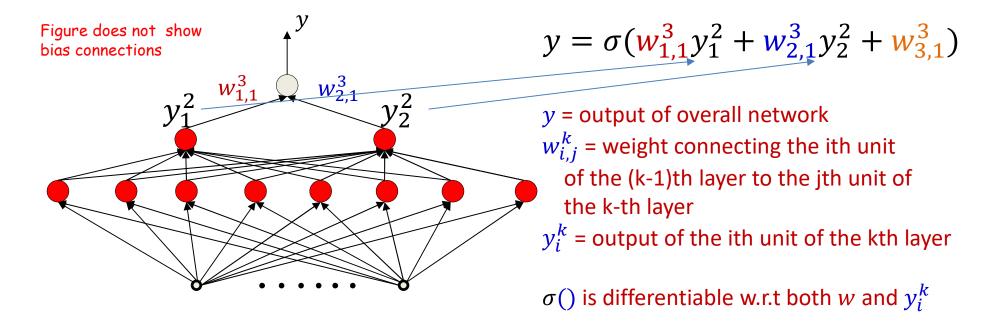
- We will return to the fact that perceptrons with sigmoidal activations actually model class probabilities in a later lecture
- But for now moving on..

Perceptrons with differentiable activation functions



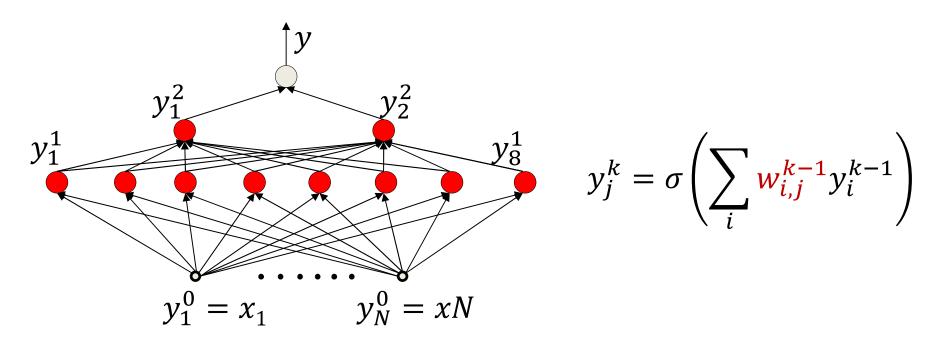
- $\sigma(z)$ is a differentiable function of z
 - $-\frac{d\sigma(z)}{dz}$ is well-defined and finite for all z
- Using the chain rule, y is a differentiable function of both inputs x_i and weights w_i
- This means that we can compute the change in the output for *small* changes in either the input or the weights

Overall network is differentiable



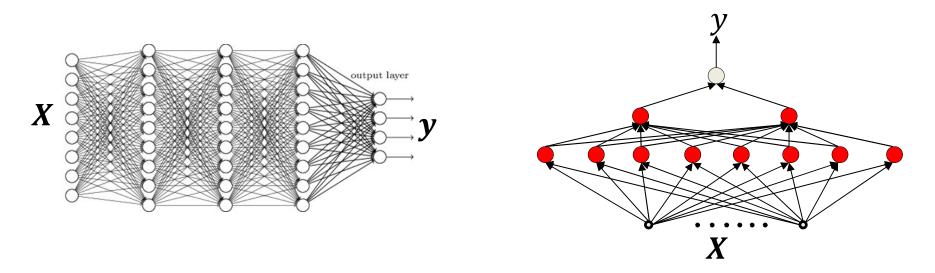
- Every individual perceptron is differentiable w.r.t its inputs ulletand its weights (including "bias" weight)
- By the chain rule, the overall function is differentiable w.r.t ۲ every parameter (weight or bias)
 - Small changes in the parameters result in measurable changes in output

Overall function is differentiable



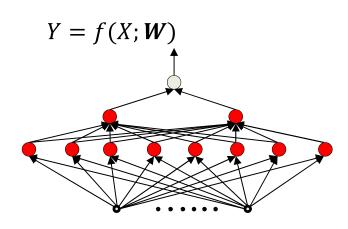
- The overall function is differentiable w.r.t every parameter
 - We can compute how small changes in the parameters change the output
 - For non-threshold activations the derivative are finite and generally non-zero
 - We will derive the actual derivatives using the chain rule later

Overall setting for "Learning" the MLP



- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_N, d_N) \dots$
 - *d* is the *desired output* of the network in response to *X*
 - X and d may both be vectors
- ...we must find the network parameters such that the network produces the desired output for each training input
 - Or a close approximation of it
 - The architecture of the network must be specified by us

Recap: Learning the function



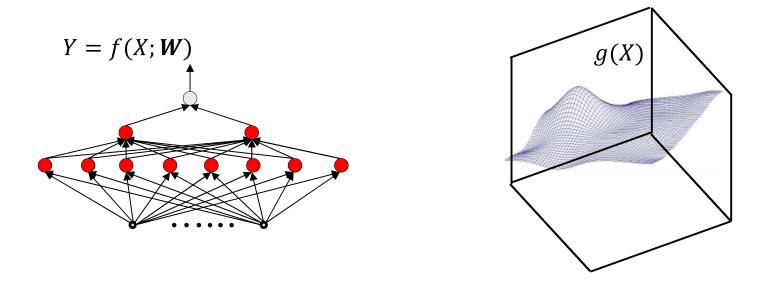


• When f(X; W) has the capacity to exactly represent g(X)

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X)) dX$$

• div() is a divergence function that goes to zero when f(X; W) = g(X)

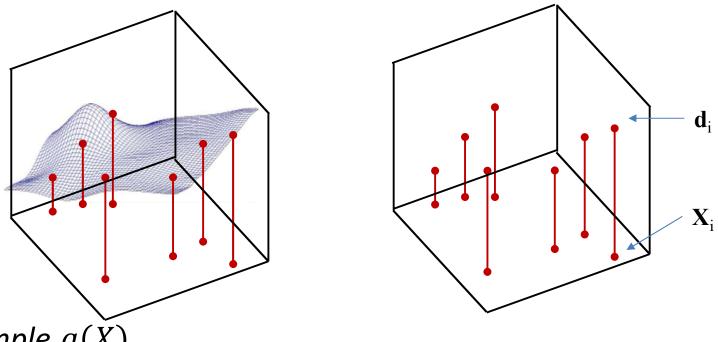
Minimizing expected error



• More generally, assuming X is a random variable

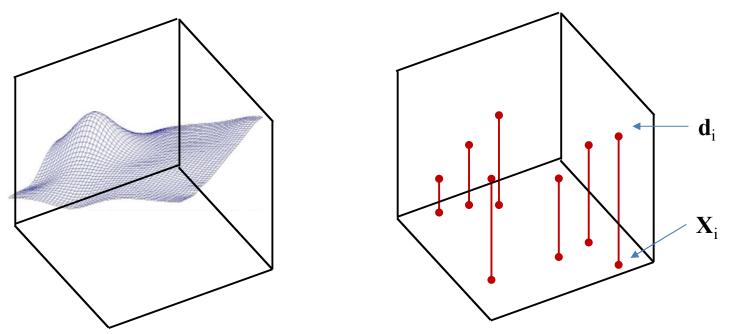
$$\widehat{W} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X;W),g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E\left[div(f(X;W),g(X))\right]$$

Recap: Sampling the function



- Sample g(X)
 - Obtain input-output pairs for a number of samples of input X_i
 - Many samples (X_i, d_i) , where $d_i = g(X_i) + noise$
 - Good sampling: the samples of X will be drawn from P(X)
- Estimate function from the samples

The *Empirical* risk



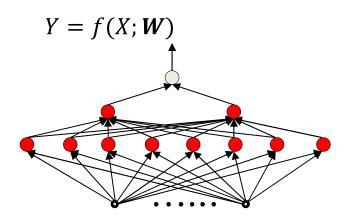
• The *expected* divergence (or risk) is the average divergence over the entire input space

$$E\left[div(f(X;W),g(X))\right] = \int_X div(f(X;W),g(X))P(X)dX$$

• The *empirical estimate* of the expected risk is the *average* divergence over the samples

$$E\left[div(f(X;W),g(X))\right] \approx \frac{1}{N} \sum_{i=1}^{N} div(f(X_i;W),d_i)$$

Empirical Risk Minimization



- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_N, d_N)$
 - Quantification of error on the ith instance: $div(f(X_i; W), d_i)$
 - Empirical average divergence (Empirical Risk) on all training data:

$$Loss(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), d_i)$$

• Estimate the parameters to minimize the empirical estimate of expected divergence (empiricial risk)

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \operatorname{Loss}(W)$$

- I.e. minimize the *empirical risk* over the drawn samples

Empirical Risk Minimization

Note : Its really a measure of error, but using standard terminology, we will call it a "Loss"

Y = f(X; W)

Note 2: The empirical risk Loss(W) is only an empirical approximation to the true risk E[div(f(X; W), g(X))] which is our *actual* minimization objective

Note 3: For a given training set the loss is only a function of W

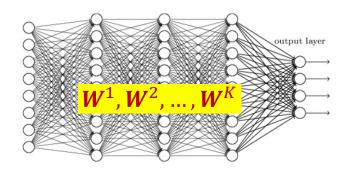
$$Loss(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), d_i)$$

Estimate the parameters to minimize the empirical estimate of expected error

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \operatorname{Loss}(W)$$

- I.e. minimize the *empirical error* over the drawn samples

ERM for neural networks



Actual output of network: $Y_i = net(X_i; \{w_{i,j}^k \forall i, j, k\})$ $= net(X_i; W^1, W^2, ..., W^K)$

Desired output of network: d_i

Error on i-th training input: $Div(Y_i, d_i; W^1, W^2, ..., W^K)$

Average training error(loss): $Loss(W^1, W^2, ..., W^K) = \frac{1}{N} \sum_{i=1}^N Div(Y_i, d_i; W^1, W^2, ..., W^K)$

- What is the exact form of Div()? More on this later

• Optimize network parameters to minimize the total error over all training inputs

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_N, d_N)$
- Minimize the following function

$$Loss(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

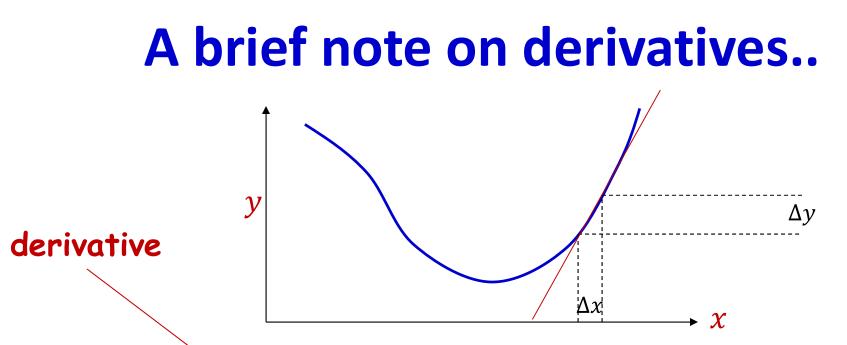
• This is problem of function minimization

– An instance of optimization

Story so far

- We learn networks by "fitting" them to training instances drawn from a target function
- Learning networks of threshold-activation perceptrons requires solving a hard combinatorial-optimization problem
 - Because we cannot compute the influence of small changes to the parameters on the overall error
- Instead we use continuous activation functions with non-zero derivatives to enables us to estimate network parameters
 - This makes the output of the network differentiable w.r.t every parameter in the network
 - The *logistic* activation perceptron actually computes the *a posteriori* probability of the output given the input
- We define differentiable *divergence* between the output of the network and the desired output for the training instances
 - And a total error, which is the average divergence over all training instances
- We optimize network parameters to minimize this error
 - Empirical risk minimization
- This is an instance of function minimization

• A CRASH COURSE ON FUNCTION OPTIMIZATION



- A derivative of a function at any point tells us how much a minute increment to the *argument* of the function will increment the *value* of the function
 - For any y = f(x), expressed as a multiplier α to a tiny increment Δx to obtain the increments Δy to the output $\Delta y = \alpha \Delta x$
 - Based on the fact that at a fine enough resolution, any smooth, continuous function is locally linear at any point 116

Scalar function of scalar argument y Δy Δy

• When x and y are scalar

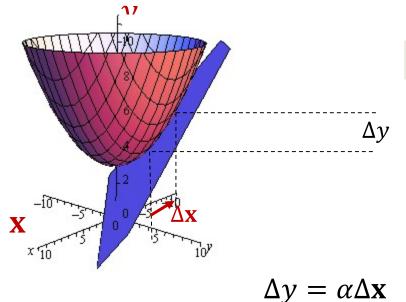
$$y = f(x)$$

Derivative:

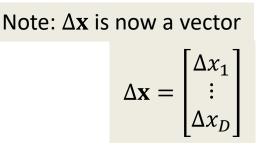
$$\Delta y = \frac{\alpha \Delta x}{\alpha \Delta x}$$

- Often represented (using somewhat inaccurate notation) as $\frac{dy}{dx}$
- Or alternately (and more reasonably) as f'(x)

Multivariate scalar function: Scalar function of *vector* argument



۲

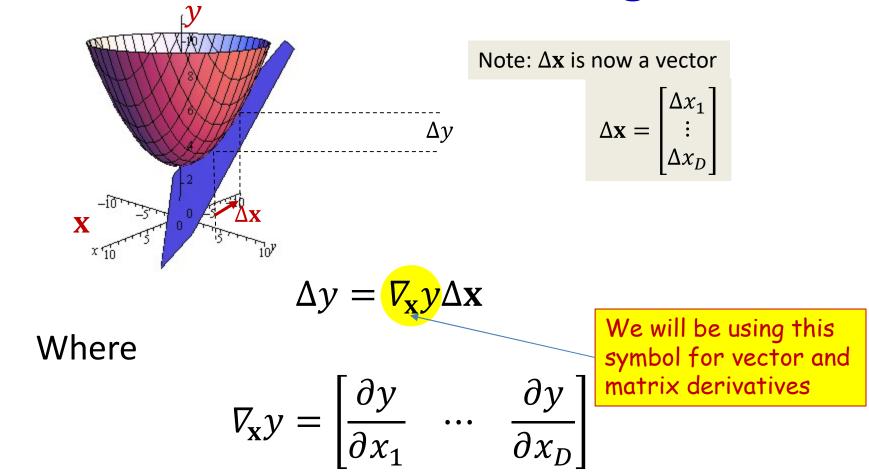


Giving us that α is a row vector: $\alpha = [\alpha_1 \quad \cdots \quad \alpha_D]$

 $\Delta y = \alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \dots + \alpha_D \Delta x_D$

- The *partial* derivative α_i gives us how y increments when *only* x_i is incremented
- Often represented as $\frac{\partial y}{\partial x_i}$ $\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \dots + \frac{\partial y}{\partial x_D} \Delta x_D$

Multivariate scalar function: Scalar function of *vector* argument

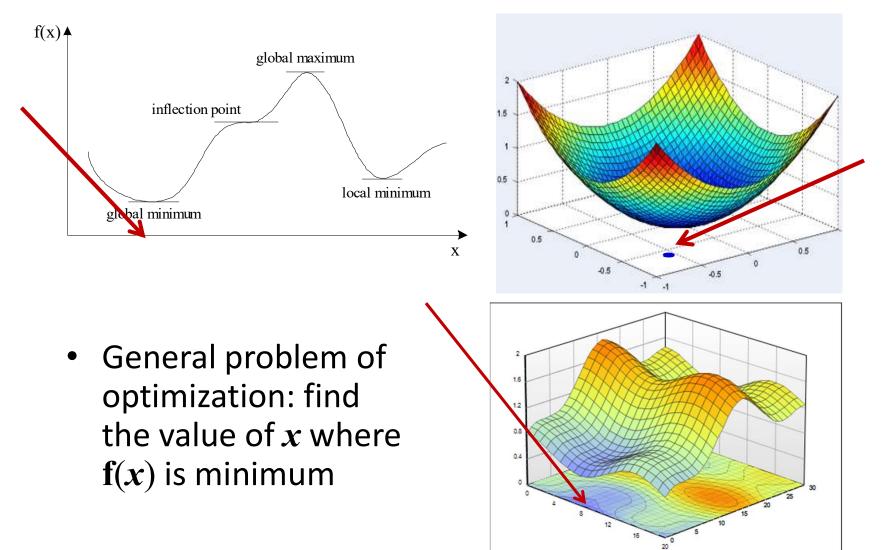


 You may be more familiar with the term "gradient" which is actually defined as the transpose of the derivative

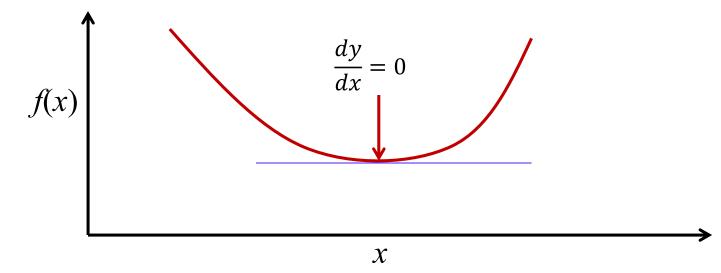
Caveat about following slides

- The following slides speak of optimizing a function w.r.t a variable "x"
- This is only mathematical notation. In our actual network optimization problem we would be optimizing w.r.t. network weights "w"
- To reiterate "x" in the slides represents the variable that we're optimizing a function over and not the input to a neural network
- Do not get confused!

The problem of optimization



Finding the minimum of a function

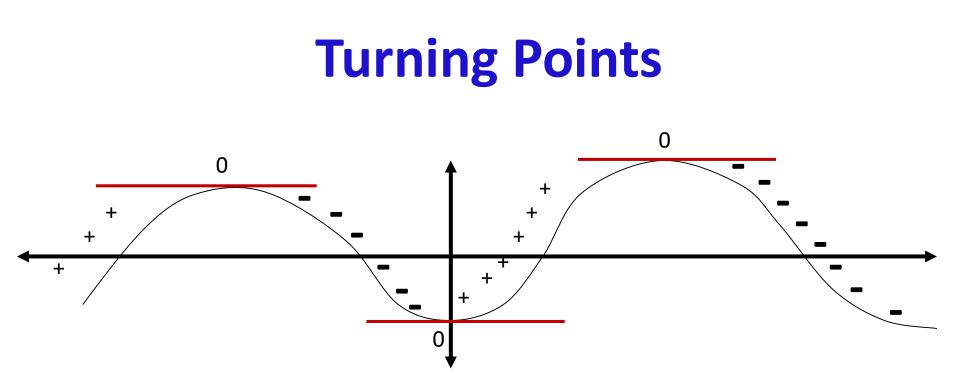


• Find the value x at which f'(x) = 0

– Solve

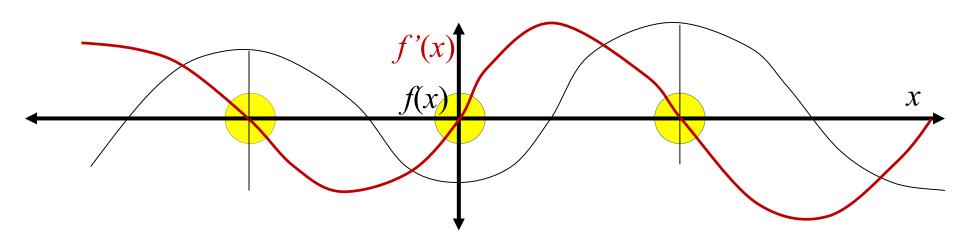
$$\frac{df(x)}{dx} = 0$$

- The solution is a "turning point"
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?



- Both maxima and minima have zero derivative
- Both are turning points

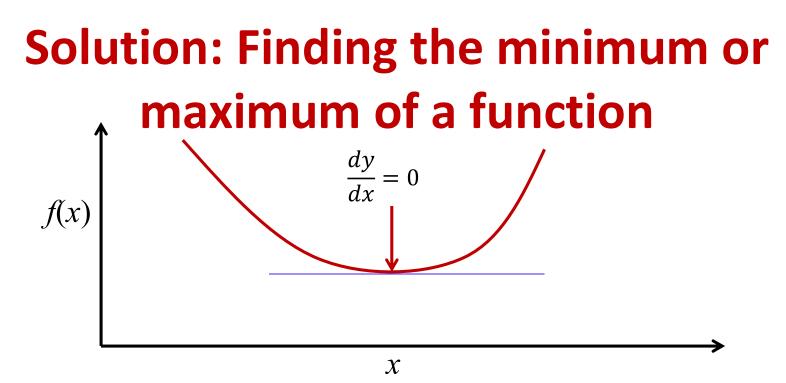
Derivatives of a curve



- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative

Derivative of the derivative of the curve f''(x) = f''(x) + f(x) + f(x

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative
- The second derivative f''(x) is -ve at maxima and +ve at minima!



• Find the value x at which
$$f'(x) = 0$$
: Solve

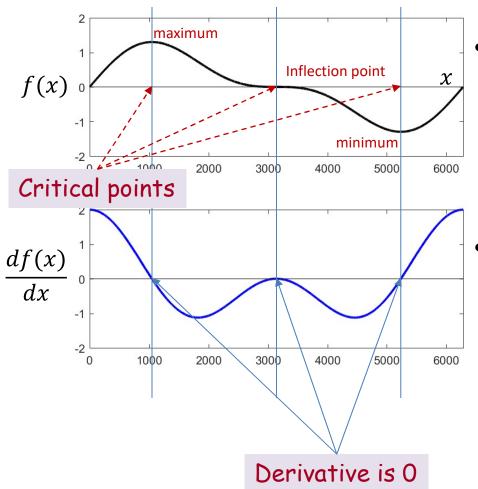
$$\frac{df(x)}{dx} = 0$$

- The solution *x*_{soln} is a *turning point*
- Check the double derivative at *x*_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

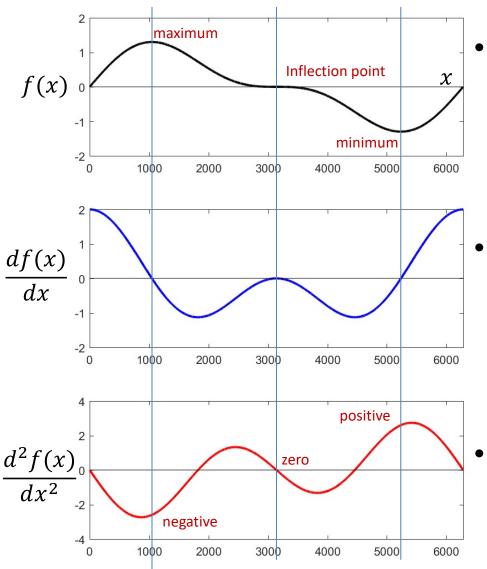
• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

A note on derivatives of functions of single variable



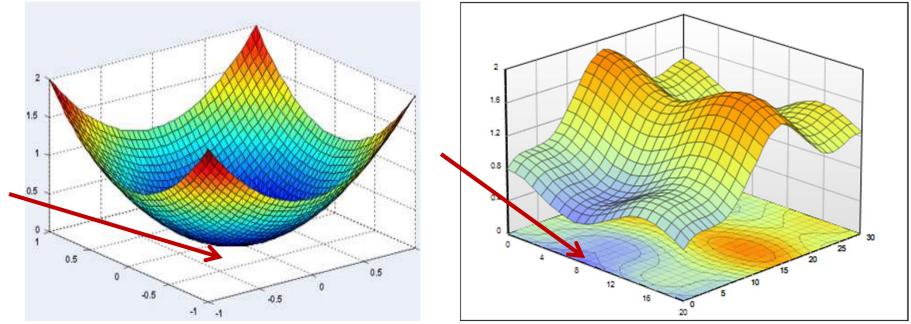
- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
 - The *second* derivative is
 - Positive (or 0) at minima
 - Negative (or 0) at maxima
 - Zero at inflection points

A note on derivatives of functions of single variable



- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
 - The *second* derivative is
 - ≥ 0 at minima
 - ≤ 0 at maxima
 - Zero at inflection points
 - It's a little more complicated for functions of multiple variables..

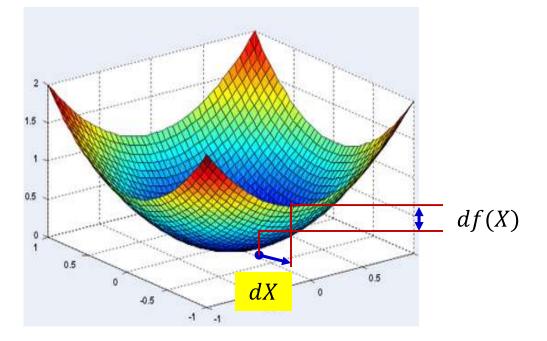
What about functions of multiple variables?



- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

A brief note on derivatives of multivariate functions

The Gradient of a scalar function

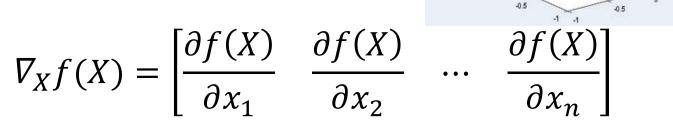


• The *derivative* $\nabla_X f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X $df(X) = \nabla_X f(X) dX$

- The **gradient** is the transpose of the derivative $\nabla_X f(X)^T$ 131

Gradients of scalar functions with multi-variate inputs

• Consider $f(X) = f(x_1, x_2, ..., x_n)$



0.5

• Relation:

$$df(X) = \nabla_X f(X) dX$$

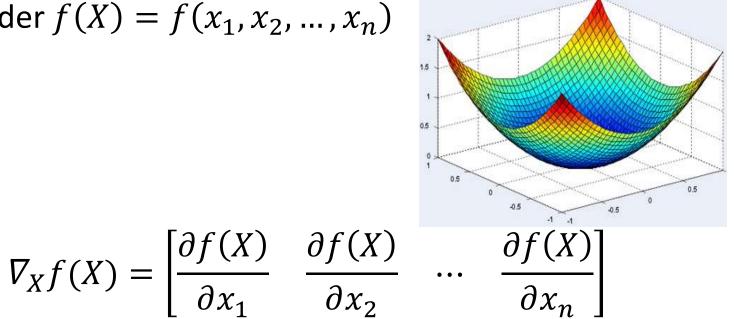
= $\frac{\partial f(X)}{\partial x_1} dx_1 + \frac{\partial f(X)}{\partial x_2} dx_2 + \dots + \frac{\partial f(X)}{\partial x_n} dx_n$

132

0.5

Gradients of scalar functions with multivariate inputs

• Consider $f(X) = f(x_1, x_2, ..., x_n)$

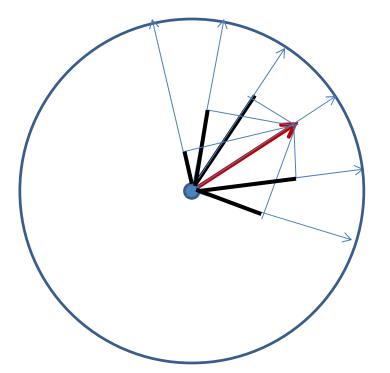


• Relation:

 $df(X) = \nabla_X f(X) dX$

This is a vector inner product. To understand its behavior lets consider a well-known property of inner products

A well-known vector property



 $\mathbf{u}^{\mathrm{T}}\mathbf{v} = |\mathbf{u}||\mathbf{v}|cos\theta$

 The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

-i.e. when $\theta = 0$

Properties of Gradient

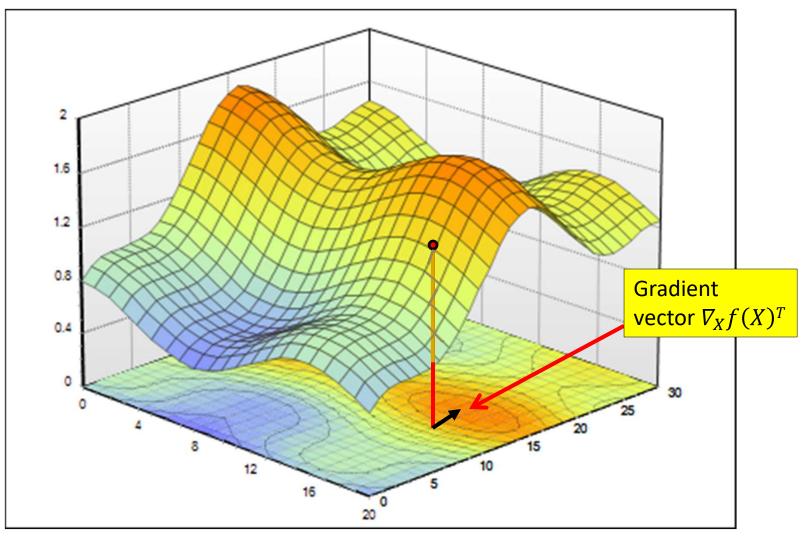
- $df(X) = \nabla_X f(X) dX$
 - The inner product between $\nabla_X f(X)^T$ and dX
- Fixing the length of dX

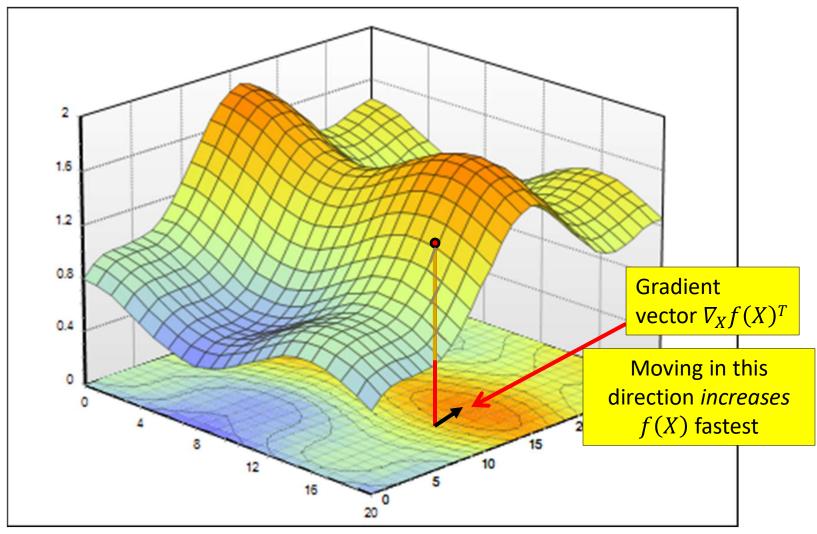
- E.g. |dX| = 1

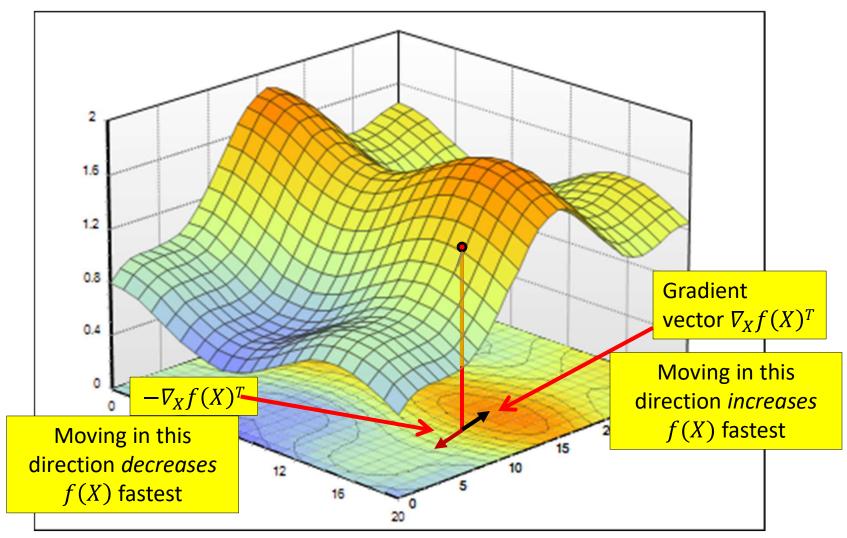
- df(X) is max if dX is aligned with $\nabla_X f(X)^T$
 - $-\angle(\nabla_{X}f(X)^{\mathrm{T}},dX)=0$

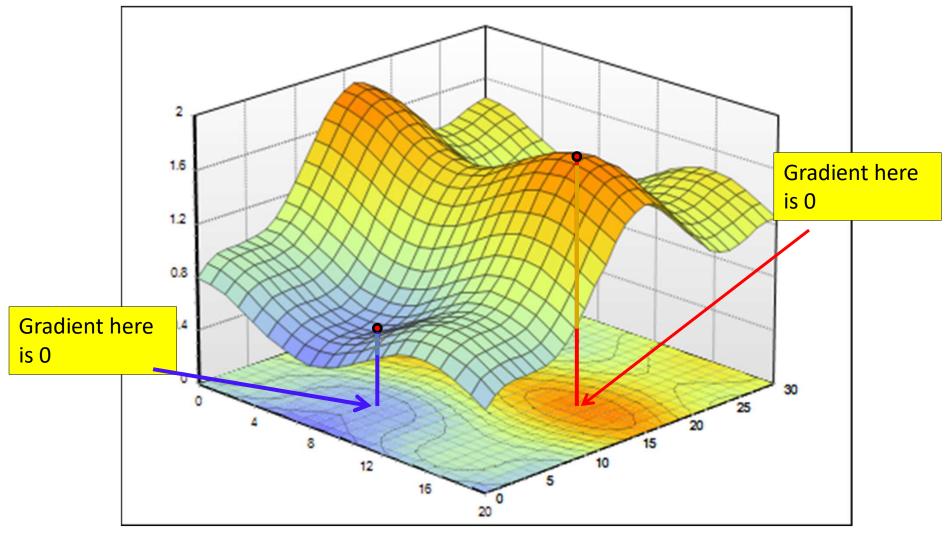
- The function f(X) increases most rapidly if the input increment dX is perfectly aligned to $\nabla_X f(X)^T$

• The gradient is the direction of fastest increase in *f*(*X*)

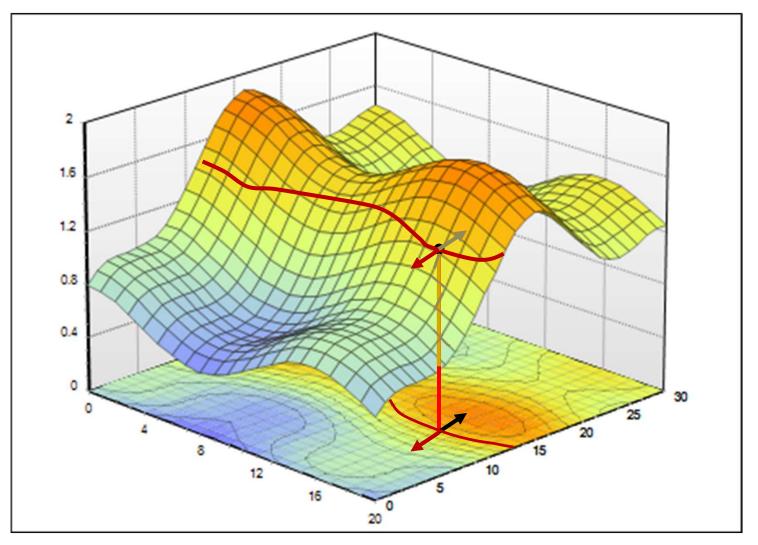








Properties of Gradient: 2



• The gradient vector $\nabla_X f(X)^T$ is perpendicular to the level curve

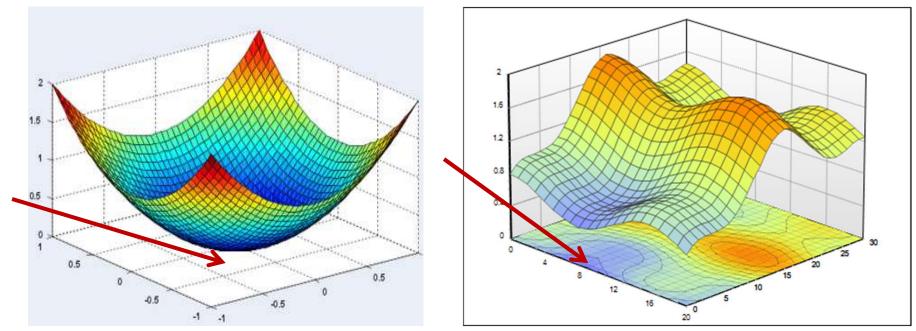
The Hessian

The Hessian of a function f (x₁, x₂, ..., x_n) is given by the second derivative

$$\nabla_{x}^{2} f(x_{1},...,x_{n}) \coloneqq \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Returning to direct optimization...

Finding the minimum of a scalar function of a multivariate input



• The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the X where the derivative (or gradient) equals to zero $\nabla_{Y} f(X) = 0$

- 2. Compute the Hessian Matrix $\nabla_X^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

• Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) + (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

• Gradient

$$\nabla_{X} f^{T} = \begin{bmatrix} 2x_{1} + 1 - x_{2} \\ -x_{1} + 2x_{2} - x_{3} \\ -x_{2} + 2x_{3} + 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

• Set the gradient to null

$$\nabla_{X} f = 0 \Longrightarrow \begin{bmatrix} 2x_{1} + 1 - x_{2} \\ -x_{1} + 2x_{2} - x_{3} \\ -x_{2} + 2x_{3} + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Unconstrained Minimization of

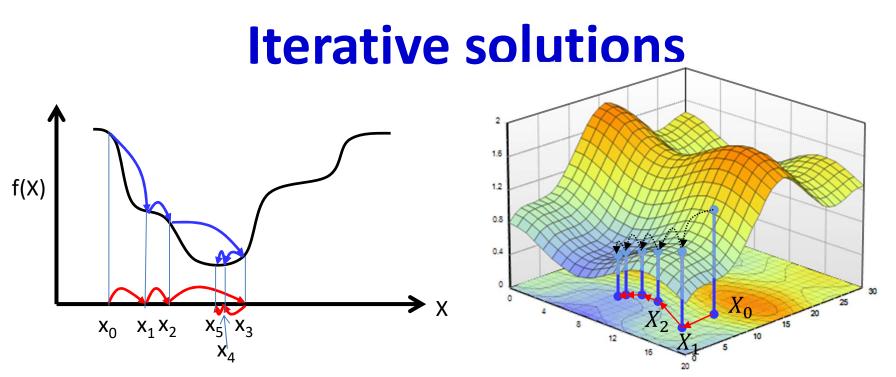
- Compute the Hessian matrix $\nabla_X^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

$$\lambda_1 = 3.414, \ \lambda_2 = 0.586, \ \lambda_3 = 2$$

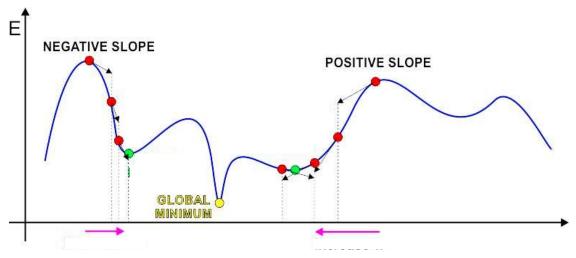
 All the eigenvalues are positives => the Hessian matrix is positive definite

• The point
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
 is a minimum

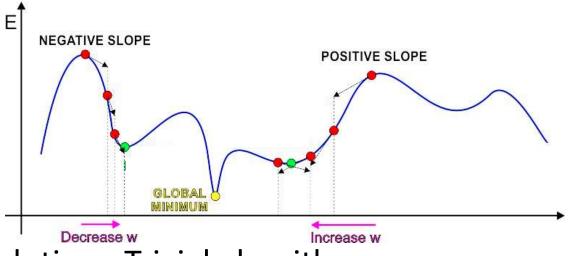
- Often it is not possible to simply solve $\nabla_X f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained



- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be



- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A negative derivative \rightarrow moving right decreases error
 - A positive derivative \rightarrow moving left decreases error
 - Shift point in this direction



- Iterative solution: Trivial algorithm
 - Initialize x^0

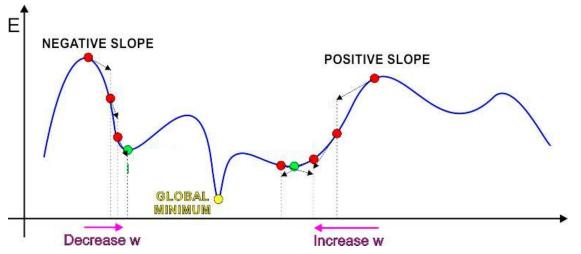
• While
$$f'(x^k) \neq 0$$

• If
$$sign(f'(x^k))$$
 is positive:
 $x^{k+1} = x^k - step$

• Else

$$x^{k+1} = x^k + step$$

– What must step be to ensure we actually get to the optimum?

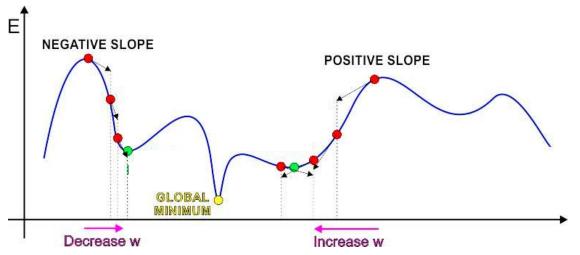


- Iterative solution: Trivial algorithm
 - Initialize x⁰

• While
$$f'(x^k) \neq 0$$

 $x^{k+1} = x^k - sign(f'(x^k))$.step

• Identical to previous algorithm



- Iterative solution: Trivial algorithm
 - Initialize x⁰

• While
$$f'(x^k) \neq 0$$

 $x^{k+1} = x^k - \eta^k f'(x^k)$

• η^k is the "step size"

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function *f* iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla_x f(x^k)^T$$

 To find a minimum move exactly opposite the direction of the gradient

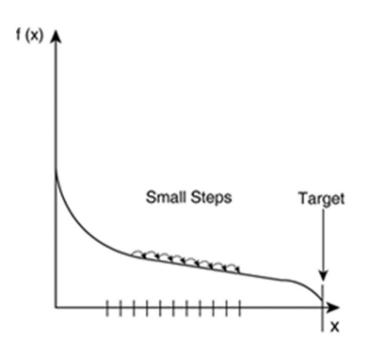
$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

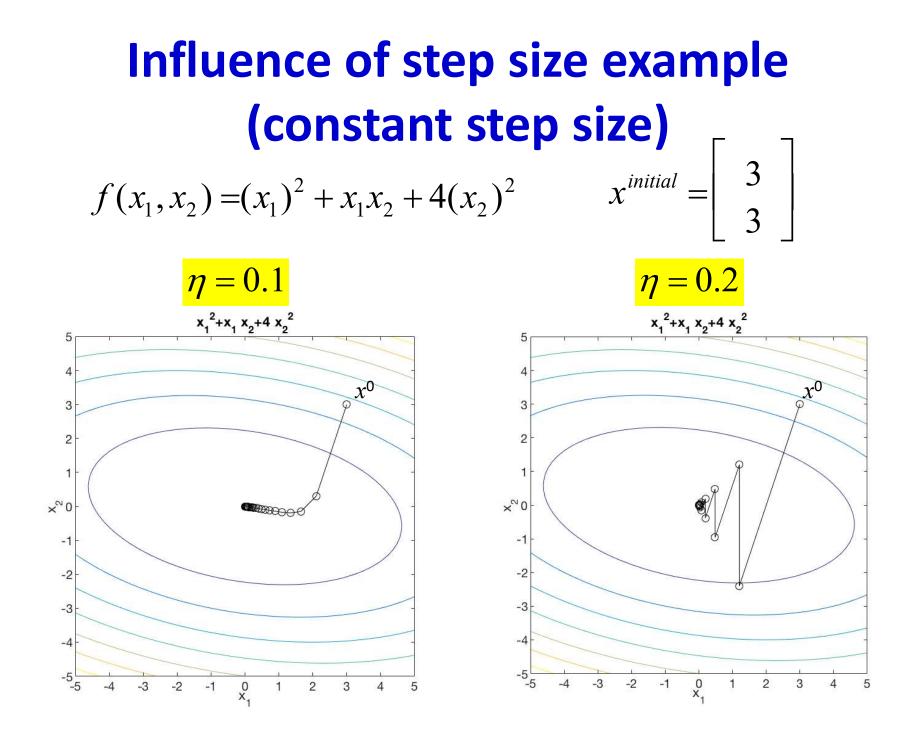
• Many solutions to choosing step size η^k

1. Fixed step size

• Fixed step size

– Use fixed value for η^k



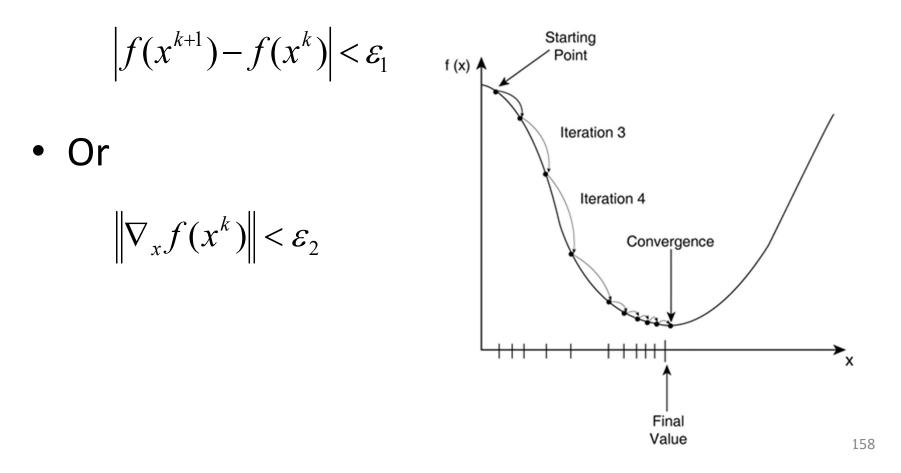


What is the optimal step size?

- Step size is critical for fast optimization
- Will revisit this topic later
- For now, simply assume a potentiallyiteration-dependent step size

Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied



Overall Gradient Descent Algorithm

• Initialize:

• do
•
$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• $k = k + 1$
• while $|f(x^{k+1}) - f(x^k)| > \varepsilon$

Next up

- Gradient descent to train neural networks
- A.K.A. Back propagation