

Neural Networks: Optimization Part 1

Intro to Deep Learning, Fall 2020

Story so far

- Neural networks are universal approximators
 - Can model any odd thing
 - Provided they have the right architecture

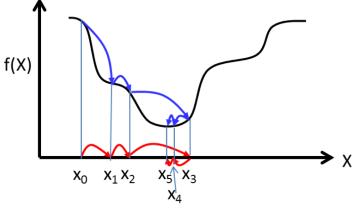
- We must *train* them to approximate any function
 - Specify the architecture
 - Learn their weights and biases
- Networks are trained to minimize total "loss" on a training set
 - We do so through empirical risk minimization
- We use variants of gradient descent to do so
- The gradient of the error with respect to network parameters is computed through backpropagation

Recap: Gradient Descent Algorithm

- In order to minimize any function f(x) w.r.t. x
- Initialize:

$$-x^{0}$$

$$-k=0$$



• Do

$$-k = k + 1$$

$$-x^{k+1} = x^{k} - \eta \nabla_{x} f^{T}$$

while $|f(x^{k}) - f(x^{k-1})| > \varepsilon$

Recap: Training Neural Nets by Gradient Descent

Total training error:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, \dots, W_K)$$

- Gradient descent algorithm:
- Initialize all weights **W**₁, **W**₂, ..., **W**_K
- Do:
 - For every layer $k = 1 \dots K$ compute:
 - $\nabla_{\mathbf{W}_k} Loss = \frac{1}{T} \sum_t \nabla_{\mathbf{W}_k} Div(\mathbf{Y}_t, \mathbf{d}_t)$
 - $\mathbf{W}_k = \mathbf{W}_k \eta \nabla_{\mathbf{W}_k} Loss^T$
- Until Loss has converged

Recap: Training Neural Nets by Gradient Descent

Total training error:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, \dots, W_K)$$

- Gradient descent algorithm:
- Initialize all weights **W**₁, **W**₂, ..., **W**_K
- Do:
 - For every layer k, compute:
 - $\nabla_{\mathbf{W}_k} Loss = \frac{1}{T} \sum_t \nabla_{\mathbf{W}_k} Div(\mathbf{Y}_t, \mathbf{d}_t)$
 - $\mathbf{W}_k = \mathbf{W}_k \eta \nabla_{\mathbf{W}_k} Loss^T$
- Until Loss has converged

Computed using backprop

Issues

- Convergence: How well does it learn
 And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- *Etc.*.

Onward

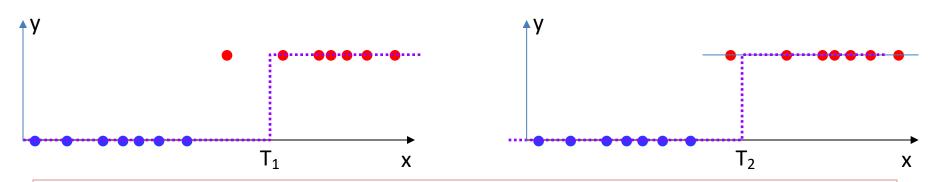
Onward

- Does backprop always work?
- Convergence of gradient descent
 - Rates, restrictions,
 - Hessians
 - Acceleration and Nestorov
 - Alternate approaches
- Modifying the approach: Stochastic gradients
- Speedup extensions: RMSprop, Adagrad

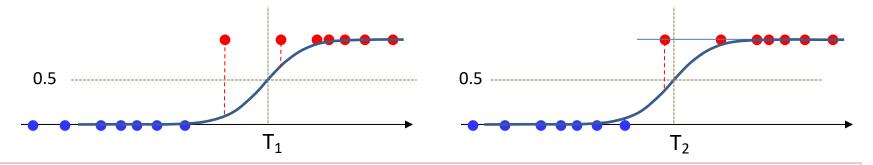
Does backprop do the right thing?

- Is backprop always right?
 - Assuming it actually finds the minimum of the divergence function?

Recap: The differentiable activation



- Threshold activation: Equivalent to counting errors
 - Shifting the threshold from T_1 to T_2 does not change classification error
 - Does not indicate if moving the threshold left was good or not

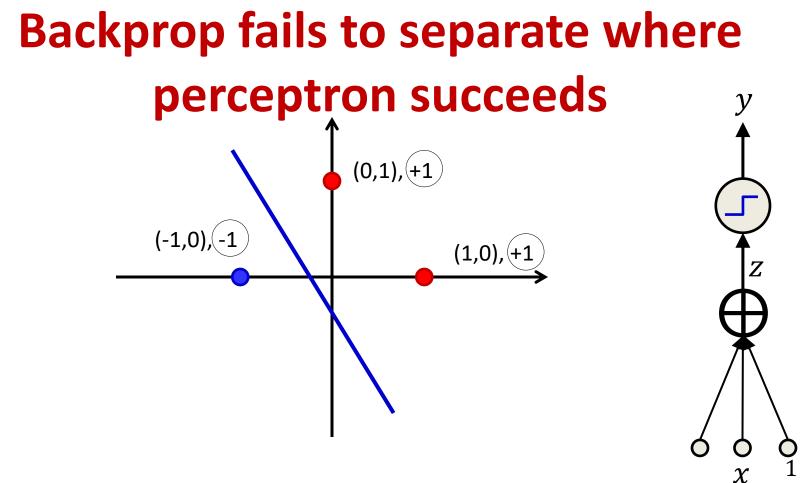


- Differentiable activation: Computes "distance to answer"
 - "Distance" == divergence
 - Perturbing the function changes this quantity,
 - Even if the classification error itself doesn't change

Does backprop do the right thing?

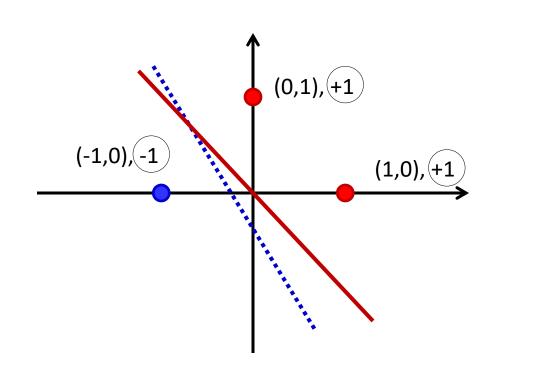
• Is backprop always right?

- Assuming it actually finds the global minimum of the divergence function?
- In classification problems, the classification error is a non-differentiable function of weights
- The divergence function minimized is only a *proxy* for classification error
- Minimizing divergence may not minimize classification error



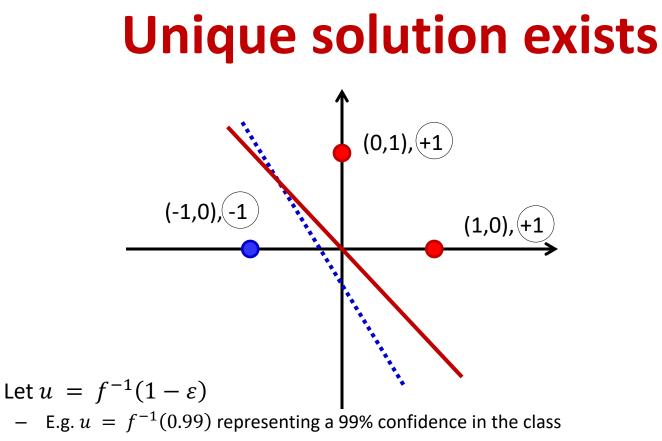
- Brady, Raghavan, Slawny, '89
- Simple problem, 3 training instances, single neuron
- Perceptron training rule trivially find a perfect solution

Backprop vs. Perceptron



- Back propagation using logistic function and L_2 divergence $(Div = (y - d)^2)$
- Unique minimum trivially proved to exist, backprop finds it

ν



• From the three points we get three independent equations:

$$w_x. 1 + w_y. 0 + b = u$$

 $w_x. 0 + w_y. 1 + b = u$
 $w_x. -1 + w_y. 0 + b = -u$

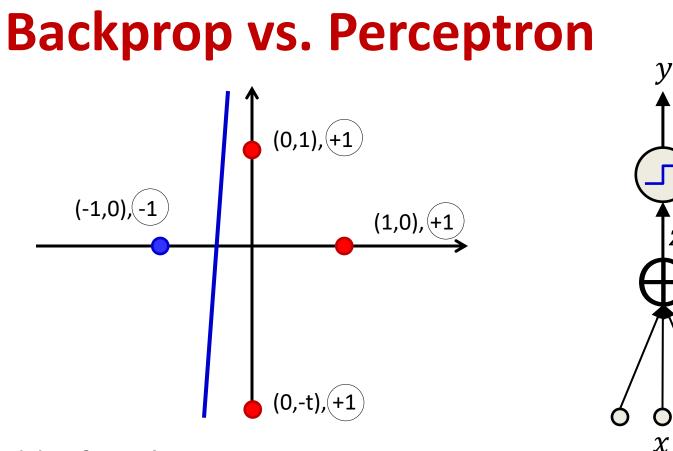
• Unique solution $(w_x = u, w_x = u, b = 0)$ exists

•

represents a unique line regardless of the value of u

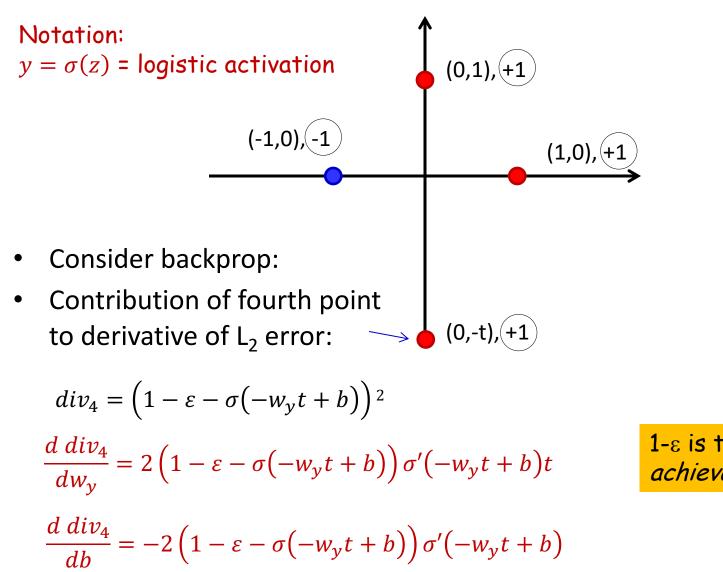
ν

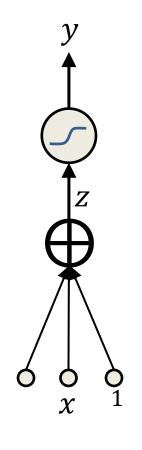
 ${\mathcal X}$



- Now add a fourth point
- t is very large (point near $-\infty$)
- Perceptron trivially finds a solution (may take t² iterations)

Backprop





 $1-\varepsilon$ is the actual *achievable* value

Backprop

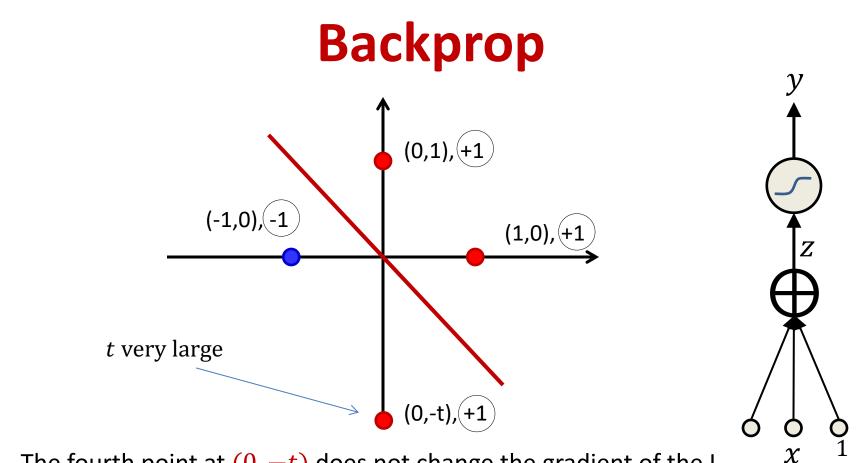
Notation: $y = \sigma(z) = \text{logistic activation}$ $\frac{d \, div_4}{dw_y} = 2\left(1 - \varepsilon - \sigma(-w_yt + b)\right)\sigma'(-w_yt + b)t$ $\frac{d \, div_4}{db} = 2\left(1 - \sigma(-w_yt + b)\right)\sigma'(-w_yt + b)t$

• For very large positive t, $|w_y| > \epsilon$ (where $\mathbf{w} = [w_x, w_y, b]$)

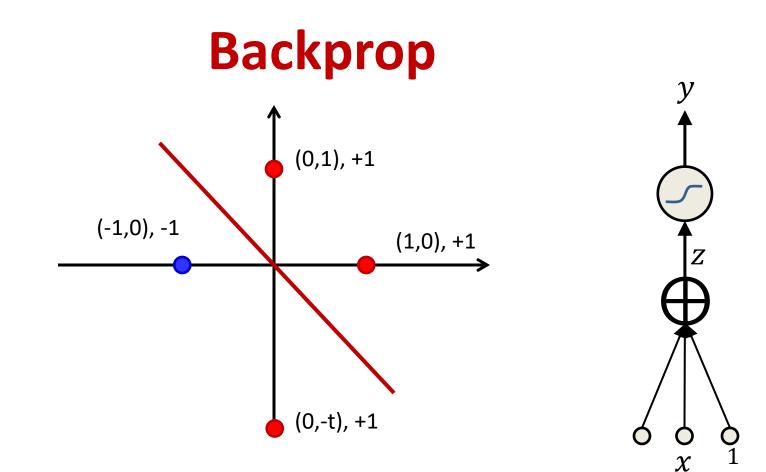
•
$$(1 - \varepsilon - \sigma(-w_y t + b)) \to 1 \text{ as } t \to \infty$$

- $\sigma'(-w_yt+b) \rightarrow 0$ exponentially as $t \rightarrow \infty$
- Therefore, for very large positive *t*

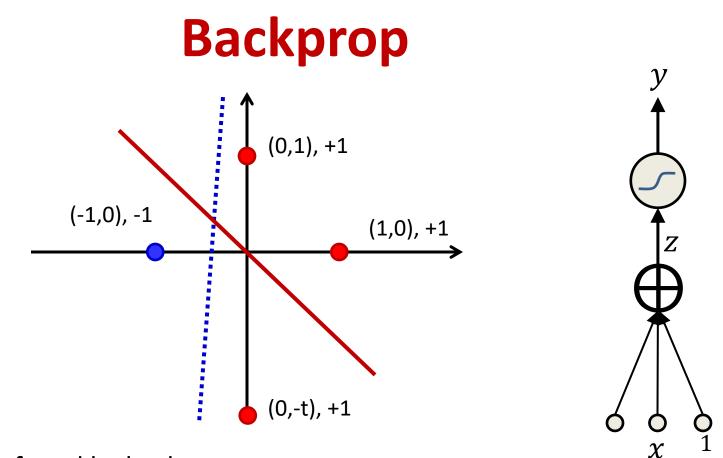
$$\frac{d \, div_4}{dw_y} = \frac{d \, div_4}{db} = 0$$



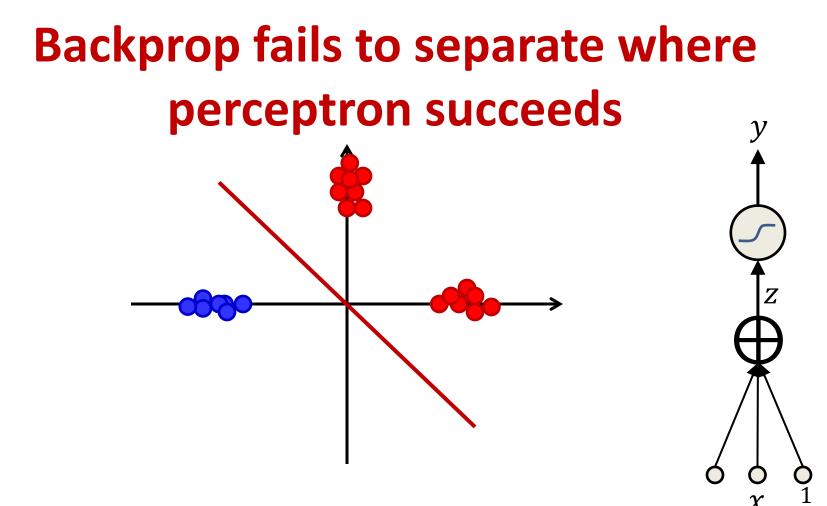
- The fourth point at (0, -t) does not change the gradient of the L₂ divergence near the optimal solution for 3 points
- The optimum solution for 3 points is also a broad *local* minimum (0 gradient) for the 4-point problem!
 - Will be found by backprop nearly all the time
 - Although the global minimum with unbounded weights will separate the classes correctly $_{18}$ ٠



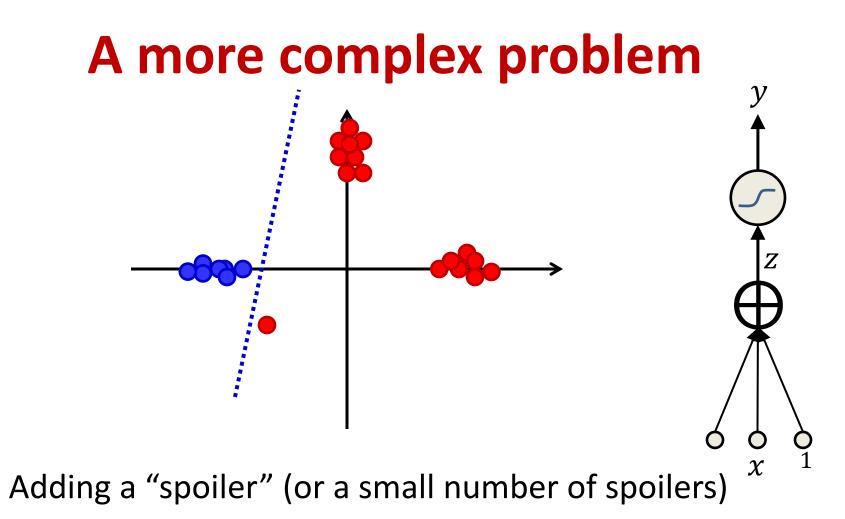
- Local optimum solution found by backprop
- Does not separate the points even though the points are linearly separable!



- Solution found by backprop
- Does not separate the points even though the points are linearly separable!
- Compare to the perceptron: *Backpropagation fails to separate* where the perceptron succeeds

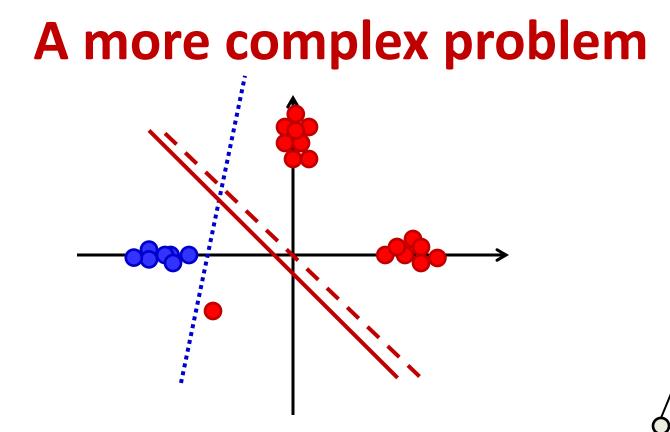


- Brady, Raghavan, Slawny, '89
- Several linearly separable training examples
- Simple setup: both backprop and perceptron algorithms find solutions



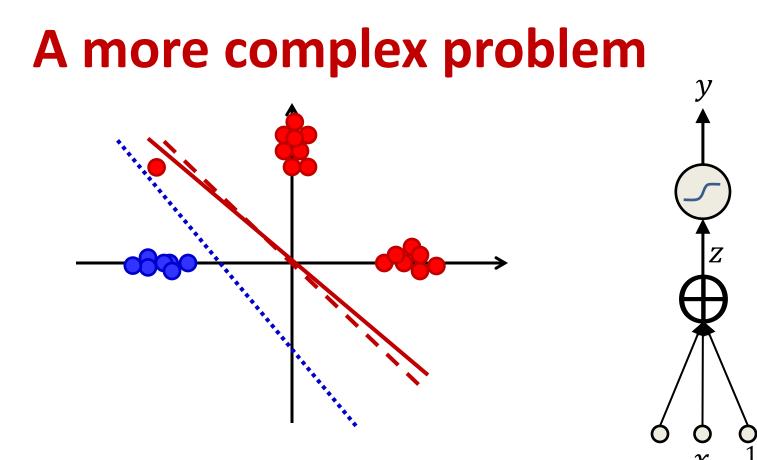
Perceptron finds the linear separator,

•



- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - Backprop does not find a separator
 - A single additional input does not change the loss function significantly
 - Assuming weights are constrained to be bounded

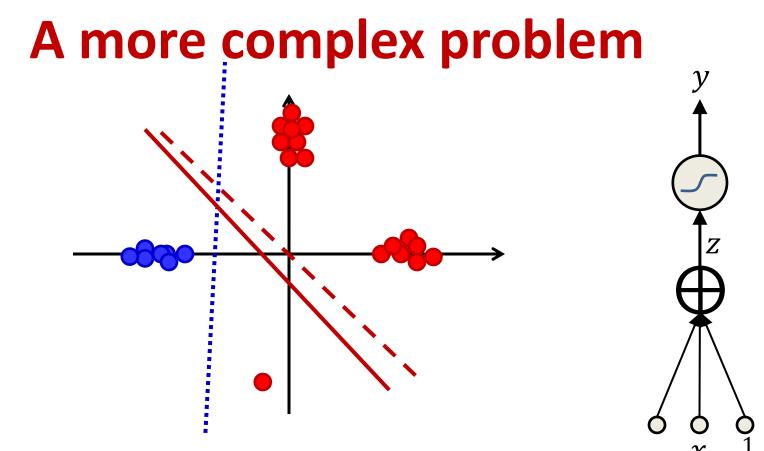
 $\boldsymbol{\chi}$



- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, backprop does not find a separator
 - A single additional input does not change the loss function significantly



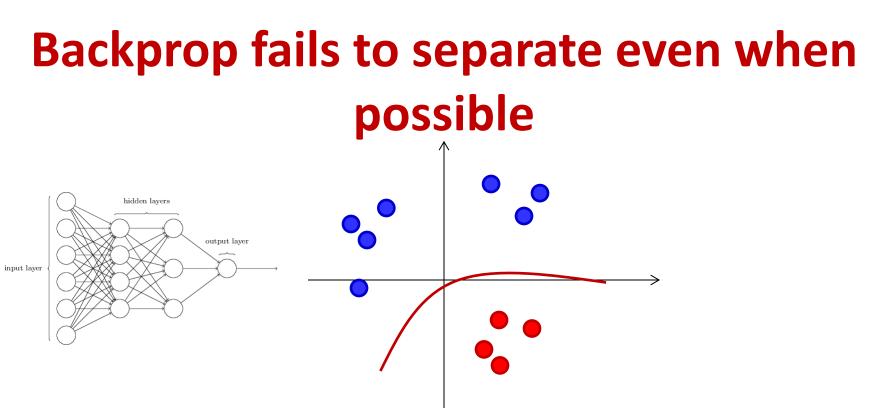
- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, backprop does not find a separator
 - A single additional input does not change the loss function significantly



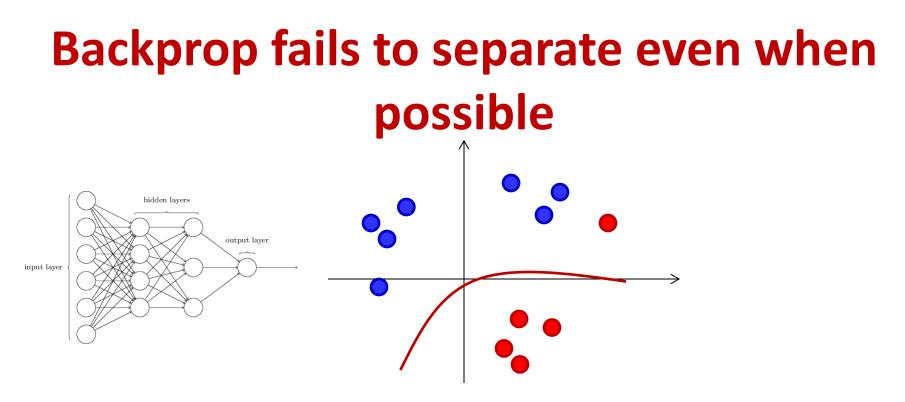
- Adding a "spoiler" (or a small number of spoilers)
 - Perceptron finds the linear separator,
 - For bounded w, backprop does not find a separator
 - A single additional input does not change the loss function significantly

So what is happening here?

- The perceptron may change greatly upon adding just a single new training instance
 - But it fits the training data well
 - The perceptron rule has *low bias*
 - Makes no errors if possible
 - But high variance
 - Swings wildly in response to small changes to input
- Backprop is minimally changed by new training instances
 - Prefers consistency over perfection
 - It is a *low-variance* estimator, at the potential cost of bias



- This is not restricted to single perceptrons
- An MLP learns non-linear decision boundaries that are determined from the entirety of the training data
- Adding a few "spoilers" will not change their behavior

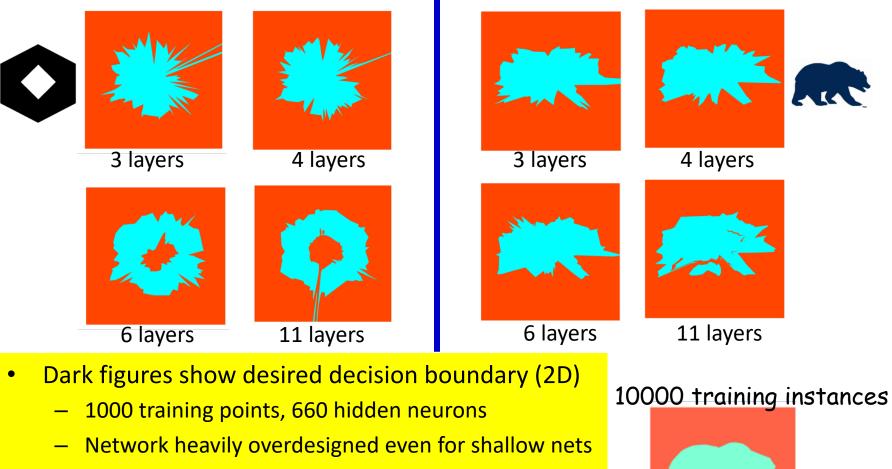


- This is not restricted to single perceptrons
- An MLP learns non-linear decision boundaries that are determined from the entirety of the training data
- Adding a few "spoilers" will not change their behavior

Backpropagation: Finding the separator

- Backpropagation will often not find a separating solution even though the solution is within the class of functions learnable by the network
- This is because the separating solution is not a feasible optimum for the loss function
- One resulting benefit is that a backprop-trained neural network classifier has lower variance than an optimal classifier for the training data

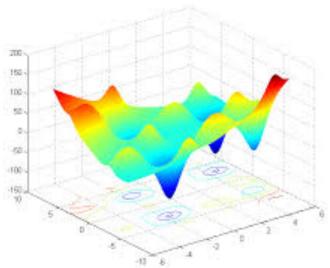
Variance and Depth



- Anecdotal: Variance decreases with
 - Depth
 - Data

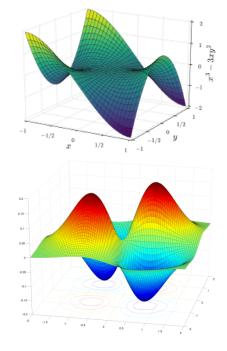
The Loss Surface

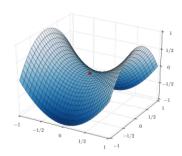
- The example (and statements) earlier assumed the loss objective had a single global optimum that could be found
 - Statement about variance is assuming global optimum



The Loss Surface

- Popular hypothesis:
 - In large networks, saddle points are far more common than local minima
 - Frequency of occurrence exponential in network size
 - Most local minima are equivalent
 - And close to global minimum
 - This is not true for small networks
- Saddle point: A point where
 - The slope is zero
 - The surface increases in some directions, but decreases in others
 - Some of the Eigenvalues of the Hessian are positive; others are negative
 - Gradient descent algorithms often get "stuck" in saddle points





The Controversial Loss Surface

- Baldi and Hornik (89), "Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima" : An MLP with a single hidden layer has only saddle points and no local Minima
- **Dauphin et. al (2015),** *"Identifying and attacking the saddle point problem in high-dimensional non-convex optimization"* : An exponential number of saddle points in large networks
- Chomoranksa et. al (2015), "The loss surface of multilayer networks" : For large networks, most local minima lie in a band and are equivalent
 - Based on analysis of spin glass models
- Swirscz et. al. (2016), "Local minima in training of deep networks", In networks of finite size, trained on finite data, you *can* have horrible local minima
- Watch this space...

- Neural nets can be trained via gradient descent that minimizes a loss function
- Backpropagation can be used to derive the derivatives of the loss
- Backprop *is not guaranteed* to find a "true" solution, even if it exists, and lies within the capacity of the network to model
 - The optimum for the loss function may not be the "true" solution
- For large networks, the loss function may have a large number of unpleasant saddle points
 - Which backpropagation may find

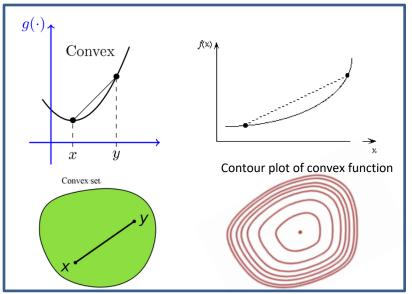
Convergence

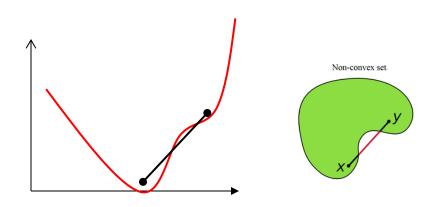
- In the discussion so far we have assumed the training arrives at a local minimum
- Does it always converge?
- How long does it take?
- Hard to analyze for an MLP, but we can look at the problem through the lens of convex optimization

A quick tour of (convex) optimization

Convex Loss Functions

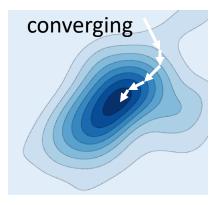
- A surface is "convex" if it is continuously curving upward
 - We can connect any two points on or above the surface without intersecting it
 - Many mathematical definitions that are equivalent
- Caveat: Neural network loss surface is generally not convex
 - Streetlight effect

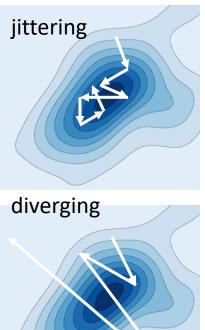




Convergence of gradient descent

- An iterative algorithm is said to converge to a solution if the value updates arrive at a fixed point
 - Where the gradient is 0 and further updates do not change the estimate
- The algorithm may not actually converge
 - It may jitter around the local minimum
 - It may even diverge
- Conditions for convergence?





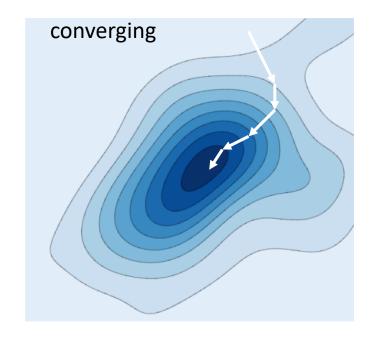
Convergence and convergence rate

- Convergence rate: How fast the iterations arrive at the solution
- Generally quantified as

$$R = \frac{\left| f(x^{(k+1)}) - f(x^*) \right|}{\left| f(x^{(k)}) - f(x^*) \right|}$$

- $-x^{(k+1)}$ is the k-th iteration
- $-x^*$ is the optimal value of x
- If *R* is a constant (or upper bounded), the convergence is *linear*
 - In reality, its arriving at the solution exponentially fast

$$|f(x^{(k)}) - f(x^*)| \le R^k |f(x^{(0)}) - f(x^*)|$$

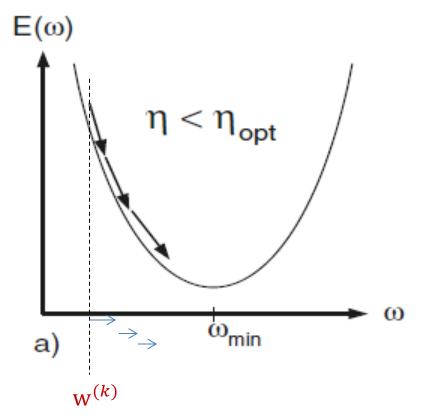


Convergence for quadratic surfaces

 $Minimize \ E = \frac{1}{2}aw^2 + bw + c$

 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \, \frac{dE\left(\mathbf{w}^{(k)}\right)}{d\mathbf{w}}$

Gradient descent with fixed step size η to estimate *scalar* parameter w



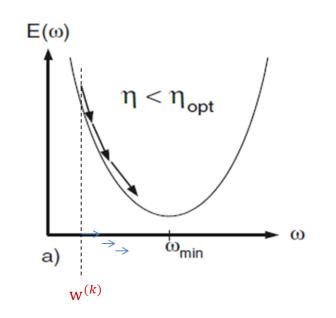
- Gradient descent to find the optimum of a quadratic, starting from w^(k)
- Assuming fixed step size η
- What is the optimal step size η to get there fastest?

Convergence for quadratic surfaces

$$E = \frac{1}{2}aw^2 + bw + c$$

$$w^{(k+1)} = w^{(k)} - \eta \frac{dE(w^{(k)})}{dw}$$

- Any quadratic objective can be written as $E(w) = E(w^{(k)}) + E'(w^{(k)})(w - w^{(k)}) + \frac{1}{2}E''(w^{(k)})(w - w^{(k)})^2$
 - Taylor expansion



- Minimizing w.r.t w, we get (Newton's method) $w_{min} = w^{(k)} - E'' (w^{(k)})^{-1} E' (w^{(k)})$
- Note:

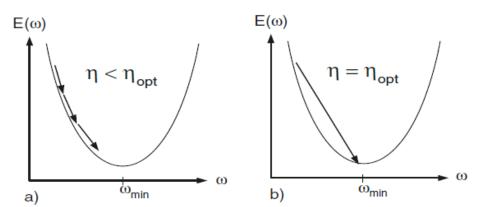
$$\frac{dE(\mathbf{w}^{(k)})}{d\mathbf{w}} = E'(\mathbf{w}^{(k)})$$

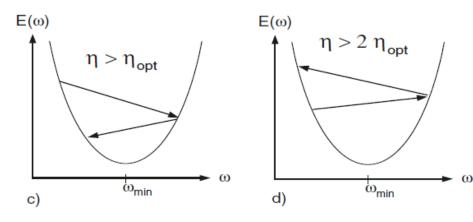
• Comparing to the gradient descent rule, we see that we can arrive at the optimum in a single step using the optimum step size

$$\eta_{opt} = E'' \left(\mathbf{w}^{(k)} \right)^{-1} = \boldsymbol{a}^{-1}$$

With non-optimal step size

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \, \frac{dE(\mathbf{w}^{(k)})}{d\mathbf{w}}$$

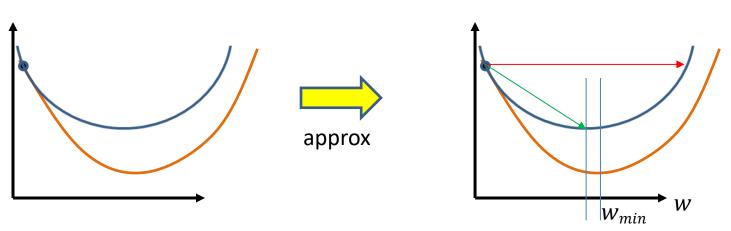




Gradient descent with fixed step size η to estimate scalar parameter w

- For $\eta < \eta_{opt}$ the algorithm will converge monotonically
- For $2\eta_{opt} > \eta > \eta_{opt}$ we have oscillating convergence
- For $\eta > 2\eta_{opt}$ we get divergence

For generic differentiable convex objectives



• Any differentiable convex objective E(w) can be approximated as

$$E \approx E(w^{(k)}) + (w - w^{(k)}) \frac{dE(w^{(k)})}{dw} + \frac{1}{2}(w - w^{(k)})^2 \frac{d^2E(w^{(k)})}{dw^2} + \cdots$$

Taylor expansion

• Using the same logic as before, we get (Newton's method)

$$\eta_{opt} = \left(\frac{d^2 E(\mathbf{w}^{(k)})}{dw^2}\right)^{-1}$$

• We can get divergence if $\eta \ge 2\eta_{opt}$

For functions of *multivariate* inputs

 $E = g(\mathbf{w}), \mathbf{w}$ is a vector $\mathbf{w} = [w_1, w_2, \dots, w_N]$

• Consider a simple quadratic convex (paraboloid) function

$$E = \frac{1}{2}\mathbf{w}^T \mathbf{A}\mathbf{w} + \mathbf{w}^T \mathbf{b} + c$$

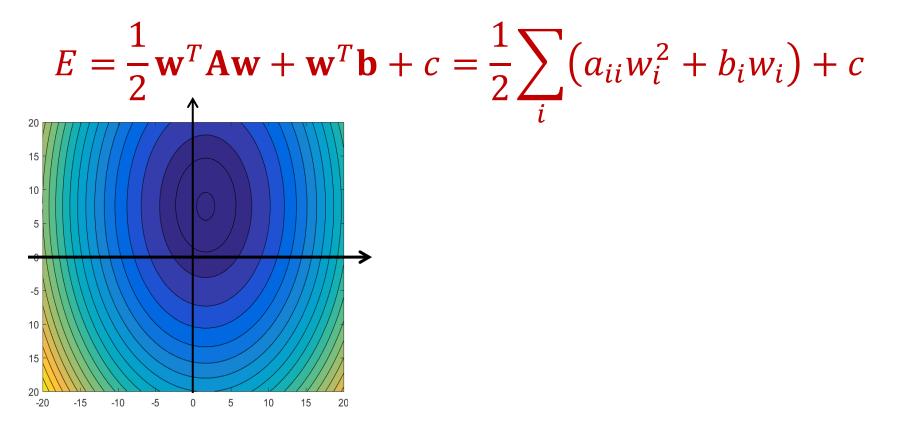
- Since $E^T = E$ (*E* is scalar), **A** can always be made symmetric

- For **convex** *E*, **A** is always positive definite, and has positive eigenvalues
- When **A** is diagonal:

$$E = \frac{1}{2} \sum_{i} \left(a_{ii} w_i^2 + b_i w_i \right) + c$$

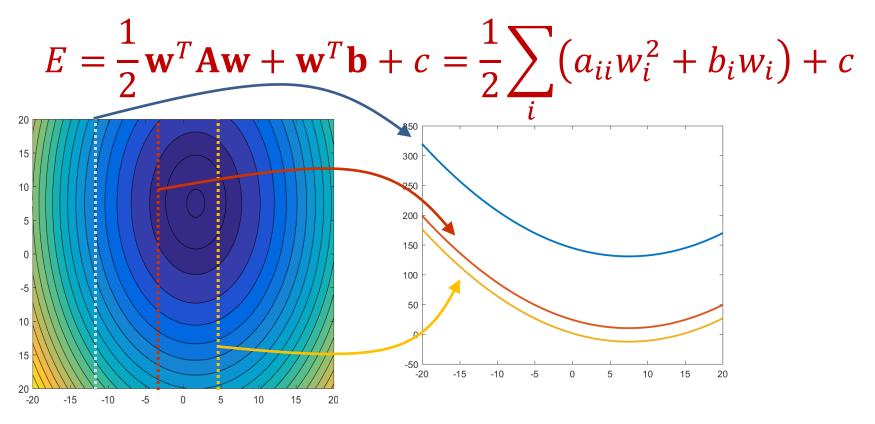
- The w_i s are uncoupled
- For *convex* (paraboloid) E, the a_{ii} values are all positive
- Just a sum of N independent quadratic functions

Multivariate Quadratic with Diagonal A



• Equal-value contours will ellipses with principal axes parallel to the spatial axes

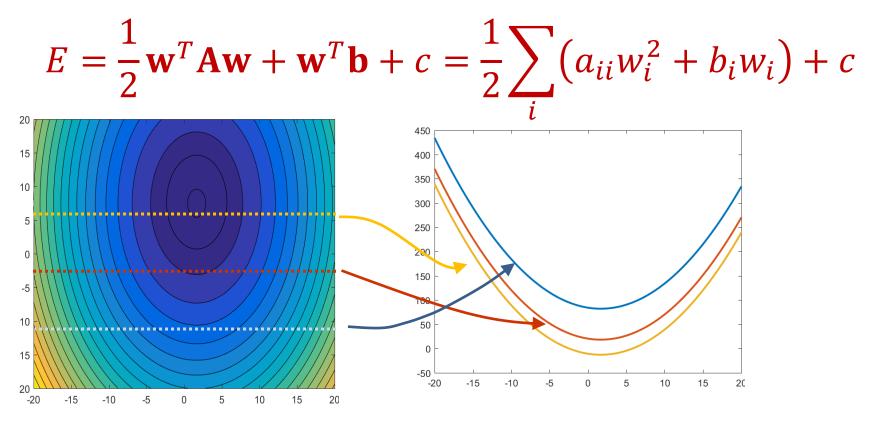
Multivariate Quadratic with Diagonal A



- Equal-value contours will be parallel to the axes
 - All "slices" parallel to an axis are shifted versions of one another

$$E = \frac{1}{2}a_{ii}w_i^2 + b_iw_i + c + C(\neg w_i)$$

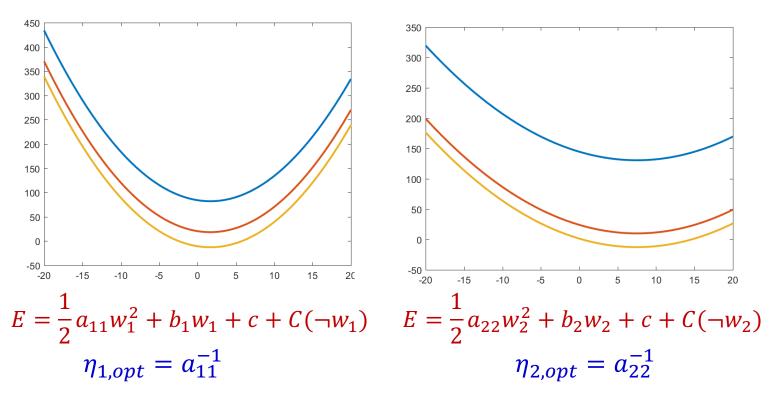
Multivariate Quadratic with Diagonal A



- Equal-value contours will be parallel to the axis
 - All "slices" parallel to an axis are shifted versions of one another

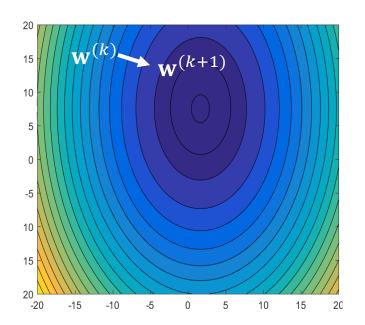
$$E = \frac{1}{2}a_{ii}w_i^2 + b_iw_i + c + C(\neg w_i)$$

"Descents" are uncoupled



- The optimum of each coordinate is not affected by the other coordinates
 I.e. we could optimize each coordinate independently
- Note: Optimal learning rate is different for the different coordinates

Vector update rule



$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} E^{\top}$$

$$w_i^{(k+1)} = w_i^{(k)} - \eta \, \frac{\partial E\left(w_i^{(k)}\right)}{d\partial w}$$

- Conventional vector update rules for gradient descent: update entire vector against direction of gradient
 - Note : Gradient is perpendicular to equal value contour
 - The same learning rate is applied to all components

Problem with vector update rule

$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta \nabla_{\mathbf{w}} E^{T}$$
$$w_{i}^{(k+1)} = w_{i}^{(k)} - \eta \frac{\partial E\left(w_{i}^{(k)}\right)}{\partial w}$$
$$\eta_{i,opt} = \left(\frac{\partial^{2} E\left(w_{i}^{(k)}\right)}{\partial w_{i}^{2}}\right)^{-1} = a_{ii}^{-1}$$

• The learning rate must be lower than twice the *smallest* optimal learning rate for any component

 $\eta < 2 \min_{i} \eta_{i,opt}$

Otherwise the learning will diverge

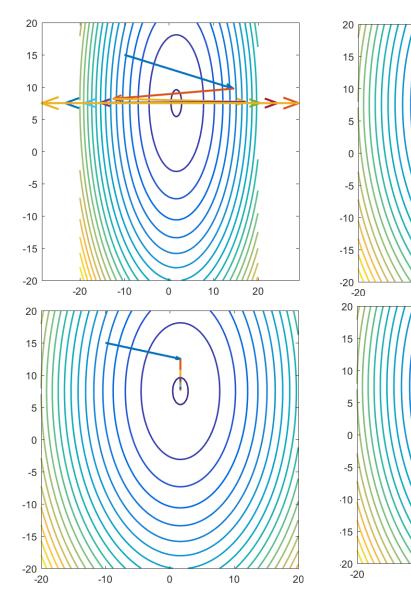
• This, however, makes the learning very slow

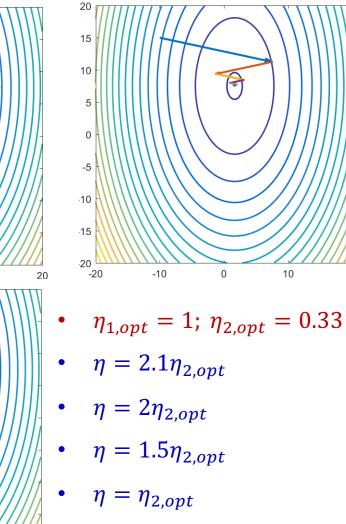
- And will oscillate in all directions where $\eta_{i,opt} \leq \eta < 2\eta_{i,opt}$

Dependence on learning rate

-10

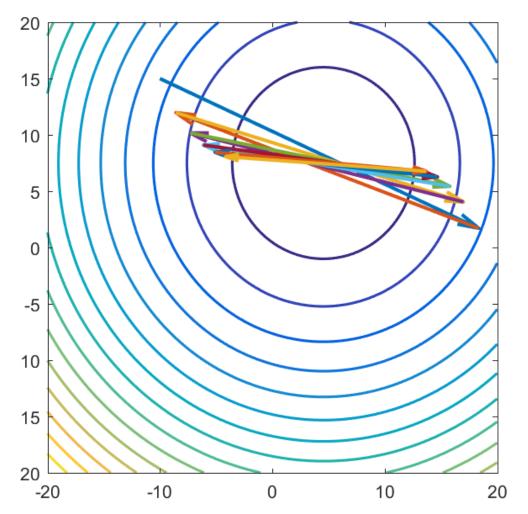
-10





 $\eta = 0.75\eta_{2,opt}$

Dependence on learning rate



• $\eta_{1,opt} = 1; \ \eta_{2,opt} = 0.91; \qquad \eta = 1.9 \ \eta_{2,opt}$

Convergence

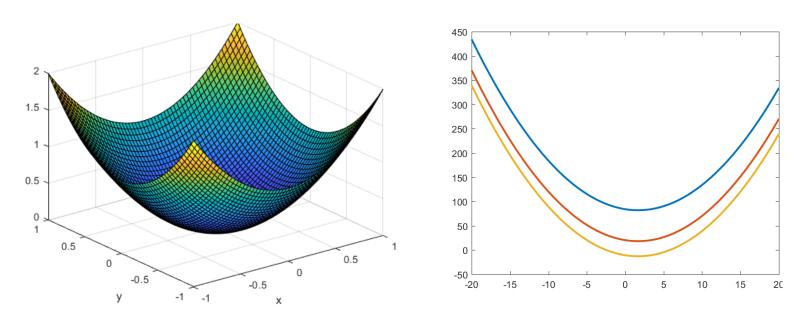
- Convergence behaviors become increasingly unpredictable as dimensions increase
- For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i,opt}$ and the smallest $\eta_{i,opt}$
 - To ensure convergence in every direction
 - Generally infeasible
- Convergence is particularly slow if $\frac{\max_{i} \eta_{i,opt}}{\min_{i} \eta_{i,opt}}$ is large

The "condition" number is small

Comments on the quadratic

- Why are we talking about quadratics?
 - Quadratic functions form some kind of benchmark
 - Convergence of gradient descent is linear
 - Meaning it converges to solution exponentially fast
- The convergence for other kinds of functions can be viewed against this benchmark
- Actual losses will not be quadratic, but may locally have other structure
 - Local between current location and nearest local minimum
- Some examples in the following slides..
 - Strong convexity
 - Lifschitz continuity
 - Lifschitz smoothness
 - ..and how they affect convergence of gradient descent

Quadratic convexity

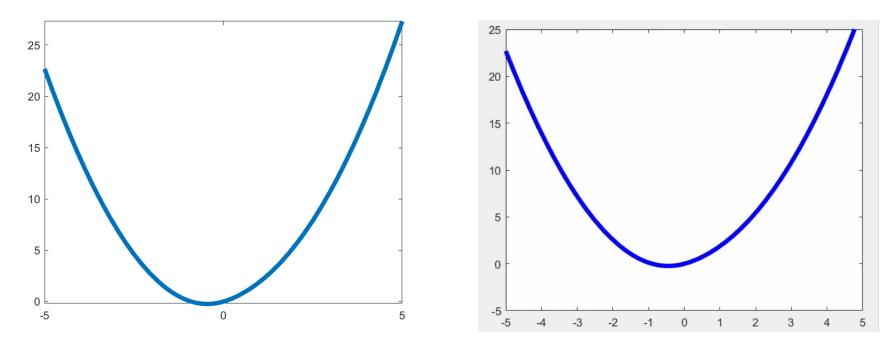


• A quadratic function has the form $\frac{1}{2}\mathbf{w}^T\mathbf{A}\mathbf{w} + \mathbf{w}^T\mathbf{b} + c$

Every "slice" is a quadratic bowl

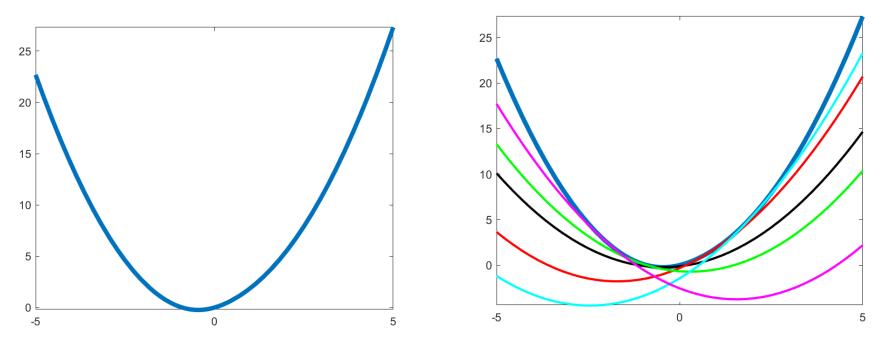
- In some sense, the "standard" for gradient-descent based optimization
 - Others convex functions will be steeper in some regions, but flatter in others
- Gradient descent solution will have linear convergence
 - Take $O(\log 1/\varepsilon)$ steps to get within ε of the optimal solution

Strong convexity



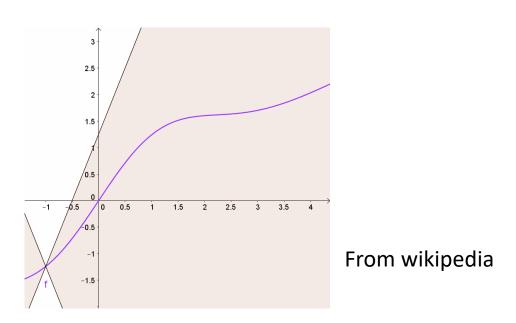
- A strongly convex function is *at least* quadratic in its convexity
 - Has a lower bound to its second derivative
- The function sits within a quadratic bowl
 - At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to lower bound of 2nd derivative) touching the function at that point, which contains it
- Convergence of gradient descent algorithms at least as good as that of the enclosing quadratic

Strong convexity



- A strongly convex function is *at least* quadratic in its convexity
 - Has a lower bound to its second derivative
- The function sits within a quadratic bowl
 - At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to lower bound of 2nd derivative) touching the function at that point, which contains it
- Convergence of gradient descent algorithms at least as good as that of the enclosing quadratic

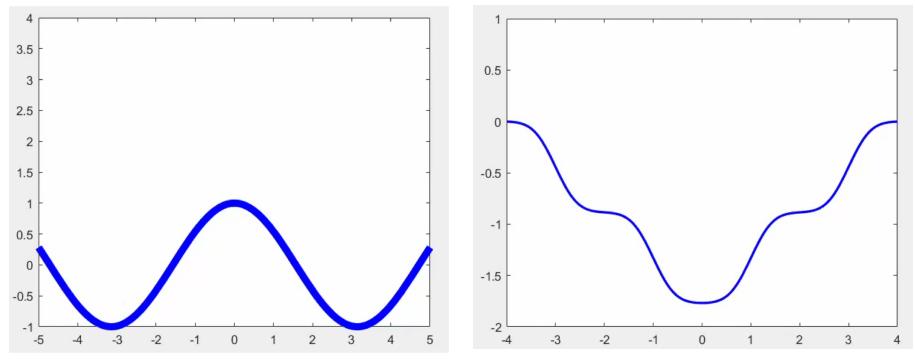
Types of continuity



- Most functions are not strongly convex (if they are convex)
- Instead we will talk in terms of Lifschitz smoothness
- But first : a definition
- *Lifschitz continuous*: The function always lies outside a cone
 - The slope of the outer surface is the Lifschitz constant

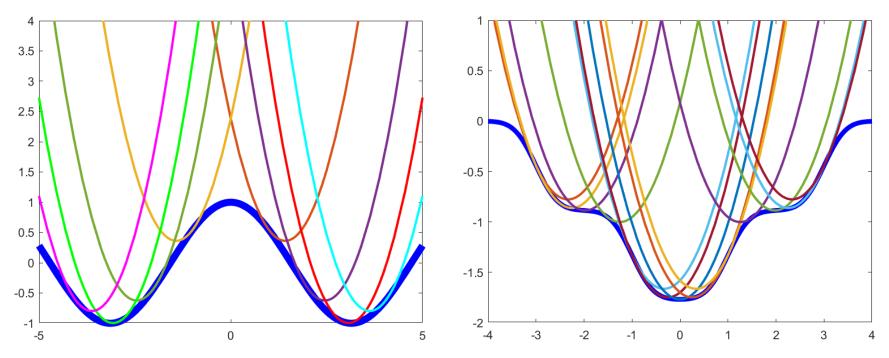
$$- |f(x) - f(y)| \le L|x - y|$$

Lifschitz smoothness



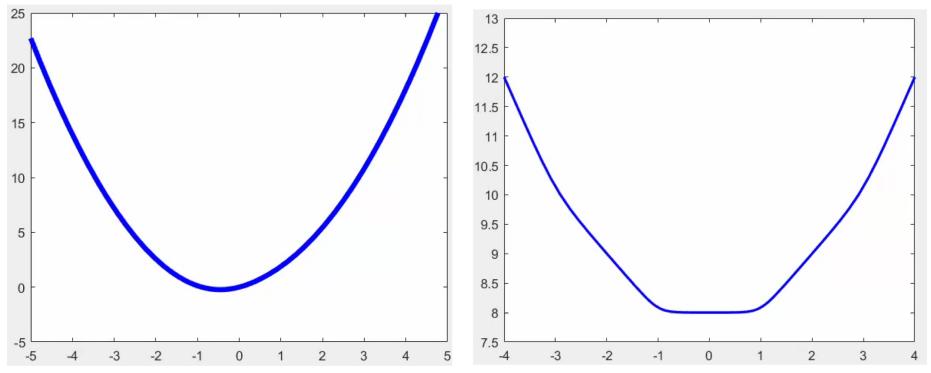
- Lifschitz smooth: The function's *derivative* is Lifschitz continuous
 - Need not be convex (or even differentiable)
 - Has an upper bound on second derivative (if it exists)
- Can always place a quadratic bowl of a fixed curvature within the function
 - Minimum curvature of quadratic must be >= upper bound of second derivative of function (if it exists)

Lifschitz smoothness



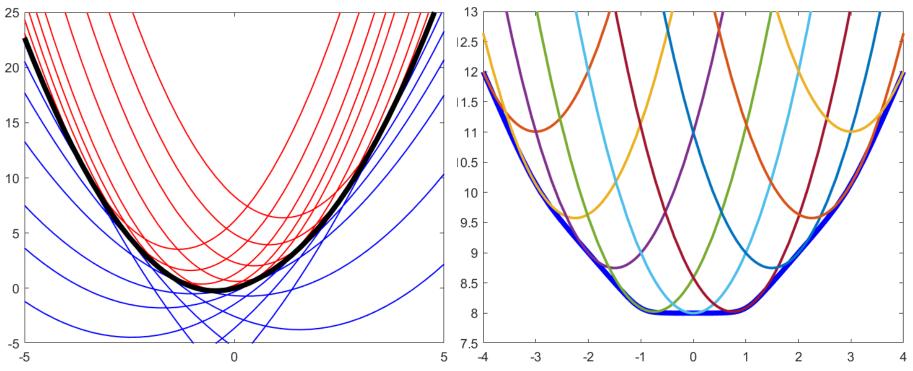
- Lifschitz smooth: The function's *derivative* is Lifschitz continuous
 - Need not be convex (or even differentiable)
 - Has an upper bound on second derivative (if it exists)
- Can always place a quadratic bowl of a fixed curvature within the function
 - Minimum curvature of quadratic must be >= upper bound of second derivative of function (if it exists)

Types of smoothness



- A function can be both strongly convex and Lipschitz smooth
 - Second derivative has upper and lower bounds
 - Convergence depends on curvature of strong convexity (at least linear)
- A function can be convex and Lifschitz smooth, but not strongly convex
 - Convex, but upper bound on second derivative
 - Weaker convergence guarantees, if any (at best linear)
 - This is often a reasonable assumption for the local structure of your loss function

Types of smoothness



- A function can be both strongly convex and Lipschitz smooth
 - Second derivative has upper and lower bounds
 - Convergence depends on curvature of strong convexity (at least linear)
- A function can be convex and Lifschitz smooth, but not strongly convex
 - Convex, but upper bound on second derivative
 - Weaker convergence guarantees, if any (at best linear)
 - This is often a reasonable assumption for the local structure of your loss function

Convergence Problems

- For quadratic (strongly) convex functions, gradient descent is exponentially fast
 - Linear convergence
 - Assuming learning rate is non-divergent
- For generic (Lifschitz Smooth) convex functions however, it is very slow

$$|f(w^{(k)}) - f(w^*)| \propto \frac{1}{k} |f(w^{(0)}) - f(w^*)|$$

And inversely proportional to learning rate

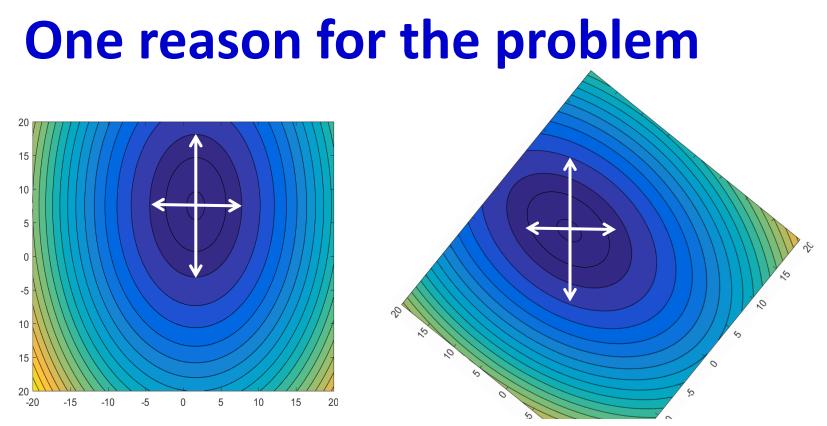
$$\left|f(w^{(k)}) - f(w^*)\right| \le \frac{1}{2\eta k} \left|w^{(0)} - w^*\right|$$

- Takes $O(1/\epsilon)$ iterations to get to within ϵ of the solution
- An inappropriate learning rate will destroy your happiness
- Second order methods will *locally* convert the loss function to quadratic
 - Convergence behavior will still depend on the nature of the original function
- Continuing with the quadratic-based explanation...

Convergence

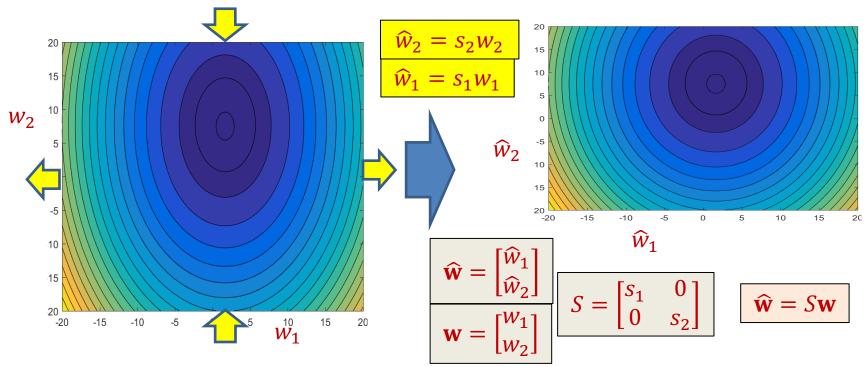
- Convergence behaviors become increasingly unpredictable as dimensions increase
- For the fastest convergence, ideally, the learning rate η must be close to both, the largest $\eta_{i,opt}$ and the smallest $\eta_{i,opt}$
 - To ensure convergence in every direction
 - Generally infeasible
- Convergence is particularly slow if $\frac{\max_{i} \eta_{i,opt}}{\min_{i} \eta_{i,opt}}$ is large

The "condition" number is small



- The objective function has different eccentricities in different directions
 - Resulting in different optimal learning rates for different directions
 - The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two directions are coupled! Moving in one direction changes the gradient along the other
- Solution: *Normalize* the objective to have identical eccentricity in all directions
 - Then all of them will have identical optimal learning rates
 - Easier to find a working learning rate

Solution: Scale the axes



- Scale (and rotate) the axes, such that all of them have identical (identity) "spread"
 - Equal-value contours are circular
 - Movement along the coordinate axes become independent
- Note: equation of a quadratic surface with circular equal-value contours can be written as

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

• Original equation:

$$E = \frac{1}{2}\mathbf{w}^T \mathbf{A}\mathbf{w} + \mathbf{b}^T \mathbf{w} + c$$

• We want to find a (diagonal) scaling matrix *S* such that

$$\mathbf{S} = \begin{bmatrix} s_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & s_N \end{bmatrix}, \qquad \widehat{\mathbf{w}} = \mathbf{S}\mathbf{w}$$

• And

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

• Original equation:

$$E = \frac{1}{2}\mathbf{w}^T \mathbf{A}\mathbf{w} + \mathbf{b}^T \mathbf{w} + c$$

• We want to find a (diagonal) scaling matrix *S* such that

$$\mathbf{S} = \begin{bmatrix} s_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & s_N \end{bmatrix}, \qquad \widehat{\mathbf{w}} = \mathbf{S}\mathbf{w}$$

And

$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

By inspection: $S = A^{0.5}$

• We have

$$E = \frac{1}{2} \mathbf{w}^{T} \mathbf{A} \mathbf{w} + \mathbf{b}^{T} \mathbf{w} + c$$
$$\widehat{\mathbf{w}} = S \mathbf{w}$$
$$E = \frac{1}{2} \widehat{\mathbf{w}}^{T} \widehat{\mathbf{w}} + \widehat{\mathbf{b}}^{T} \widehat{\mathbf{w}} + c$$
$$= \frac{1}{2} \mathbf{w}^{T} S^{T} S \mathbf{w} + \widehat{\mathbf{b}}^{T} S \mathbf{w} + c$$

• Equating linear and quadratic coefficients, we get

• Solving:
$$S = A^{0.5}$$
, $\hat{\mathbf{b}} = A^{-0.5}\mathbf{b}$

• We have

$$E = \frac{1}{2}\mathbf{w}^{T}\mathbf{A}\mathbf{w} + \mathbf{b}^{T}\mathbf{w} + c$$
$$\widehat{\mathbf{w}} = S\mathbf{w}$$
$$E = \frac{1}{2}\widehat{\mathbf{w}}^{T}\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^{T}\widehat{\mathbf{w}} + c$$

• Solving for <mark>S</mark> we get

$$\widehat{\mathbf{w}} = \mathbf{A}^{0.5} \mathbf{w}, \qquad \widehat{\mathbf{b}} = \mathbf{A}^{-0.5} \mathbf{b}$$

• We have

$$E = \frac{1}{2}\mathbf{w}^{T}\mathbf{A}\mathbf{w} + \mathbf{b}^{T}\mathbf{w} + c$$
$$\widehat{\mathbf{w}} = S\mathbf{w}$$
$$E = \frac{1}{2}\widehat{\mathbf{w}}^{T}\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^{T}\widehat{\mathbf{w}} + c$$

• Solving for <mark>S</mark> we get

$$\widehat{\mathbf{w}} = \underbrace{\mathbf{A}^{0.5}}_{\mathbf{w}},$$

$$\hat{\mathbf{b}} = \mathbf{A}^{-0.5}\mathbf{b}$$

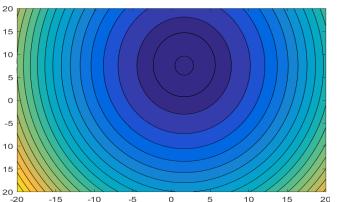
The Inverse Square Root of A

- For *any* positive definite **A**, we can write $\mathbf{A} = \mathbf{E} \mathbf{A} \mathbf{E}^{\mathrm{T}}$
 - Eigen decomposition
 - E is an orthogonal matrix

 $-\Lambda$ is a diagonal matrix of non-zero diagonal entries

- Defining $\mathbf{A}^{0.5} = \mathbf{E} \mathbf{\Lambda}^{0.5} \mathbf{E}^{\mathrm{T}}$ - Check $(\mathbf{A}^{0.5})^{\mathrm{T}} \mathbf{A}^{0.5} = \mathbf{E} \mathbf{\Lambda} \mathbf{E}^{\mathrm{T}} = \mathbf{A}$
- Defining $\mathbf{A}^{-0.5} = \mathbf{E} \mathbf{\Lambda}^{-0.5} \mathbf{E}^{\mathrm{T}}$ - Check: $(\mathbf{A}^{-0.5})^{\mathrm{T}} \mathbf{A}^{-0.5} = \mathbf{E} \mathbf{\Lambda}^{-1} \mathbf{E}^{\mathrm{T}} = \mathbf{A}^{-1}$

Returning to our problem

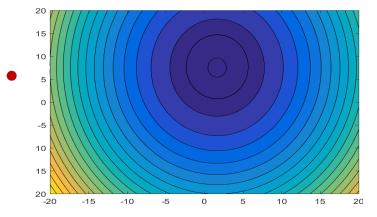


$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

• Computing the gradient, and noting that $\mathbf{A}^{0.5}$ is symmetric, we can relate $\nabla_{\widehat{\mathbf{w}}} E$ and $\nabla_{\mathbf{w}} E$:

$$\nabla_{\widehat{\mathbf{w}}} E = \widehat{\mathbf{w}}^T + \widehat{\mathbf{b}}^T$$
$$= \mathbf{w}^T \mathbf{A}^{0.5} + \mathbf{b}^T \mathbf{A}^{-0.5}$$
$$= (\mathbf{w}^T \mathbf{A} + \mathbf{b}^T) \mathbf{A}^{-0.5}$$
$$= \nabla_{\mathbf{w}} E_{\mathbf{v}} \mathbf{A}^{-0.5}$$

Returning to our problem



$$E = \frac{1}{2}\widehat{\mathbf{w}}^T\widehat{\mathbf{w}} + \widehat{\mathbf{b}}^T\widehat{\mathbf{w}} + c$$

• Gradient descent rule:

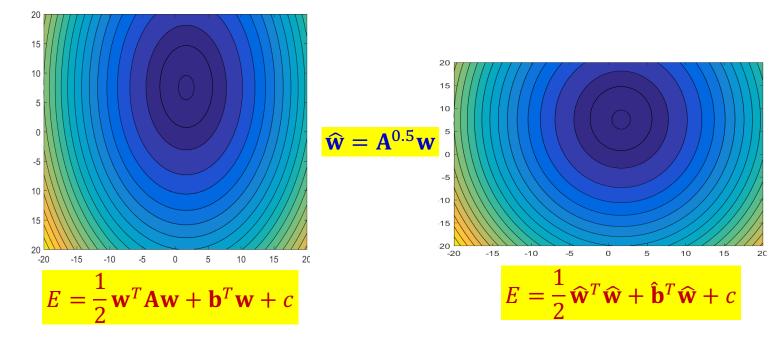
$$-\widehat{\mathbf{w}}^{(k+1)} = \widehat{\mathbf{w}}^{(k)} - \eta \nabla_{\widehat{\mathbf{w}}} E(\widehat{\mathbf{w}}^{(k)})^{T}$$

Learning rate is now independent of direction

• Using $\widehat{\mathbf{w}} = \mathbf{A}^{0.5} \mathbf{w}$, and $\nabla_{\widehat{\mathbf{w}}} E(\widehat{\mathbf{w}})^T = \mathbf{A}^{-0.5} \nabla_{\mathbf{w}} E(\mathbf{w})^T$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{A}^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

Modified update rule

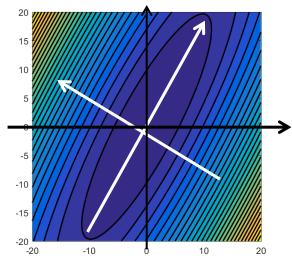


•
$$\widehat{\mathbf{w}}^{(k+1)} = \widehat{\mathbf{w}}^{(k)} - \eta \nabla_{\widehat{\mathbf{w}}} E(\widehat{\mathbf{w}}^{(k)})^T$$

Leads to the modified gradient descent rule

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{A}^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^{T}$$

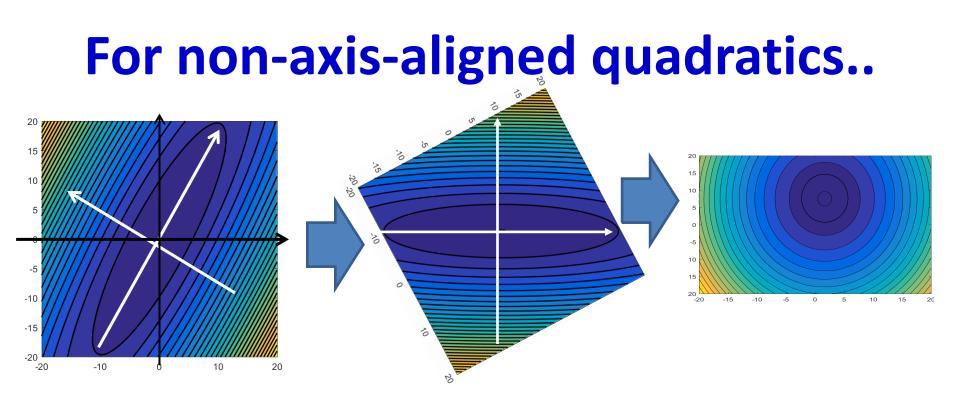
For non-axis-aligned quadratics..



$$E = \frac{1}{2}\mathbf{w}^T \mathbf{A}\mathbf{w} + \mathbf{w}^T \mathbf{b} + c$$

$$E = \frac{1}{2} \sum_{i} a_{ii} w_i^2 + \sum_{i \neq j} a_{ij} w_i w_j$$
$$+ \sum_{i} b_i w_i + c$$

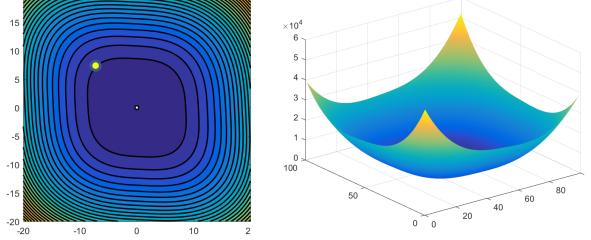
- If A is not diagonal, the contours are not axis-aligned
 - Because of the cross-terms $a_{ij}w_iw_j$
 - The major axes of the ellipsoids are the *Eigenvectors* of **A**, and their diameters are proportional to the Eigen values of **A**
- But this does not affect the discussion
 - This is merely a rotation of the space from the axis-aligned case
 - The component-wise optimal learning rates along the major and minor axes of the equalcontour ellipsoids will be different, causing problems
 - The optimal rates along the axes are Inversely proportional to the eigenvalues of A



- The component-wise optimal learning rates along the major and minor axes of the contour ellipsoids will differ, causing problems
 - Inversely proportional to the *eigenvalues* of A
- This can be fixed as before by rotating and resizing the different directions to obtain the same *normalized* update rule as before:

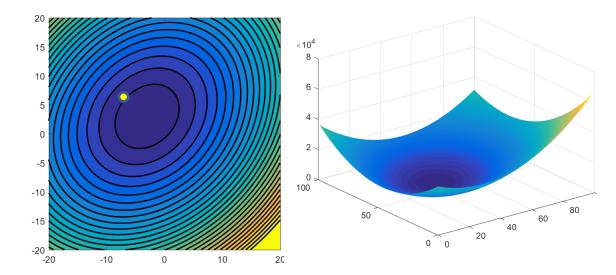
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta \mathbf{A}^{-1} \mathbf{b}$

Generic differentiable *multivariate* convex functions

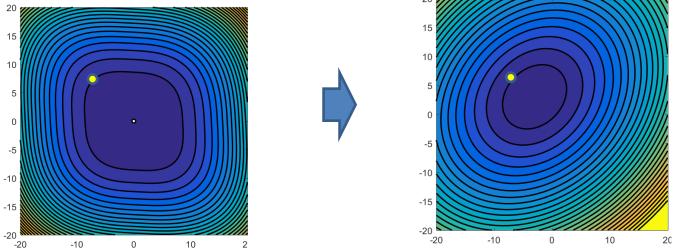


• Taylor expansion ⁻²⁰

 $E(\mathbf{w}) \approx E(\mathbf{w}^{(k)}) + \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(k)})^{T} H_{E}(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \cdots$



Generic differentiable *multivariate* convex functions



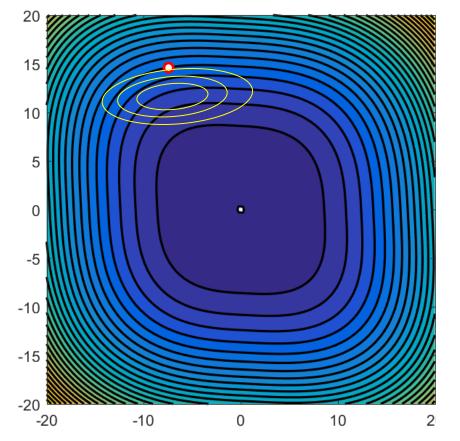
Taylor expansion

 $E(\mathbf{w}) \approx E(\mathbf{w}^{(k)}) + \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^{(k)})^{T} H_{E}(\mathbf{w}^{(k)}) (\mathbf{w} - \mathbf{w}^{(k)}) + \cdots$

- Note that this has the form $\frac{1}{2}\mathbf{w}^T\mathbf{A}\mathbf{w} + \mathbf{w}^T\mathbf{b} + c$
- Using the same logic as before, we get the normalized update rule

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E (\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

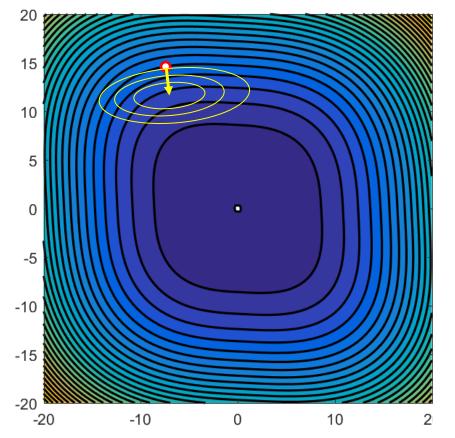
- For a quadratic function, the optimal η is 1 (which is exactly Newton's method)
 - And should not be greater than 2!



Fit a quadratic at each point and find the minimum of that quadratic

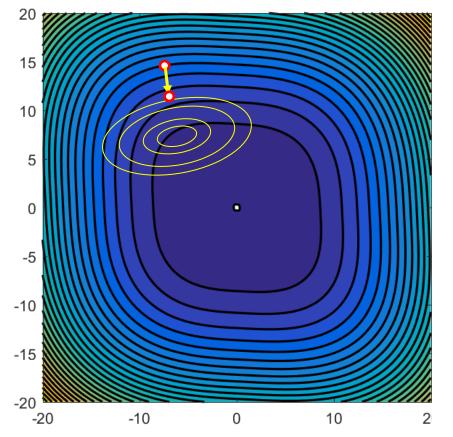
Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



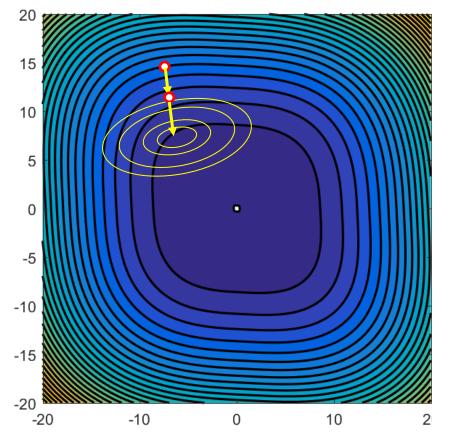
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



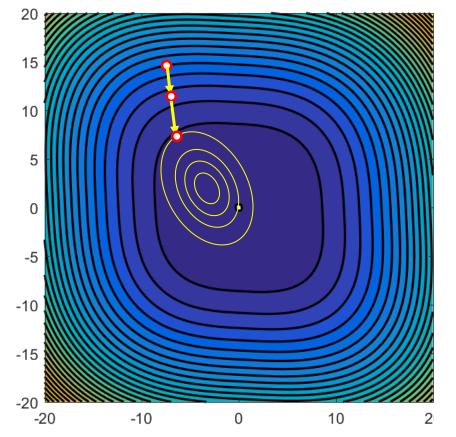
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



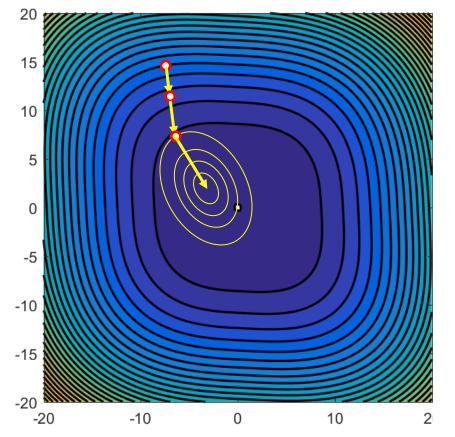
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



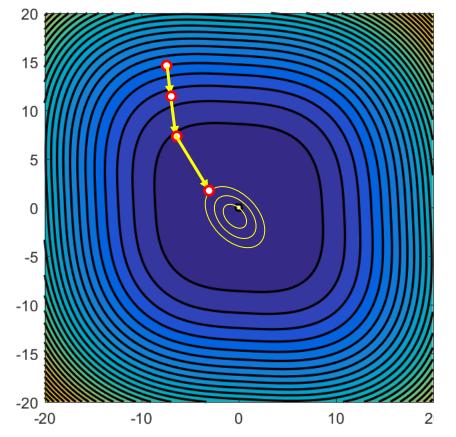
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



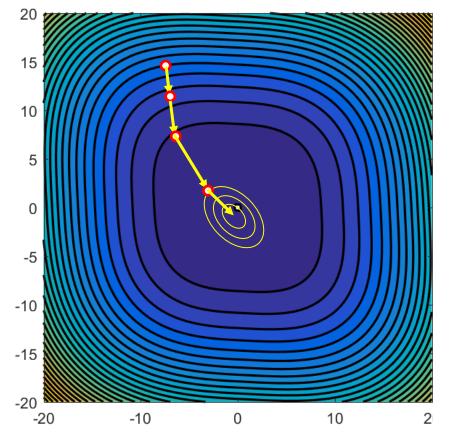
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



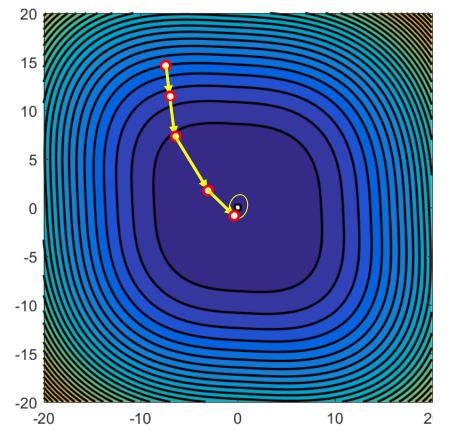
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



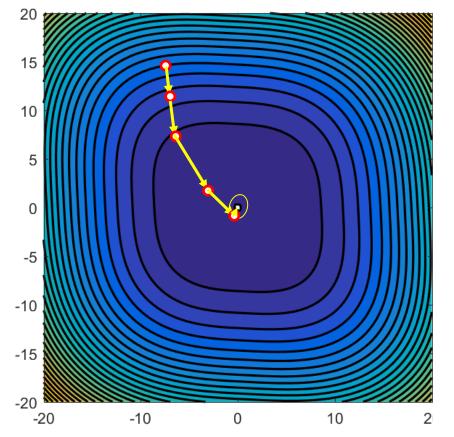
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



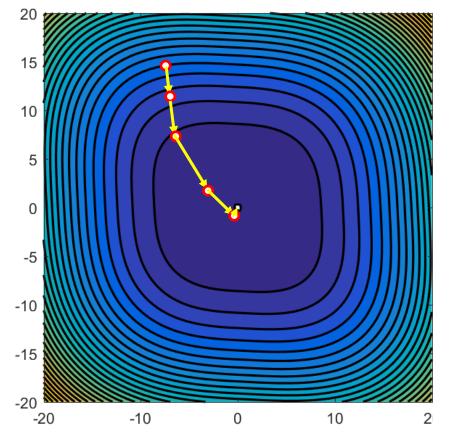
• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$



• Iterated localized optimization with quadratic approximations

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

Issues: 1. The Hessian

• Normalized update rule

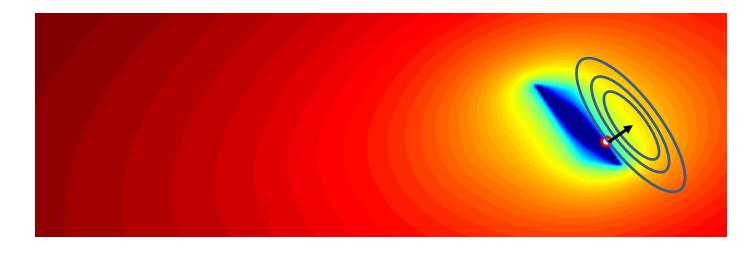
$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E(\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

- For complex models such as neural networks, with a very large number of parameters, the Hessian $H_E(w^{(k)})$ is extremely difficult to compute
 - For a network with only 100,000 parameters, the Hessian will have 10¹⁰ cross-derivative terms
 - And its even harder to invert, since it will be enormous

Issues: 1. The Hessian

- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can *diverge*
 - Goes away from, rather than towards the minimum

Issues: 1. The Hessian

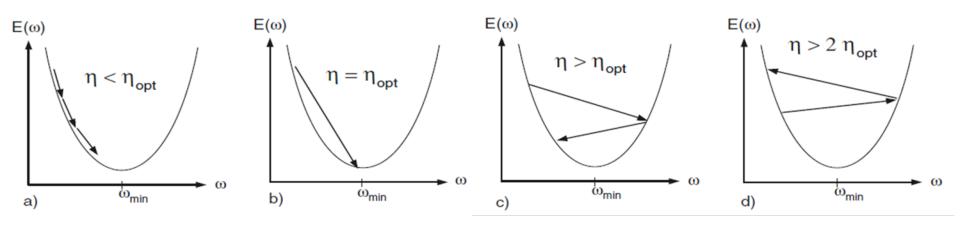


- For non-convex functions, the Hessian may not be positive semi-definite, in which case the algorithm can *diverge*
 - Goes away from, rather than towards the minimum
 - Now requires additional checks to avoid movement in directions corresponding to –ve Eigenvalues of the Hessian

Issues: 1 – contd.

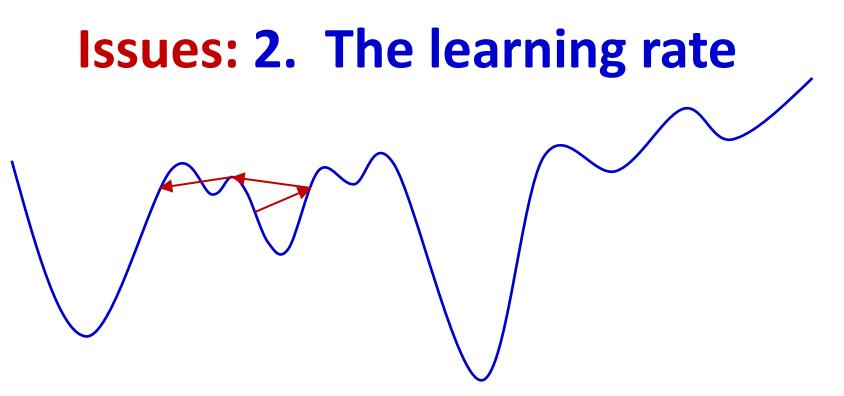
- A great many approaches have been proposed in the literature to *approximate* the Hessian in a number of ways and improve its positive definiteness
 - Boyden-Fletcher-Goldfarb-Shanno (BFGS)
 - And "low-memory" BFGS (L-BFGS)
 - Estimate Hessian from finite differences
 - Levenberg-Marquardt
 - Estimate Hessian from Jacobians
 - Diagonal load it to ensure positive definiteness
 - Other "Quasi-newton" methods
- Hessian estimates may even be *local* to a set of variables
- Not particularly popular anymore for large neural networks..

Issues: 2. The learning rate



 Much of the analysis we just saw was based on trying to ensure that the step size was not so large as to cause divergence within a convex region

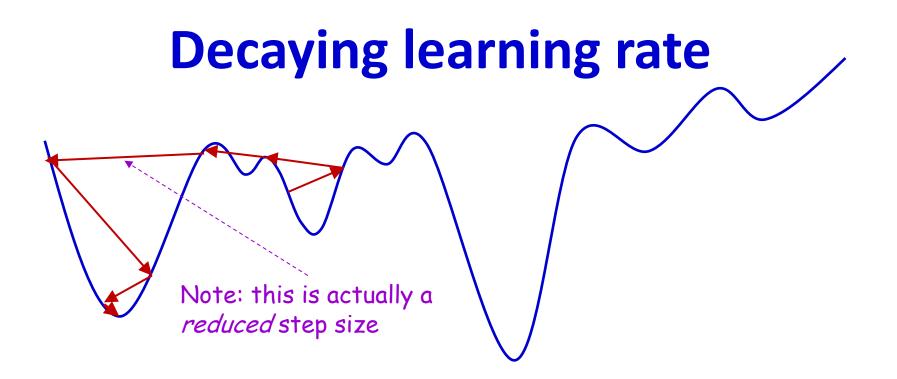
 $-\eta < 2\eta_{opt}$



• For complex models such as neural networks the loss function is often not convex

- Having $\eta > 2\eta_{opt}$ can actually help escape local optima

• However *always* having $\eta > 2\eta_{opt}$ will ensure that you never ever actually find a solution



• Start with a large learning rate

- Greater than 2 (assuming Hessian normalization)

- Gradually reduce it with iterations

Decaying learning rate

• Typical decay schedules

– Linear decay:
$$\eta_k = \frac{\eta_0}{k+1}$$

– Quadratic decay:
$$\eta_k = \frac{\eta_0}{(k+1)^2}$$

– Exponential decay:
$$\eta_k = \eta_0 e^{-\beta k}$$
, where $\beta > 0$

- A common approach (for nnets):
 - 1. Train with a fixed learning rate η until loss (or performance on a held-out data set) stagnates
 - 2. $\eta \leftarrow \alpha \eta$, where $\alpha < 1$ (typically 0.1)
 - 3. Return to step 1 and continue training from where we left off

Story so far : Convergence

- Gradient descent can miss obvious answers
 - And this may be a good thing
- Convergence issues abound
 - The loss surface has many saddle points
 - Although, perhaps, not so many bad local minima
 - Gradient descent can stagnate on saddle points
 - Vanilla gradient descent may not converge, or may converge toooooo slowly
 - The optimal learning rate for one component may be too high or too low for others

Story so far : Second-order methods

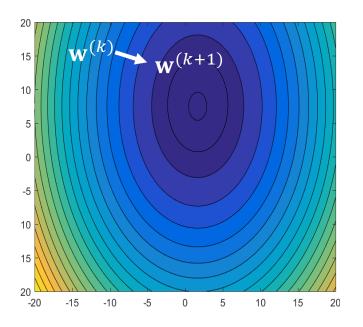
- Second-order methods "normalize" the variation along the components to mitigate the problem of different optimal learning rates for different components
 - But this requires computation of inverses of secondorder derivative matrices
 - Computationally infeasible
 - Not stable in non-convex regions of the loss surface
 - Approximate methods address these issues, but simpler solutions may be better

Story so far : Learning rate

- Divergence-causing learning rates may not be a bad thing
 - Particularly for ugly loss functions
- Decaying learning rates provide good compromise between escaping poor local minima and convergence

• Many of the convergence issues arise because we force the same learning rate on all parameters

Lets take a step back



$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta (\nabla_{\mathbf{w}} E)^T$$

$$w_i^{(k+1)} = w_i^{(k)} - \eta \frac{dE\left(w_i^{(k)}\right)}{dw}$$

 Problems arise because of requiring a fixed step size across all dimensions

- Because step are "tied" to the gradient

• Lets try releasing this requirement

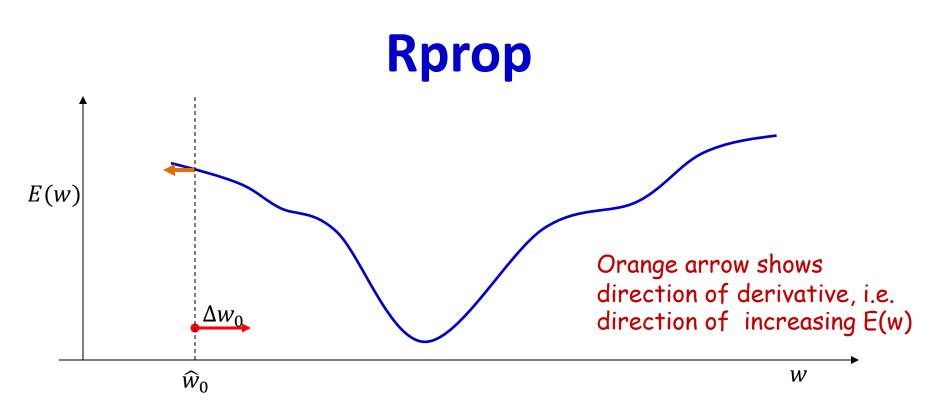
Derivative-*inspired* algorithms

• Algorithms that use derivative information for trends, but do not follow them absolutely

- Rprop
- Quick prop

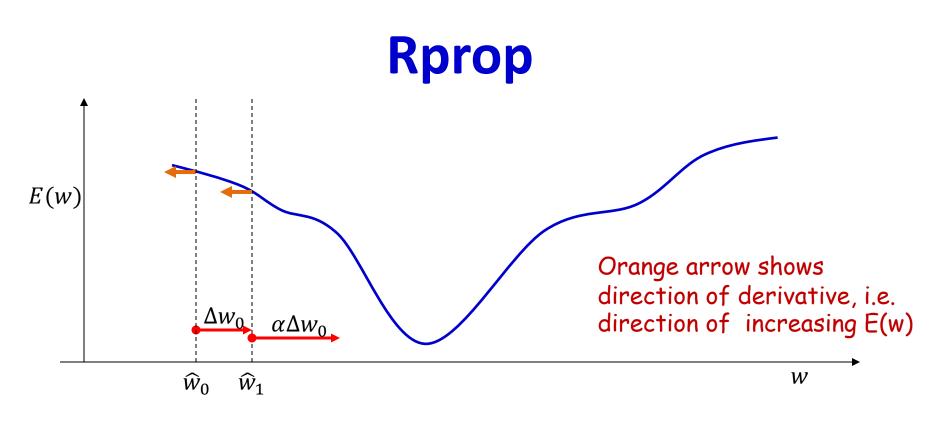
RProp

- *Resilient* propagation
- Simple algorithm, to be followed *independently* for each component
 - I.e. steps in different directions are not coupled
- At each time
 - If the derivative at the current location recommends continuing in the same direction as before (i.e. has not changed sign from earlier):
 - *increase* the step, and continue in the same direction
 - If the derivative has changed sign (i.e. we've overshot a minimum)
 - *reduce* the step and reverse direction

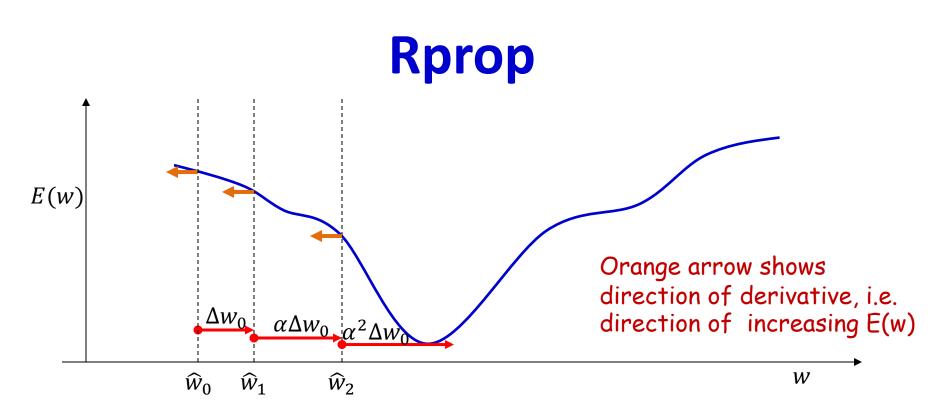


- Select an initial value \widehat{w} and compute the derivative
 - Take an initial step Δw against the derivative
 - In the direction that reduces the function

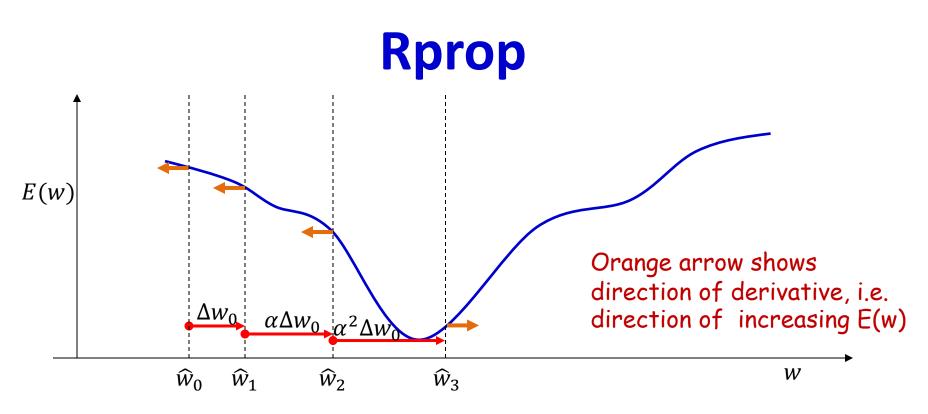
$$-\Delta w = sign\left(\frac{dE(\widehat{w})}{dw}\right)\Delta w$$
$$-\widehat{w} = \widehat{w} - \Delta w$$



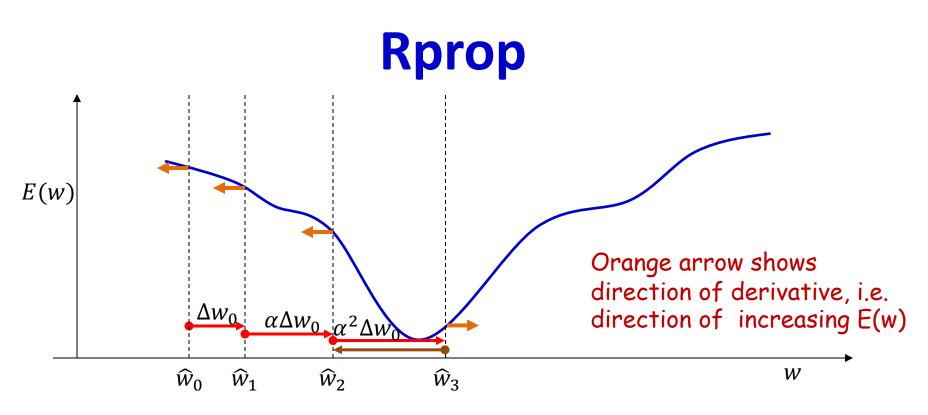
- Compute the derivative in the new location
 - If the derivative has not changed sign from the previous location, increase the step size and take a longer step
 - $\alpha > 1$ $\Delta w = \alpha \Delta w$
 - $\widehat{w} = \widehat{w} \Delta w$



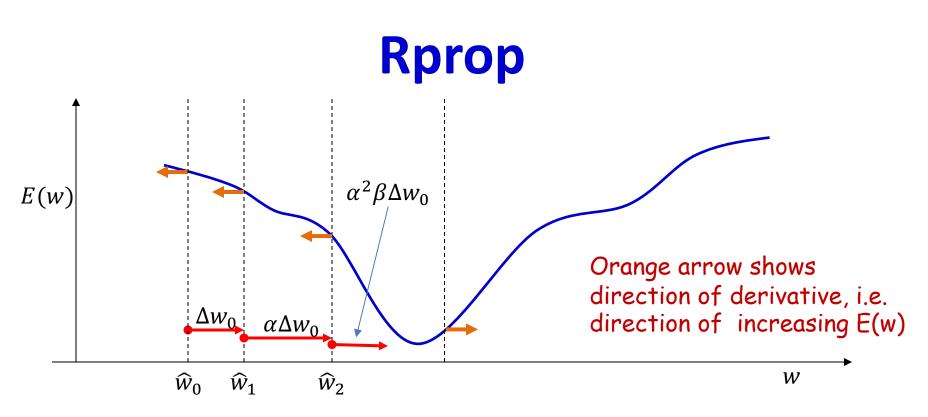
- Compute the derivative in the new location
 - If the derivative has not changed sign from the previous location, increase the step size and take a step
 - $\alpha > 1$ $\Delta w = \alpha \Delta w$
 - $\widehat{w} = \widehat{w} \Delta w$



- Compute the derivative in the new location
 - If the derivative has changed sign



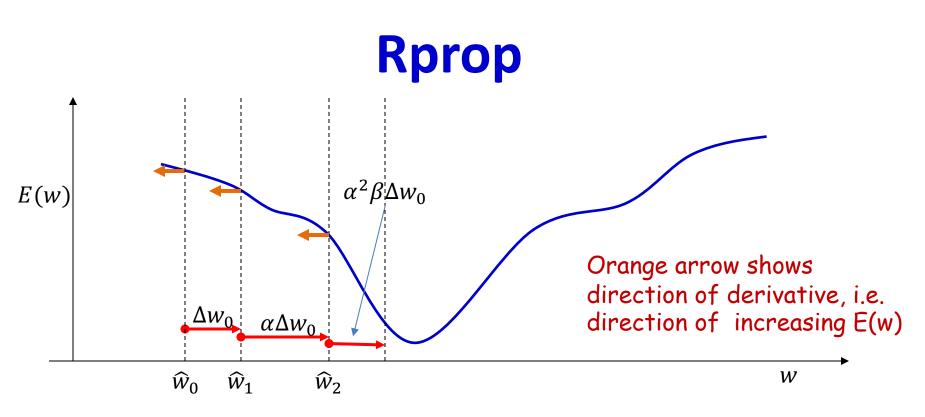
- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location
 - $\widehat{w} = \widehat{w} + \Delta w$



- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location
 - $\widehat{w} = \widehat{w} + \Delta w$
 - Shrink the step

ß < 1

• $\Delta w = \beta \Delta w$



- Compute the derivative in the new location
 - If the derivative has changed sign
 - Return to the previous location
 - $\widehat{w} = \widehat{w} + \Delta w$

- Shrink the step
 - $\Delta w = \beta \Delta w$
- Take the smaller step forward
 - $\widehat{w} = \widehat{w} \Delta w$

Rprop (simplified)

- Set $\alpha = 1.2, \beta = 0.5$
- For each layer *l*, for each *i*, *j*:
 - Initialize $w_{l,i,j}$, $\Delta w_{l,i,j} > 0$,

$$- prevD(l,i,j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$$

$$- \Delta w_{l,i,j} = \operatorname{sign}(prevD(l,i,j))\Delta w_{l,i,j}$$

- While not converged:

•
$$w_{l,i,j} = w_{l,i,j} - \Delta w_{l,i,j}$$

•
$$D(l, i, j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$$

- If sign(prevD(l, i, j)) == sign(D(l, i, j)):
 - $-\Delta w_{l,i,j} = \min(\alpha \Delta w_{l,i,j}, \Delta_{max}) \checkmark$

$$- prevD(l,i,j) = D(l,i,j)$$

• else:

$$- w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$$
$$- \Delta w_{l,i,j} = \max(\beta \Delta w_{l,i,j}, \Delta_{min})$$

Ceiling and floor on step

Rprop (simplified)

- Set $\alpha = 1.2, \beta = 0.5$
- For each layer *l*, for each *i*, *j*:
 - Initialize $w_{l,i,j}$, $\Delta w_{l,i,j} > 0$,

 $- prevD(l, i, j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$

$$- \Delta w_{l,i,j} = \operatorname{sign}(prevD(l,i,j))\Delta w_{l,i,j}$$

- While not converged:

•
$$w_{l,i,j} = w_{l,i,j} - \Delta w_{l,i,j}$$

•
$$D(l, i, j) = \frac{dErr(w_{l,i,j})}{dw_{l,i,j}}$$

• If $\operatorname{sign}(prevD(l, i, j)) == \operatorname{sign}(D(l, i, j))$:

$$-\Delta w_{l,i,j} = \alpha \Delta w_{l,i,j}$$

$$- prevD(l, i, j) = D(l, i, j)$$

• else:

$$- w_{l,i,j} = w_{l,i,j} + \Delta w_{l,i,j}$$
$$- \Delta w_{l,i,j} = \beta \Delta w_{l,i,j}$$

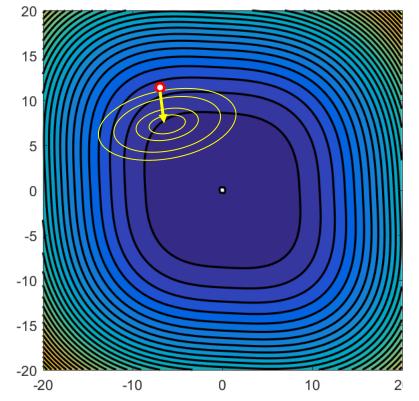
Obtained via backprop

Note: Different parameters updated independently

RProp

- A remarkably simple first-order algorithm, that is frequently much more efficient than gradient descent.
 - And can even be competitive against some of the more advanced second-order methods
- Only makes minimal assumptions about the loss function
 - No convexity assumption

QuickProp

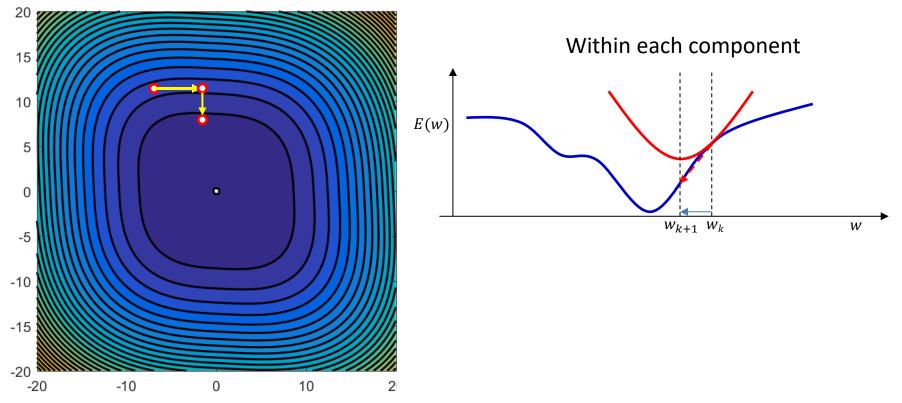


• Quickprop employs the Newton updates with two modifications

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta H_E (\mathbf{w}^{(k)})^{-1} \nabla_{\mathbf{w}} E(\mathbf{w}^{(k)})^T$$

• But with two modifications

QuickProp: Modification 1

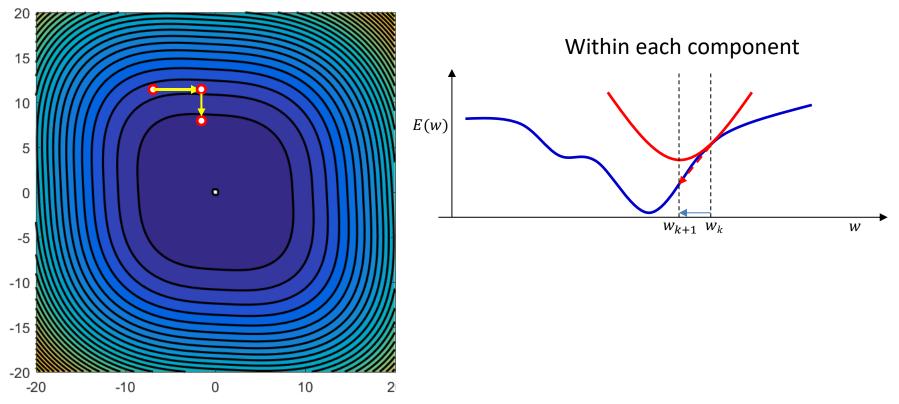


- It treats each dimension independently
- For i = 1: N

$$w_{i}^{k+1} = w_{i}^{k} - E''(w_{i}^{k}|w_{j}^{k}, j \neq i)^{-1}E'(w_{i}^{k}|w_{j}^{k}, j \neq i)$$

• This eliminates the need to compute and invert expensive Hessians

QuickProp: Modification 2



- It approximates the second derivative through finite differences
- For i = 1: N

$$w_i^{k+1} = w_i^k - D(w_i^k, w_i^{k-1})^{-1} E'(w_i^k | w_j^k, j \neq i)$$

• This eliminates the need to compute expensive double derivatives

QuickProp

$$w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}}\right)^{-1} E'(w^{(k)})$$

Finite-difference approximation to double derivative obtained assuming a quadratic E()

- Updates are independent for every parameter
- For every layer l, for every connection from node i in the (l 1)th layer to node j in the lth layer:

$$\Delta w_{l,ij}^{(k)} = \frac{\Delta w_{l,ij}^{(k-1)}}{Err'\left(w_{l,ij}^{(k)}\right) - Err'\left(w_{l,ij}^{(k-1)}\right)} Err'\left(w_{l,ij}^{(k)}\right)$$

$$w_{l,ij}^{(k+1)} = w_{l,ij}^{(k)} - \Delta w_{l,ij}^{(k)}$$

QuickProp

$$w^{(k+1)} = w^{(k)} - \left(\frac{E'(w^{(k)}) - E'(w^{(k-1)})}{\Delta w^{(k-1)}}\right)^{-1} E'(w^{(k)})$$

Finite-difference approximation to double derivative obtained assuming a quadratic E()

- Updates are independent for every parameter
- For every layer l, for every connection from node i in the (l 1)th layer to node j in the lth layer:

$$\Delta w_{l,ij}^{(k)} = \frac{\Delta w_{l,ij}^{(k-1)}}{Err'\left(w_{l,ij}^{(k)}\right) - Err'\left(w_{l,ij}^{(k-1)}\right)} \underbrace{Err'\left(w_{l,ij}^{(k)}\right)}_{k,ij} \underbrace{Err$$

Quickprop

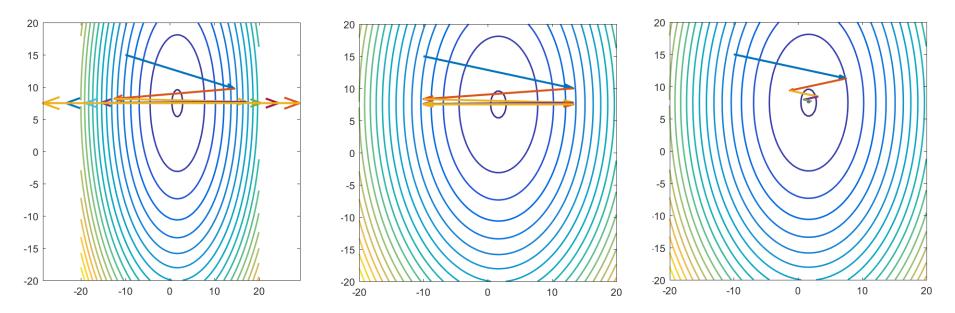
- Employs Newton updates with empirically derived derivatives
- Prone to some instability for non-convex objective functions

But is still one of the fastest training algorithms for many problems

Story so far : Convergence

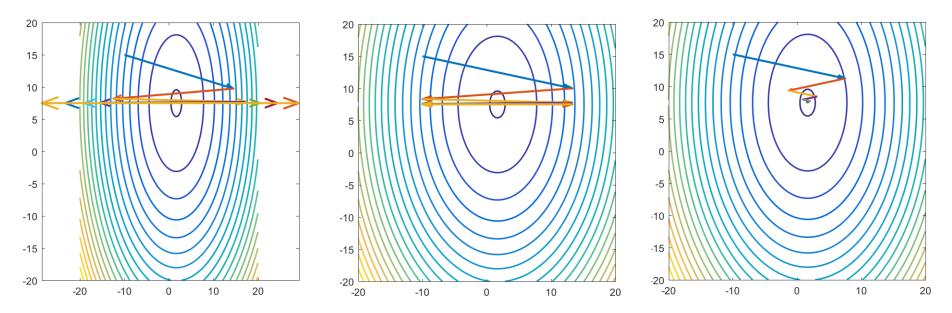
- Gradient descent can miss obvious answers
 - And this may be a *good* thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence

A closer look at the convergence problem



• With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others

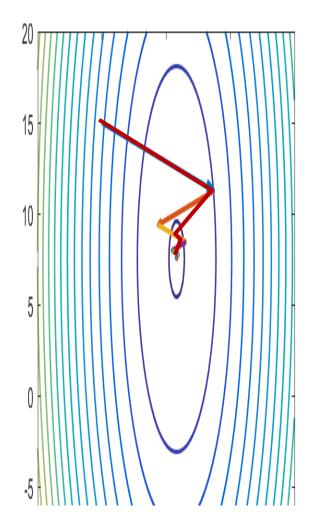
A closer look at the convergence problem

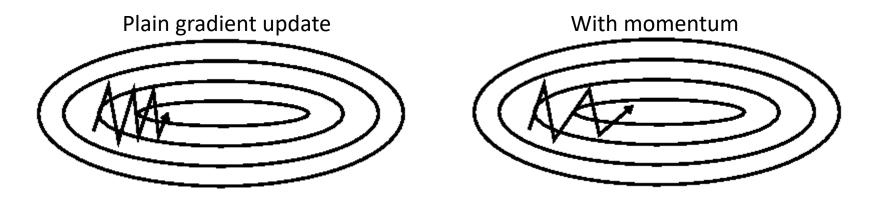


- With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others
- Proposal:
 - Keep track of oscillations
 - Emphasize steps in directions that converge smoothly
 - Shrink steps in directions that bounce around..

The momentum methods

- Maintain a running average of all past steps
 - In directions in which the convergence is smooth, the average will have a large value
 - In directions in which the estimate swings, the positive and negative swings will cancel out in the average
- Update with the running average, rather than the current gradient





• The momentum method maintains a running average of all gradients until the *current* step

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss \left(W^{(k-1)} \right)^{\mathsf{T}}$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

- Typical β value is 0.9
- The running average steps
 - Get longer in directions where gradient retains the same sign
 - Become shorter in directions where the sign keeps flipping

Training by gradient descent

- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all i, j, k, initialize $\nabla_{W_k} Loss = 0$
 - For all t = 1: T
 - For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Compute $\nabla_{W_k} Loss += \frac{1}{T} \nabla_{W_k} Div(Y_t, d_t)$
 - For every layer k:

 $W_k = W_k - \eta (\nabla_{W_k} Loss)^T$

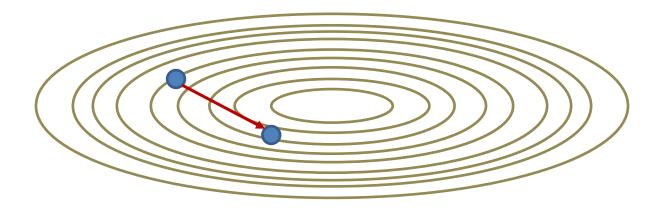
Until Loss has converged

Training with momentum

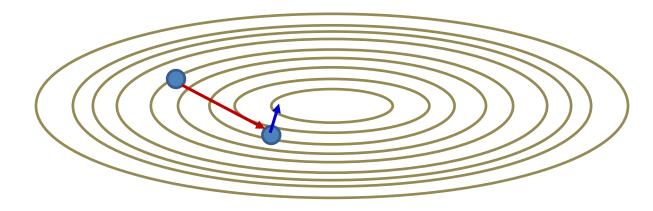
- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all layers k, initialize $\nabla_{W_k} Loss = 0$, $\Delta W_k = 0$
 - For all t = 1:T
 - For every layer k:
 - Compute gradient $\nabla_{W_k} Div(Y_t, d_t)$
 - $-\nabla_{W_k}Loss += \frac{1}{T}\nabla_{W_k}Div(Y_t, d_t)$
 - For every layer k

 $\Delta W_k = \beta \Delta W_k - \eta (\nabla_{W_k} Loss)^T$ $W_k = W_k + \Delta W_k$

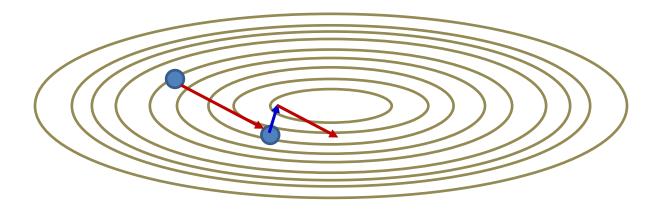
Until Loss has converged



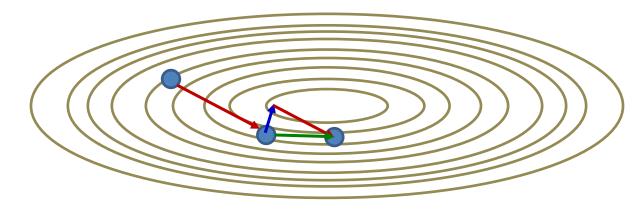
- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$
- At any iteration, to compute the current step:



- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$
- At any iteration, to compute the current step:
 First computes the gradient step at the current location



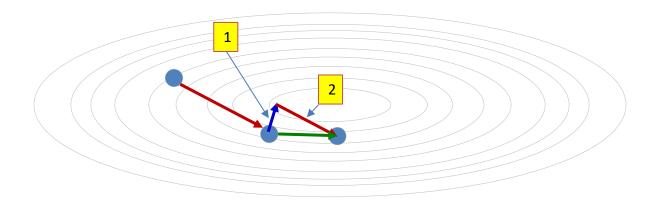
- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$
- At any iteration, to compute the current step:
 - First computes the gradient step at the current location
 - Then adds in the scaled *previous* step
 - Which is actually a running average



The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$$

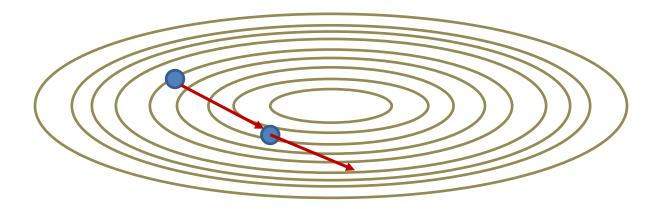
- At any iteration, to compute the current step:
 - First computes the gradient step at the current location
 - Then adds in the scaled *previous* step
 - Which is actually a running average
 - To get the final step



- Momentum update steps are actually computed in two stages
 - First: We take a step against the gradient at the current location
 - Second: Then we add a scaled version of the previous step
- The procedure can be made more optimal by reversing the order of operations..

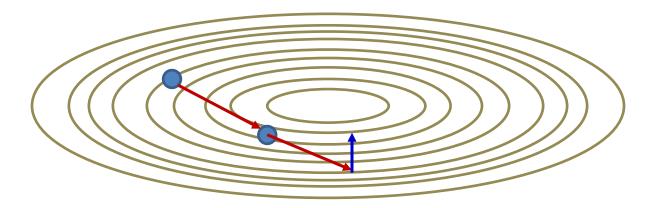


- Change the order of operations
- At any iteration, to compute the current step:

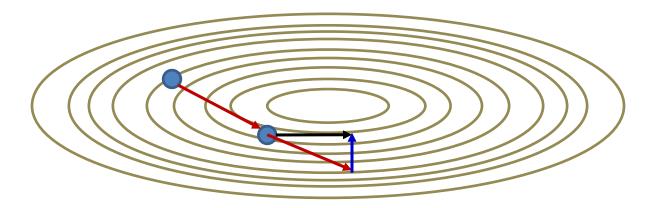


- Change the order of operations
- At any iteration, to compute the current step:

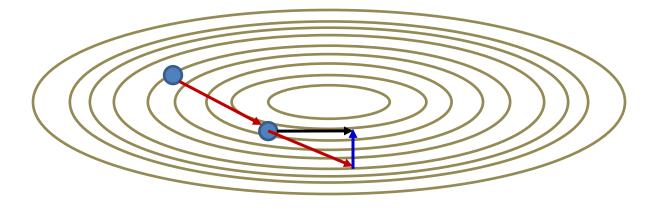
First extend the previous step



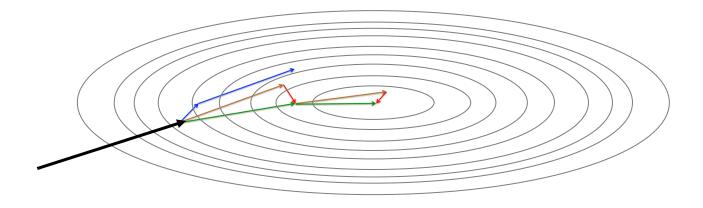
- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position



- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position
 - Add the two to obtain the final step



• Nestorov's method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss \left(W^{(k-1)} + \beta \Delta W^{(k-1)} \right)^T$ $W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$



- Comparison with momentum (example from Hinton)
- Converges much faster

Training with Nestorov

- Initialize all weights $W_1, W_2, ..., W_K$
- Do:
 - For all layers k, initialize $\nabla_{W_k} Loss = 0$, $\Delta W_k = 0$
 - For every layer k

 $W_k = W_k + \beta \Delta W_k$

- For all t = 1:T
 - For every layer k:
 - Compute gradient $\nabla_{W_k} Div(Y_t, d_t)$

$$- \nabla_{W_k} Loss += \frac{1}{T} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)$$

For every layer k

 $W_{k} = W_{k} - \eta (\nabla_{W_{k}} Loss)^{T}$ $\Delta W_{k} = \beta \Delta W_{k} - \eta (\nabla_{W_{k}} Loss)^{T}$

• Until *Loss* has converged

Momentum and trend-based methods..

• We will return to this topic again, very soon..

Story so far

- Gradient descent can miss obvious answers
 - And this may be a good thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence
- Momentum methods which emphasize directions of steady improvement are demonstrably superior to other methods

Coming up

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations