
Neural Networks:
Optimization Part 1

Intro to Deep Learning, Fall 2020

1

Story so far
• Neural networks are universal approximators

– Can model any odd thing
– Provided they have the right architecture

• We must train them to approximate any function
– Specify the architecture
– Learn their weights and biases

• Networks are trained to minimize total “loss” on a training
set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
• The gradient of the error with respect to network

parameters is computed through backpropagation
2

Recap: Gradient Descent Algorithm
• In order to minimize any function ! " w.r.t. "
• Initialize:
– "#
– $ = 0

• Do
– $ = $ + 1
– ")*+ = ") − -./!0

• while ! ") − ! ")1+ > 3
3

Recap: Training Neural Nets by Gradient
Descent

• Gradient descent algorithm:
• Initialize all weights !",!$,… ,!&

• Do:
– For every layer ' = 1…* compute:

• +!,-.// =
"
0 ∑2 +!, 345 67, 87

• !9 = !9 − ;+!,-.//<

• Until -.// has converged
4

Total training error:

-.// = =
>?7

345(67, 87;!",!$,… ,!&)

Recap: Training Neural Nets by Gradient
Descent

• Gradient descent algorithm:
• Initialize all weights !",!$,… ,!&

• Do:
– For every layer ', compute:

• (!)*+,, =
"
. ∑0 (!) 123(56, 76)

• !9 = !9 − ;(!)*+,,<

• Until *+,, has converged
5

Total training error:

*+,, = =
>?6

123(56, 76;!",!$,… ,!&)

Computed using backprop

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

6

Onward

7

Onward

• Does backprop always work?
• Convergence of gradient descent
– Rates, restrictions,
– Hessians
– Acceleration and Nestorov
– Alternate approaches

• Modifying the approach: Stochastic gradients
• Speedup extensions: RMSprop, Adagrad

8

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually finds the minimum of the

divergence function?

9

Recap: The differentiable activation

• Threshold activation: Equivalent to counting errors

– Shifting the threshold from T1 to T2 does not change classification error

– Does not indicate if moving the threshold left was good or not

10

T1 T2x x

y y

• Differentiable activation: Computes “distance to answer”

– “Distance” == divergence

– Perturbing the function changes this quantity,

• Even if the classification error itself doesn’t change

T2T1

0.5 0.5

Does backprop do the right thing?
• Is backprop always right?
– Assuming it actually finds the global minimum of the

divergence function?

• In classification problems, the classification error is a
non-differentiable function of weights

• The divergence function minimized is only a proxy for
classification error

• Minimizing divergence may not minimize classification
error

11

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89
• Simple problem, 3 training instances, single neuron
• Perceptron training rule trivially find a perfect solution

!

"
⨁

1

%

(1,0), +1

(0,1), +1

(-1,0), -1

12

Backprop vs. Perceptron

• Back propagation using logistic function and !2
divergence ($%& = (− * +)

• Unique minimum trivially proved to exist, backprop
finds it

-

.
⨁

1

(

(1,0), +1

(0,1), +1

(-1,0), -1

13

Unique solution exists

• Let ! = #$% 1 − (
– E.g. ! = #$% 0.99 representing a 99% confidence in the class

• From the three points we get three independent equations:

,-. 1 + ,/. 0 + 0 = !
,-. 0 + ,/. 1 + 0 = !

,-. −1 + ,/. 0 + 0 = −!
• Unique solution (,-= !,,- = !, 0 = 0) exists

– represents a unique line regardless of the value of !

4

5
⨁

1

7

(1,0), +1

(0,1), +1

(-1,0), -1

14

Backprop vs. Perceptron

• Now add a fourth point
• ! is very large (point near −∞)
• Perceptron trivially finds a solution (may take t2

iterations)

$

%
⨁

1

(

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

15

Backprop

• Consider backprop:
• Contribution of fourth point

to derivative of L2 error:

!"#$ = 1 − (−) −*+, + . 2

Notation:
0 =) 1 = logistic activation

! !"#$
!*+

= 2 1 − (−) −*+, + .)′ −*+, + . ,

! !"#$
!. = −2 1 − (−) −*+, + .)′ −*+, + .

3

1
⨁

1

0

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

16

1-e is the actual
achievable value

Backprop

!"#$ = 1 − (−) −*+, + . 2

Notation:
0 =) 1 = logistic activation

! !"#$
!*+

= 2 1 − (−) −*+, + .)′ −*+, + . ,

! !"#$
!. = 2 1 −) −*+, + .)′ −*+, + . ,

• For very large positive ,, *+ > 4 (where 5 = *6,*+, .)

• 1 − (−) −*+, + . → 1 as , → ∞
•): −*+, + . → 0 exponentially as , → ∞
• Therefore, for very large positive ,

! !"#$
!*+

= ! !"#$
!. = 0

17

Backprop

• The fourth point at (0, −%) does not change the gradient of the L2
divergence near the optimal solution for 3 points

• The optimum solution for 3 points is also a broad local minimum (0
gradient) for the 4-point problem!
– Will be found by backprop nearly all the time

• Although the global minimum with unbounded weights will separate the classes correctly

'

(
⨁

1

+

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

% very large

18

Backprop

• Local optimum solution found by backprop
• Does not separate the points even though the

points are linearly separable!

!

"
⨁

1

%

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

19

Backprop

• Solution found by backprop
• Does not separate the points even though the points are linearly

separable!
• Compare to the perceptron: Backpropagation fails to separate

where the perceptron succeeds

!

"
⨁

1

%

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

20

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89
• Several linearly separable training examples
• Simple setup: both backprop and perceptron

algorithms find solutions

!

"
⨁

1

%

21

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly

!

"
⨁

1

%

22

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly
– Assuming weights are constrained to be bounded

!

"
⨁

1

%

23

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded !, backprop does not find a separator

• A single additional input does not change the loss function
significantly

"

#
⨁

1

&

24

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded !, backprop does not find a separator

• A single additional input does not change the loss function
significantly

"

#
⨁

1

&

25

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded !, backprop does not find a separator

• A single additional input does not change the loss function
significantly

"

#
⨁

1

&

26

So what is happening here?
• The perceptron may change greatly upon adding just a

single new training instance
– But it fits the training data well
– The perceptron rule has low bias

• Makes no errors if possible

– But high variance
• Swings wildly in response to small changes to input

• Backprop is minimally changed by new training
instances
– Prefers consistency over perfection
– It is a low-variance estimator, at the potential cost of bias

27

Backprop fails to separate even when
possible

• This is not restricted to single perceptrons
• An MLP learns non-linear decision boundaries that are

determined from the entirety of the training data
• Adding a few “spoilers” will not change their behavior

28

Backprop fails to separate even when
possible

29

• This is not restricted to single perceptrons
• An MLP learns non-linear decision boundaries that are

determined from the entirety of the training data
• Adding a few “spoilers” will not change their behavior

Backpropagation: Finding the separator
• Backpropagation will often not find a separating

solution even though the solution is within the
class of functions learnable by the network

• This is because the separating solution is not a
feasible optimum for the loss function

• One resulting benefit is that a backprop-trained
neural network classifier has lower variance than
an optimal classifier for the training data

30

Variance and Depth

• Dark figures show desired decision boundary (2D)
– 1000 training points, 660 hidden neurons
– Network heavily overdesigned even for shallow nets

• Anecdotal: Variance decreases with
– Depth
– Data

31

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances

The Loss Surface
• The example (and statements)

earlier assumed the loss
objective had a single global
optimum that could be found
– Statement about variance is

assuming global optimum

• What about local optima

32

The Loss Surface
• Popular hypothesis:

– In large networks, saddle points are far more
common than local minima
• Frequency of occurrence exponential in network size

– Most local minima are equivalent
• And close to global minimum

– This is not true for small networks

• Saddle point: A point where
– The slope is zero
– The surface increases in some directions, but

decreases in others
• Some of the Eigenvalues of the Hessian are positive;

others are negative

– Gradient descent algorithms often get “stuck” in
saddle points 33

The Controversial Loss Surface
• Baldi and Hornik (89), “Neural Networks and Principal Component

Analysis: Learning from Examples Without Local Minima” : An MLP with a
single hidden layer has only saddle points and no local Minima

• Dauphin et. al (2015), “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization” : An exponential number of
saddle points in large networks

• Chomoranksa et. al (2015), “The loss surface of multilayer networks” : For
large networks, most local minima lie in a band and are equivalent
– Based on analysis of spin glass models

• Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible local
minima

• Watch this space…
34

Story so far
• Neural nets can be trained via gradient descent that minimizes a

loss function

• Backpropagation can be used to derive the derivatives of the loss

• Backprop is not guaranteed to find a “true” solution, even if it
exists, and lies within the capacity of the network to model
– The optimum for the loss function may not be the “true” solution

• For large networks, the loss function may have a large number of
unpleasant saddle points
– Which backpropagation may find

35

Convergence
• In the discussion so far we have assumed the

training arrives at a local minimum

• Does it always converge?
• How long does it take?

• Hard to analyze for an MLP, but we can look at
the problem through the lens of convex
optimization

36

A quick tour of (convex) optimization

37

Convex Loss Functions
• A surface is “convex” if it is

continuously curving upward
– We can connect any two points

on or above the surface without
intersecting it

– Many mathematical definitions
that are equivalent

• Caveat: Neural network loss
surface is generally not convex
– Streetlight effect

Contour plot of convex function

38

Convergence of gradient descent
• An iterative algorithm is said to

converge to a solution if the value
updates arrive at a fixed point
– Where the gradient is 0 and further

updates do not change the estimate

• The algorithm may not actually
converge
– It may jitter around the local

minimum
– It may even diverge

• Conditions for convergence?

converging

jittering

diverging

39

Convergence and convergence rate
• Convergence rate: How fast the

iterations arrive at the solution
• Generally quantified as

! = # $(&'() − # $∗
$(&) − # $∗

– $(&'()is the k-th iteration
– $∗is the optimal value of $

• If ! is a constant (or upper bounded),
the convergence is linear
– In reality, its arriving at the solution

exponentially fast
$(&) − # $∗ ≤ !& # $(-) − # $∗

converging

40

Convergence for quadratic surfaces

• Gradient descent to find the
optimum of a quadratic,
starting from w(#)

• Assuming fixed step size %
• What is the optimal step size
% to get there fastest?

Gradient descent with fixed step size %
to estimate scalar parameter ww(#&') = w(#) − % *+ w(#)

*w

w(#)

,-.-/-01 + = 12 45
6 + 85 + 9

41

Convergence for quadratic surfaces
• Any quadratic objective can be written as

!(#) = ! w(') + !) w ' # − w(')

+ +
,!′′ w

(') # − w(') ,

– Taylor expansion

• Minimizing w.r.t #, we get (Newton’s method)

#./0 = w ' − !′′ w ' 1+!′ w '

• Note:

2! w(')

2w = !′ w(')

• Comparing to the gradient descent rule, we see
that we can arrive at the optimum in a single step
using the optimum step size

3456 = !′′ w ' 1+ = 718

w('9+) = w(') − 3 2! w(')

2w

! = 1
2<#

, + =# + >

42

With non-optimal step size

• For ! < !#$% the algorithm
will converge monotonically

• For 2!#$% > ! > !#$% we
have oscillating
convergence

• For ! > 2!#$% we get
divergence

w(*+,) = w(*) − ! 01 w(*)

0w
Gradient descent with fixed step size !
to estimate scalar parameter w

43

For generic differentiable convex
objectives

• Any differentiable convex objective ! " can be approximated as

! ≈ ! w(&) + " − w(&) *! w(&)

*" + 12 " − w(&)
- *-! w(&)

*"- + ⋯
– Taylor expansion

• Using the same logic as before, we get (Newton’s method)

/012 =
*-! w(&)

*"-

45

• We can get divergence if / ≥ 2/012
44

approx

""789

For functions of multivariate inputs

• Consider a simple quadratic convex (paraboloid) function

! = 1
2%

&'% +%&) + *
– Since !& = ! (! is scalar), ' can always be made symmetric

• For convex !, ' is always positive definite, and has positive eigenvalues

• When ' is diagonal:

! = 1
2+,

-,,.,/ + 0,., + *

– The .,s are uncoupled
– For convex (paraboloid) !, the -,, values are all positive
– Just a sum of 1 independent quadratic functions

! = 2 % , % is a vector % = .3,./, … , .6

45

Multivariate Quadratic with Diagonal !

• Equal-value contours will ellipses with
principal axes parallel to the spatial axes

" = 1
2&

'!& +&') + * = 1
2+,

-,,.,/ + 0,., + *

46

Multivariate Quadratic with Diagonal !

• Equal-value contours will be parallel to the axes
– All “slices” parallel to an axis are shifted versions of one another

" = 1
2&''('

) + +'(' + , + -(¬(')

" = 1
21

2!1 +123 + , = 1
24'

&''(') + +'(' + ,

47

Multivariate Quadratic with Diagonal !

• Equal-value contours will be parallel to the axis
– All “slices” parallel to an axis are shifted versions of one another

" = 1
2&''('

) + +'(' + , + -(¬(')

" = 1
21

2!1 +123 + , = 1
24'

&''(') + +'(' + ,

48

“Descents” are uncoupled

• The optimum of each coordinate is not affected by the other coordinates
– I.e. we could optimize each coordinate independently

• Note: Optimal learning rate is different for the different coordinates

! = 1
2%&&'&

(+ *&'& + + + ,(¬'&) ! = 1
2%(('(

(+ *('(+ + + ,(¬'()
0&,234 = %&&5& 0(,234 = %((5&

49

Vector update rule

• Conventional vector update rules for gradient descent:
update entire vector against direction of gradient
– Note : Gradient is perpendicular to equal value contour
– The same learning rate is applied to all components

!(#$%) ← !(#) −)∇+,-

./
(#$%) = ./

(#) −)
1, ./

(#)

21w

!(#$%)!(#)

50

Problem with vector update rule

• The learning rate must be lower than twice the smallest
optimal learning rate for any component

! < 2min' !',)*+
– Otherwise the learning will diverge

• This, however, makes the learning very slow
– And will oscillate in all directions where !',)*+ ≤ ! < 2!',)*+

-(/01) ← -(/) − !5-67 8'
(/01) = 8'

(/) − !
:6 8'

(/)

:w

!',)*+ =
:<6 8'

(/)

:8'<

=1

= >''=1

51

Dependence on learning rate

• !",$%& = 1; !*,$%& = 0.33
• ! = 2.1!*,$%&
• ! = 2!*,$%&
• ! = 1.5!*,$%&
• ! = !*,$%&
• ! = 0.75!*,$%&

52

Dependence on learning rate

• !",$%& = 1; !*,$%& = 0.91; ! = 1.9 !*,$%&
53

Convergence
• Convergence behaviors become increasingly

unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate !
must be close to both, the largest !",$%& and the
smallest !",$%&
– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if
'()* +*,,-.
'/0* +*,,-.

is large

– The “condition” number is small
54

Comments on the quadratic
• Why are we talking about quadratics?

– Quadratic functions form some kind of benchmark
– Convergence of gradient descent is linear

• Meaning it converges to solution exponentially fast

• The convergence for other kinds of functions can be viewed against this
benchmark

• Actual losses will not be quadratic, but may locally have other structure
– Local between current location and nearest local minimum

• Some examples in the following slides..
– Strong convexity
– Lifschitz continuity
– Lifschitz smoothness

– ..and how they affect convergence of gradient descent

55

Quadratic convexity

• A quadratic function has the form !"#
$%# +#$' + (

– Every “slice” is a quadratic bowl
• In some sense, the “standard” for gradient-descent based optimization

– Others convex functions will be steeper in some regions, but flatter in others
• Gradient descent solution will have linear convergence

– Take)(log 1/0) steps to get within 0 of the optimal solution
56

Strong convexity

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

57

Strong convexity

58

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

Types of continuity

• Most functions are not strongly convex (if they are convex)
• Instead we will talk in terms of Lifschitz smoothness
• But first : a definition
• Lifschitz continuous: The function always lies outside a cone

– The slope of the outer surface is the Lifschitz constant
– ! " − ! $ ≤ &|" − $|

59

From wikipedia

Lifschitz smoothness

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)
60

Lifschitz smoothness

61

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)

Types of smoothness

62

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Types of smoothness

63

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Convergence Problems
• For quadratic (strongly) convex functions, gradient descent is exponentially

fast
– Linear convergence

• Assuming learning rate is non-divergent

• For generic (Lifschitz Smooth) convex functions however, it is very slow

! "($) − ! "∗ ∝ 1
* ! "(+) − ! "∗

– And inversely proportional to learning rate

! "($) − ! "∗ ≤ 1
2.* "(+) − "∗

– Takes O 1/1 iterations to get to within 1 of the solution

– An inappropriate learning rate will destroy your happiness

• Second order methods will locally convert the loss function to quadratic
– Convergence behavior will still depend on the nature of the original function

• Continuing with the quadratic-based explanation…
64

Convergence
• Convergence behaviors become increasingly

unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate !
must be close to both, the largest !",$%& and the
smallest !",$%&
– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if
'()* +*,,-.
'/0* +*,,-.

is large

– The “condition” number is small
65

One reason for the problem

66

• The objective function has different eccentricities in different directions
– Resulting in different optimal learning rates for different directions
– The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two

directions are coupled! Moving in one direction changes the gradient along the other

• Solution: Normalize the objective to have identical eccentricity in all directions
– Then all of them will have identical optimal learning rates
– Easier to find a working learning rate

Solution: Scale the axes

• Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
– Equal-value contours are circular
– Movement along the coordinate axes become independent

• Note: equation of a quadratic surface with circular equal-value contours can be
written as

! = 1
2 %&

' %& +)*' %& + +

,-

,.

%,-

%,.

%,- = /-,-
%,. = /.,.

%& = %,-
%,. %& = 0&

& = ,-
,.

0 = /- 0
0 /.

67

Scaling the axes
• Original equation:

! = 1
2%

&'% +)&% + *
• We want to find a (diagonal) scaling matrix + such that

S =
-. ⋯ 0
⋮ ⋱ ⋮
0 ⋯ -3

, 5% = S%

• And

! = 1
2 5%

& 5% + 6)& 5% + c

68

Scaling the axes
• Original equation:

! = 1
2%

&'% +)&% + *
• We want to find a (diagonal) scaling matrix + such that

S =
-. ⋯ 0
⋮ ⋱ ⋮
0 ⋯ -3

, 5% = S%

• And

! = 1
2 5%

& 5% + 6)& 5% + c

69

By inspection:
S = '8.:

Scaling the axes
• We have

! = 1
2%

&'% +)&% + *
+% = S%

! = 1
2 +%

& +% + -)& +% + c

= 1
2%

&S&S% + -)&S% + *
• Equating linear and quadratic coefficients, we get

S&S = ', -)&S =)&
• Solving: S = '0.2, -) = '30.2)

70

Scaling the axes
• We have

! = 1
2%

&'% +)&% + *
+% = S%

! = 1
2 +%

& +% + -)& +% + c
• Solving for S we get

+% = '/.1%, -) = '2/.1)
71

Scaling the axes
• We have

! = 1
2%

&'% +)&% + *
+% = S%

! = 1
2 +%

& +% + -)& +% + c
• Solving for S we get

+% = '/.1%, -) = '2/.1)
72

The Inverse Square Root of A

• For any positive definite !, we can write
! = #$#%

– Eigen decomposition
– # is an orthogonal matrix
– $ is a diagonal matrix of non-zero diagonal entries

• Defining !&.(= #$&.(#%
– Check !&.(%!&.(= #$#% = !

• Defining !)&.(= #$)&.(#%
– Check: !)&.(%!)&.(= #$)*#% = !)*

73

Returning to our problem

• ! = #
$ %&

' %& +)*' %& + +

• Computing the gradient, and noting that ,-./is
symmetric, we can relate 0%&! and 0&!:

0%&! = %&' +)*'
= &',-./ + *',1-./
= &', + *' ,1-./
= 0&!. ,1-./ 74

Returning to our problem

• ! = #
$ %&

' %& +)*' %& + +

• Gradient descent rule:

– %&(-.#) = %&(-) − 12%&! %&(-) '

– Learning rate is now independent of direction

• Using %& = 34.6&, and 2%&! %& ' = 374.62&! & '

&(-.#) = &(-) − 137#2&! &(-) '
75

Modified update rule

• !"($%&) = !"($) − *+!", !"($) -

• Leads to the modified gradient descent rule

"($%&) = "($) − *./&+", "($) -

76

!" = .0.2"

, = 1
2"

-." + 6-" + 7 , = 1
2 !"

- !" + 86- !" + 7

For non-axis-aligned quadratics..

• If ! is not diagonal, the contours are not axis-aligned
– Because of the cross-terms "#$%#%$
– The major axes of the ellipsoids are the Eigenvectors of !, and their diameters are

proportional to the Eigen values of !

• But this does not affect the discussion
– This is merely a rotation of the space from the axis-aligned case
– The component-wise optimal learning rates along the major and minor axes of the equal-

contour ellipsoids will be different, causing problems
• The optimal rates along the axes are Inversely proportional to the eigenvalues of !

& = 1
2*

+!* +*+- + .

& = 1
2/#

"##%#0 +/
#1$

"#$%#%$

+/
#
2#%# + .

77

For non-axis-aligned quadratics..

• The component-wise optimal learning rates along the major and
minor axes of the contour ellipsoids will differ, causing problems
– Inversely proportional to the eigenvalues of !

• This can be fixed as before by rotating and resizing the different
directions to obtain the same normalized update rule as before:

"($%&) = "($) − *!+&, 78

Generic differentiable multivariate
convex functions

• Taylor expansion

! " ≈ ! "(%) + ("! "(%) " − *(%) + +, " −*(%) -.! *(%) " − *(%) + ⋯

79

Generic differentiable multivariate
convex functions

• Taylor expansion

! " ≈ ! "(%) + ("! "(%) " − *(%) + +, " −*(%) -.! *(%) " − *(%) + ⋯

• Note that this has the form 01"
23" +"24 + 5

• Using the same logic as before, we get the normalized update rule
"(670) = "(6) − 9:; *(6) <0="> "(6) ?

• For a quadratic function, the optimal @ is 1 (which is exactly Newton’s method)
– And should not be greater than 2!

80

Minimization by Newton’s method (" = 1)

• Iterated localized optimization with quadratic approximations

&('()) = &(') − "+, -(') .)/&0 &(') 1

– " = 1

Fit a quadratic at each
point and find the
minimum of that
quadratic

81

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1

Minimization by Newton’s method () = 1)

82

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1

Minimization by Newton’s method () = 1)

83

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1

Minimization by Newton’s method () = 1)

84

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
85

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
86

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
87

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
88

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
89

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
90

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

–) = 1
91

Issues: 1. The Hessian
• Normalized update rule

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

• For complex models such as neural networks, with a
very large number of parameters, the Hessian
*+ ,(#) is extremely difficult to compute
– For a network with only 100,000 parameters, the Hessian

will have 1010 cross-derivative terms
– And its even harder to invert, since it will be enormous

92

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian
93

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian
94

Issues: 1 – contd.
• A great many approaches have been proposed in the

literature to approximate the Hessian in a number of ways
and improve its positive definiteness
– Boyden-Fletcher-Goldfarb-Shanno (BFGS)

• And “low-memory” BFGS (L-BFGS)
• Estimate Hessian from finite differences

– Levenberg-Marquardt
• Estimate Hessian from Jacobians
• Diagonal load it to ensure positive definiteness

– Other “Quasi-newton” methods

• Hessian estimates may even be local to a set of variables

• Not particularly popular anymore for large neural networks..
95

Issues: 2. The learning rate

• Much of the analysis we just saw was based on trying
to ensure that the step size was not so large as to cause
divergence within a convex region
– ! < 2!$%&

96

Issues: 2. The learning rate

• For complex models such as neural networks the loss
function is often not convex
– Having ! > 2!$%& can actually help escape local optima

• However always having ! > 2!$%&will ensure that you
never ever actually find a solution

97

Decaying learning rate

• Start with a large learning rate
– Greater than 2 (assuming Hessian normalization)
– Gradually reduce it with iterations

Note: this is actually a
reduced step size

98

Decaying learning rate
• Typical decay schedules

– Linear decay: !" = $%
"&'

– Quadratic decay: !" = $%
"&' (

– Exponential decay: !" = !)*+,", where - > 0

• A common approach (for nnets):
1. Train with a fixed learning rate ! until loss (or performance on

a held-out data set) stagnates
2. ! ← 1!, where 1 < 1 (typically 0.1)
3. Return to step 1 and continue training from where we left off

99

Story so far : Convergence
• Gradient descent can miss obvious answers
– And this may be a good thing

• Convergence issues abound
– The loss surface has many saddle points

• Although, perhaps, not so many bad local minima
• Gradient descent can stagnate on saddle points

– Vanilla gradient descent may not converge, or may
converge toooooo slowly
• The optimal learning rate for one component may be too

high or too low for others

100

Story so far : Second-order methods

• Second-order methods “normalize” the variation
along the components to mitigate the problem of
different optimal learning rates for different
components
– But this requires computation of inverses of second-

order derivative matrices
– Computationally infeasible
– Not stable in non-convex regions of the loss surface
– Approximate methods address these issues, but

simpler solutions may be better
101

Story so far : Learning rate
• Divergence-causing learning rates may not be a

bad thing
– Particularly for ugly loss functions

• Decaying learning rates provide good
compromise between escaping poor local minima
and convergence

• Many of the convergence issues arise because we
force the same learning rate on all parameters

102

Lets take a step back

• Problems arise because of requiring a fixed
step size across all dimensions
– Because step are “tied” to the gradient

• Lets try releasing this requirement

!(#$%) ← !(#) −)(*!+),

-.
(#$%) = -.

(#) −)
0+ -.

(#)

0w

!(#$%)!(#)

103

Derivative-inspired algorithms

• Algorithms that use derivative information for
trends, but do not follow them absolutely

• Rprop
• Quick prop

104

RProp
• Resilient propagation
• Simple algorithm, to be followed independently for each

component
– I.e. steps in different directions are not coupled

• At each time
– If the derivative at the current location recommends continuing in the

same direction as before (i.e. has not changed sign from earlier):
• increase the step, and continue in the same direction

– If the derivative has changed sign (i.e. we’ve overshot a minimum)
• reduce the step and reverse direction

105

Rprop

• Select an initial value !" and compute the derivative
– Take an initial step ∆" against the derivative

• In the direction that reduces the function

– ∆" = %&'()*(!,)
), ∆"

– !" = !" − ∆"

"

/(")

!"0

∆"0

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

106

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a longer step
• ∆" = α∆"
• $" = $" − ∆"

a > 1

"

'(")

$"* $"+

,∆"*∆"*

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

107

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a step
• ∆" = α∆"
• $" = $" − ∆"

a > 1

"

'(")

$"* $"+

,∆"*

$"-

,-∆"*
∆"*

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

108

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• !" = !" + ∆"
– Shrink the step

• ∆" = &∆"
– Take the smaller step forward

• !" = !" − ∆"

"

((")

!"+ !",

-∆"+

!".

-.∆"+
∆"+

!"/

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

109

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• !" = !" + ∆"
– Shrink the step

• ∆" = &∆"
– Take the smaller step forward

• !" = !" − ∆"

"

((")

!"+ !",

-∆"+

!".

-.∆"+
∆"+

!"/

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

110

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• !" = !" + ∆"
– Shrink the step

• ∆" = &∆"
– Take the smaller step forward

• !" = !" − ∆"

b < 1

"

((")

!"+ !",

-∆"+

!".

-.&∆"+

∆"+

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

111

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• !" = !" + ∆"
– Shrink the step

• ∆" = &∆"
– Take the smaller step forward

• !" = !" − ∆"

b < 1

"

((")

!"+ !",

-∆"+

!".

-.&∆"+

∆"+

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

112

Rprop (simplified)
• Set ! = 1.2, & = 0.5

• For each layer), for each *, ,:
– Initialize -.,/,0, ∆-.,/,0 > 0,

– 34567), *, , =
89::(<=,>,?)

8<=,>,?

– ∆-.,/,0 = sign 34567), *, , ∆-.,/,0
– While not converged:

• -.,/,0 = -.,/,0 − ∆-.,/,0

• 7), *, , =
89::(<=,>,?)

8<=,>,?

• If sign 34567), *, , == sign 7), *, , :

– ∆-.,/,0 = min(!∆-.,/,0, ∆GHI)

– 34567), *, , = 7), *, ,

• else:
– -.,/,0 = -.,/,0 + ∆-.,/,0

– ∆-.,/,0 = max(&∆-.,/,0 , ∆G/M)

Ceiling and floor on step

113

Rprop (simplified)
• Set ! = 1.2, & = 0.5
• For each layer), for each *, ,:

– Initialize -.,/,0, ∆-.,/,0 > 0,

– 34567), *, , = 89::(<=,>,?)
8<=,>,?

– ∆-.,/,0 = sign 34567), *, , ∆-.,/,0
– While not converged:

• -.,/,0 = -.,/,0 − ∆-.,/,0

• 7), *, , = 89::(<=,>,?)
8<=,>,?

• If sign 34567), *, , == sign 7), *, , :

– ∆-.,/,0 = !∆-.,/,0
– 34567), *, , = 7), *, ,

• else:
– -.,/,0 = -.,/,0 + ∆-.,/,0
– ∆-.,/,0 = &∆-.,/,0

Obtained via backprop

Note: Different parameters updated
independently

114

RProp
• A remarkably simple first-order algorithm, that

is frequently much more efficient than
gradient descent.
– And can even be competitive against some of the

more advanced second-order methods

• Only makes minimal assumptions about the
loss function
– No convexity assumption

115

QuickProp

• Quickprop employs the Newton updates with two modifications

!(#$%) = !(#) −)*+ ,(#) -%.!/ !(#) 0

• But with two modifications

116

QuickProp: Modification 1

• It treats each dimension independently
• For ! = 1:%

&'()* = &'(− ,-- &'(|&/(, 1 ≠ ! 3*,′ &'(|&/(, 1 ≠ !
• This eliminates the need to compute and invert expensive Hessians

&

,(&)

&7&()*

Within each component

117

QuickProp: Modification 2

• It approximates the second derivative through finite differences
• For ! = 1:%

&'()* = &'(− , &'(, &'(.*
.*/′ &'(|&2(, 3 ≠ !

• This eliminates the need to compute expensive double derivatives

&

/(&)

&7&()*

Within each component

118

QuickProp

• Updates are independent for every parameter
• For every layer !, for every connection from node " in the (! − 1)th

layer to node ' in the !th layer:

(()*+) = (()) − -. () − -′((()0+))
∆(()0+)

0+
-′((()))

Finite-difference approximation to double derivative
obtained assuming a quadratic -()

(2,45
()*+) = (2,45

()) − ∆(2,45
())

∆(2,45
()) =

∆(2,45
()0+)

-66. (2,45
()) − -66. (2,45

()0+) -66. (2,45
())

119

QuickProp

• Updates are independent for every parameter
• For every layer !, for every connection from node " in the (! − 1)th

layer to node ' in the !th layer:

(()*+) = (()) − -. () − -′((()0+))
∆(()0+)

0+
-′((()))

Finite-difference approximation to double derivative
obtained assuming a quadratic -()

(2,45
()*+) = (2,45

()) − ∆(2,45
())

∆(2,45
()) =

∆(2,45
()0+)

-66. (2,45
()) − -66. (2,45

()0+) -66. (2,45
())

Computed using
backprop

120

Quickprop

• Employs Newton updates with empirically
derived derivatives

• Prone to some instability for non-convex
objective functions

• But is still one of the fastest training
algorithms for many problems

121

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to
the differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve
convergence

122

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

123

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

124

The momentum methods
• Maintain a running average of all

past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the
estimate swings, the positive and
negative swings will cancel out in
the average

• Update with the running
average, rather than the current
gradient

125

Momentum Update

• The momentum method maintains a running average of all gradients until
the current step

∆"($) = '∆"($()) − +,-./00 " $() 1

"($) = "($()) + ∆"($)

– Typical ' value is 0.9
• The running average steps

– Get longer in directions where gradient retains the same sign
– Become shorter in directions where the sign keeps flipping

Plain gradient update With momentum

126

Training by gradient descent
• Initialize all weights !",!$,… ,!&
• Do:
– For all ', (,), initialize *+,-.// = 0
– For all 2 = 1: 5

• For every layer):
– Compute *+,678(:;, <;)
– Compute *+,-.// +=

"
? *+,678(:;, <;)

– For every layer):
@A = @A − C(*+,-.//)5

• Until -.// has converged
127

Training with momentum
• Initialize all weights !",!$,… ,!&
• Do:
– For all layers ', initialize ()*+,-- = 0, Δ12 = 0
– For all 3 = 1: 6

• For every layer ':
– Compute gradient ()*789(;<, =<)

– ()*+,-- +=
"
@ ()*789(;<, =<)

– For every layer '
Δ12 = AΔ12 − C ()*+,-- 6

12 = 12 + Δ12

• Until +,-- has converged
128

Momentum Update

• The momentum method
∆"($) = '∆"($()) − +,-./00 "($()) 1

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the historical average step

129

Momentum Update

• The momentum method
∆"($) = '∆"($()) − +,-./00 "($()) 1

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the historical average step

130

Momentum Update

• The momentum method
∆"($) = '∆"($()) − +,-./00 "($()) 1

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the scaled previous step

• Which is actually a running average
131

Momentum Update

• The momentum method
∆"($) = '∆"($()) − +,-./00 "($()) 1

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the scaled previous step

• Which is actually a running average
– To get the final step

132

Momentum update

• Momentum update steps are actually computed in two stages
– First: We take a step against the gradient at the current location
– Second: Then we add a scaled version of the previous step

• The procedure can be made more optimal by reversing the order of
operations..

133

1

2

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend by the (scaled) historical average

– Then compute the gradient at the resultant position
– Add the two to obtain the final step

134

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend the previous step

– Then compute the gradient at the resultant position
– Add the two to obtain the final step

135

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

136

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

137

Nestorov’s Accelerated Gradient

• Nestorov’s method
∆"($) = '∆"($()) − +,-./00 "($()) + '∆"($()) 2

"($) = "($()) + ∆"($)

138

Nestorov’s Accelerated Gradient

• Comparison with momentum (example from
Hinton)

• Converges much faster

139

Training with Nestorov
• Initialize all weights!",!$,… ,!&
• Do:

– For all layers ', initialize ()*+,-- = 0, Δ12 = 0
– For every layer '

12 = 12 + 4Δ12

– For all 5 = 1: 8
• For every layer ':

– Compute gradient ()*9:;(=>, ?>)

– ()*+,-- +=
"
A ()*9:;(=>, ?>)

– For every layer '
12 = 12 − C(()*+,--)8

Δ12 = 4Δ12 − C(()*+,--)8

• Until +,-- has converged
140

Momentum and trend-based
methods..

• We will return to this topic again, very soon..

141

Story so far
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to the
differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve convergence

• Momentum methods which emphasize directions of steady
improvement are demonstrably superior to other methods

142

Coming up

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade
– Divergences..
– Activations
– Normalizations

143

