

Training Neural Networks: Optimization

Intro to Deep Learning, Fall 2020

Quick Recap

• Gradient descent, Backprop

Quick Recap: Training a network



- Define a total "loss" over all training instances
 - Quantifies the difference between desired output and the actual output, as a function of weights
- Find the weights that minimize the loss

Quick Recap: Training networks by gradient descent

$$L(W) = \frac{1}{N_X} \sum_X div(f(X; W), D(X))$$
$$\nabla_W L(W) = \frac{1}{N_X} \sum_X \nabla_W div(f(X; W), D(X))$$

Solved through gradient descent as $\widehat{W} = \arg\min_{W} L(W)$ \longrightarrow $W_k = W_{k-1} - \eta \nabla_W L(W)^T$

- The gradient of the total loss is the average of the gradients of the loss for the individual instances
- The total gradient can be plugged into gradient descent update to learn the network

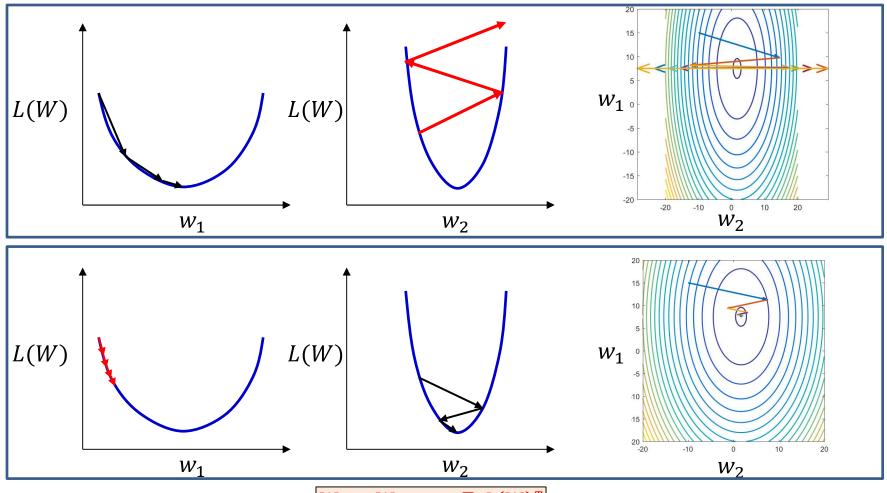
Quick Recap: Training networks by gradient descent $L(W) = \frac{1}{N_X} \sum_{x} \begin{cases} Computed using \\ backpropagation \end{cases}$ $\nabla_W L(W) = \frac{1}{N_X} \sum_{v} \nabla_W div(f(X; W), D(X))$ Solved through gradient descen<u>t as</u>

- The gradient of the total loss is the average of the gradients of the loss for the individual instances
- The gradient can be plugged into gradient descent update to learn the network parameters

Quick Recap

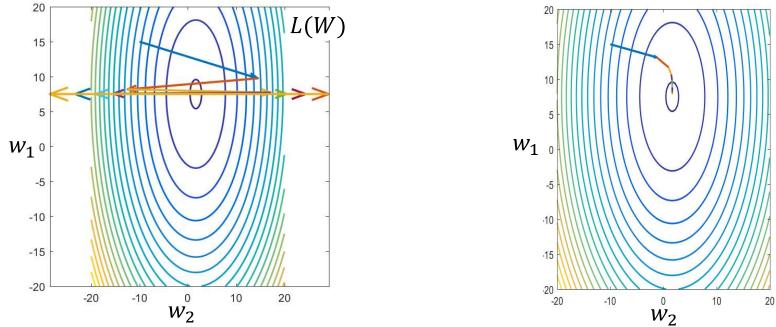
- Gradient descent, Backprop
- The issues with backprop and gradient descent
 - 1. Minimizes a *loss* which *relates* to classification accuracy, but is not actually classification accuracy
 - The divergence is a continuous valued proxy to classification error
 - Minimizing the loss is *expected* to, but not *guaranteed* to minimize classification error
 - 2. Simply minimizing the loss is hard enough...

Quick recap: Problem with gradient descent



- $\frac{W_k = W_{k-1} \eta \nabla_w L(W)^T}{W_k = W_{k-1} \eta \nabla_w L(W)^T}$ A step size that assures fast convergence for a given eccentricity can result in divergence at a higher eccentricity
- .. Or result in extremely slow convergence at lower eccentricity ٠

Quick recap: Problem with gradient descent

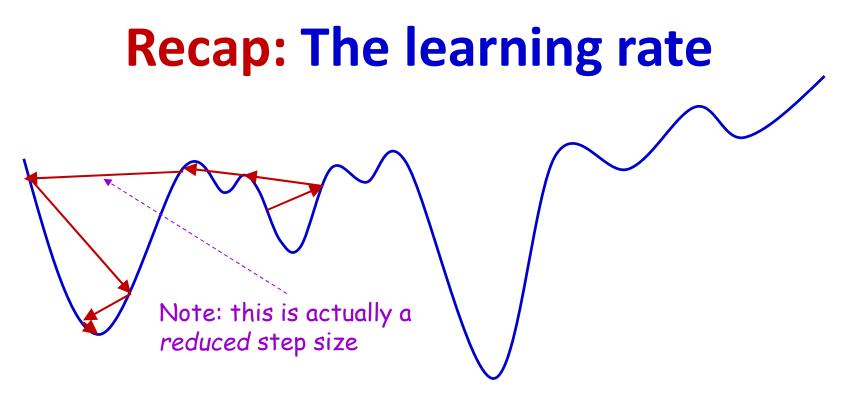


- The loss is a function of many weights (and biases)
 - Has different eccentricities w.r.t different weights
- A fixed step size for all weights in the network can result in the convergence of one weight, while causing a divergence of another

L(W)

Story so far : Second-order methods

- Second-order methods "normalize" the variation along the components to mitigate the problem of different optimal learning rates for different components
 - But this requires computation of inverses of secondorder derivative matrices
 - Computationally infeasible
 - Not stable in non-convex regions of the loss surface
 - Approximate methods address these issues, but simpler solutions may be better

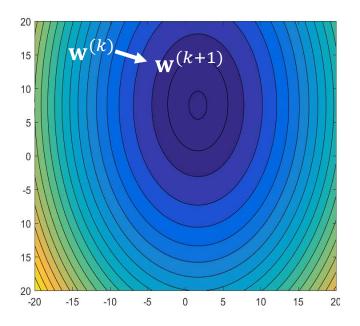


- For complex models such as neural networks the loss function is often not convex
 - Having $\eta > 2\eta_{opt}$ can actually help escape local optima
- Better to start with a large (divergent) learning rate and slowly shrink it over iterations
 - More likely to find better minima

Story so far : Learning rate

- Divergence-causing learning rates may not be a bad thing
 - Particularly for ugly loss functions
- Decaying learning rates provide good compromise between escaping poor local minima and convergence
- Many of the convergence issues arise because we force the same learning rate on all parameters

Lets take a step back



$$\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} - \eta (\nabla_{\mathbf{w}} E)^T$$

$$w_i^{(k+1)} = w_i^{(k)} - \frac{\eta}{\eta} \frac{dE\left(w_i^{(k)}\right)}{dw}$$

 Problems arise because of requiring a fixed step size across all dimensions

- Because step are "tied" to the gradient

• Let's try releasing this requirement

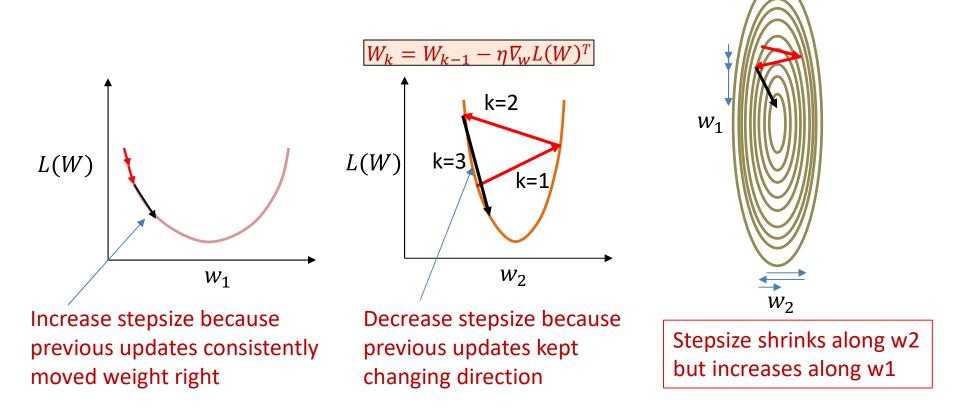
Story so far

- Gradient descent can miss obvious answers
 - And this may be a good thing
- Vanilla gradient descent may be too slow or unstable due to the differences between the dimensions
- Second order methods can normalize the variation across dimensions, but are complex
- Adaptive or decaying learning rates can improve convergence
- Methods that decouple the dimensions can improve convergence
- Momentum methods which emphasize directions of steady improvement are demonstrably superior to other methods

Quick Summary

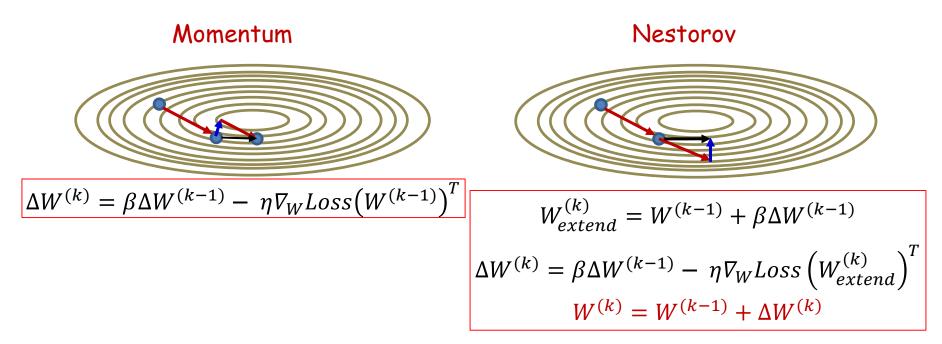
- Gradient descent, Backprop
- The issues with backprop and gradient descent
- Momentum methods..

Momentum methods: principle



- Ideally: Have component-specific step size
 - But the resulting updates will not be against the gradient and do not guarantee descent
- Adaptive solution: Start with a common step size
 - Shrink step size in directions where the weight oscillates
 - Expand step size in directions where the weight moves consistently in one direction

Quick recap: Momentum methods



- Momentum: Retain gradient value, but *smooth out* gradients by maintaining a running average
 - Cancels out steps in directions where the weight value oscillates
 - Adaptively increases step size in directions of consistent change

Recap

- Neural networks are universal approximators
- We must *train* them to approximate any function
- Networks are trained to minimize total "error" on a training set
 - We do so through empirical risk minimization
- We use variants of gradient descent to do so
 - Gradients are computed through backpropagation

Recap

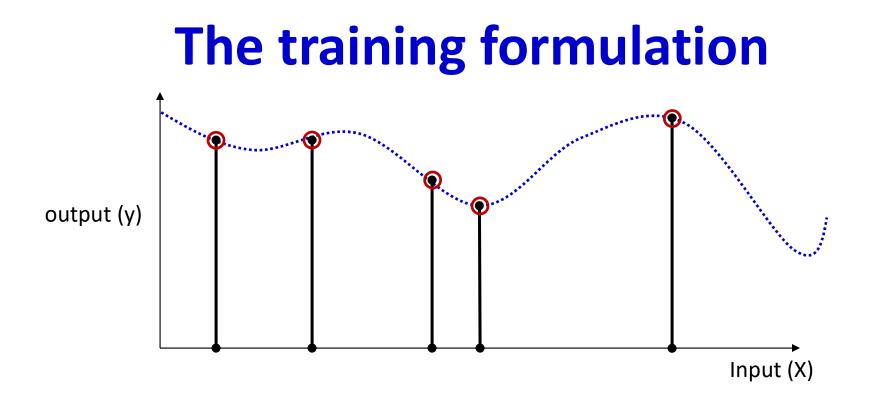
- Vanilla gradient descent may be too slow or unstable
- Better convergence can be obtained through
 - Second order methods that normalize the variation across dimensions
 - Adaptive or decaying learning rates that can improve convergence
 - Methods like Rprop that decouple the dimensions can improve convergence
 - Momentum methods which emphasize directions of steady improvement and deemphasize unstable directions

Moving on...

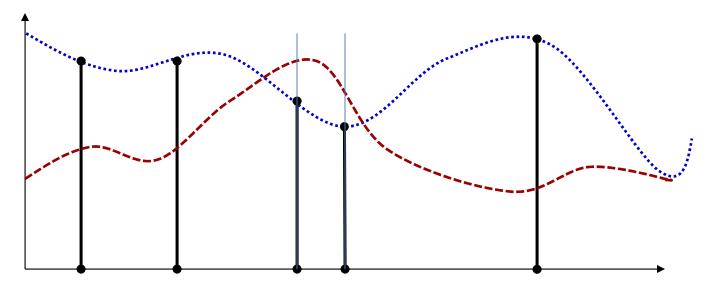
- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations

Moving on: Topics for the day

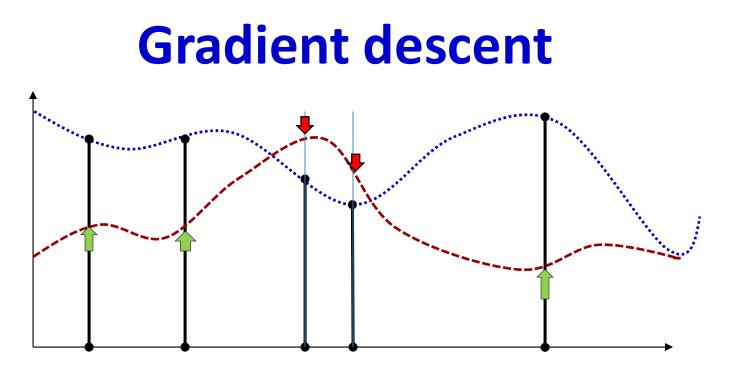
- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations



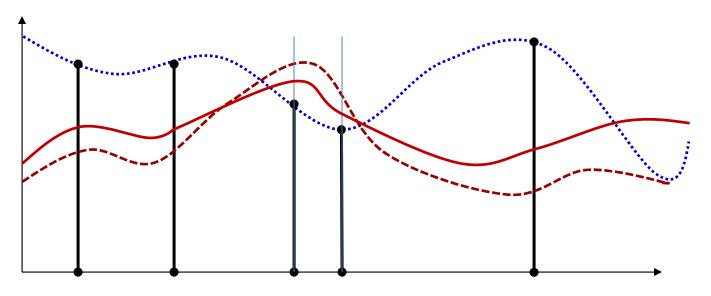
• Given input output pairs at a number of locations, estimate the entire function



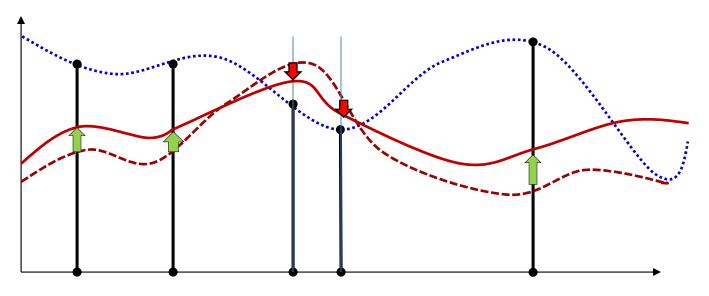
• Start with an initial function



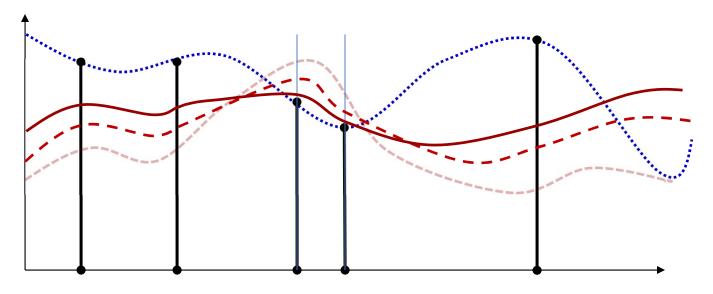
- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points



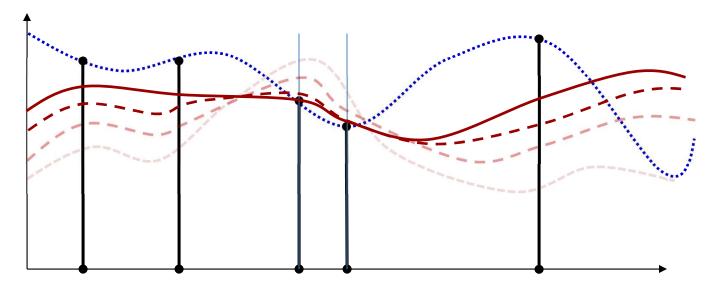
- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points



- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

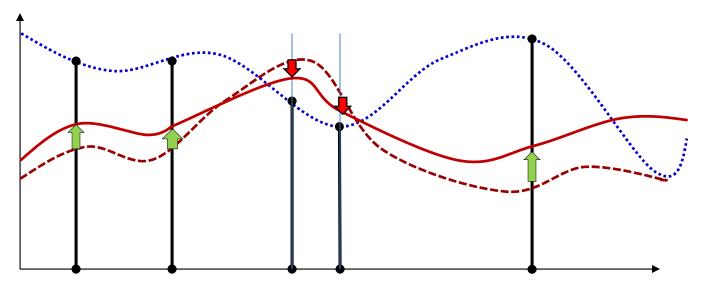


- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

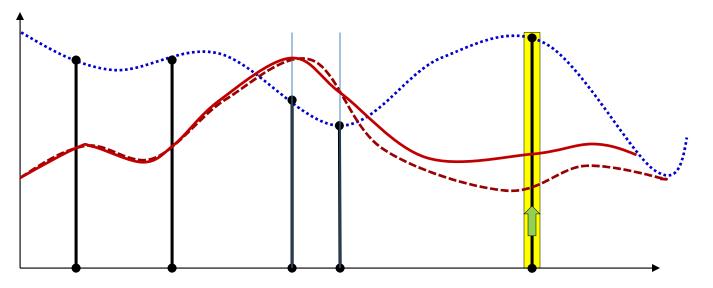


- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

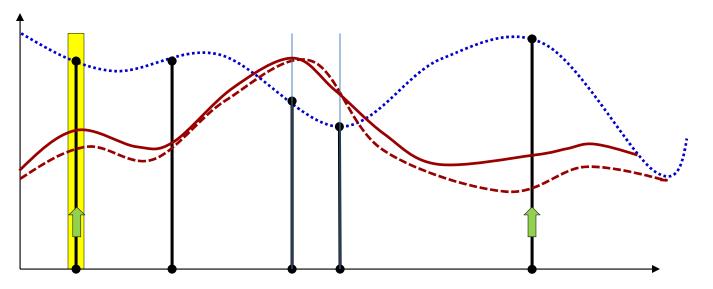
Effect of number of samples



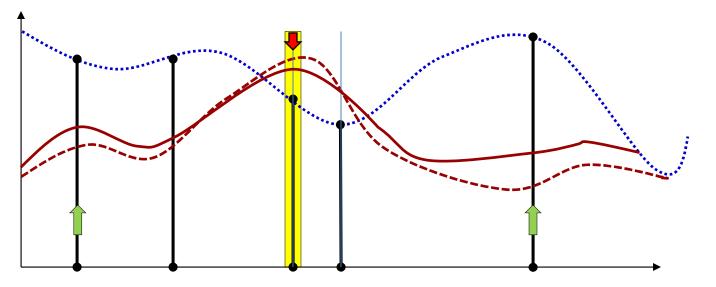
- Problem with conventional gradient descent: we try to simultaneously adjust the function at *all* training points
 - We must process *all* training points before making a single adjustment
 - "Batch" update



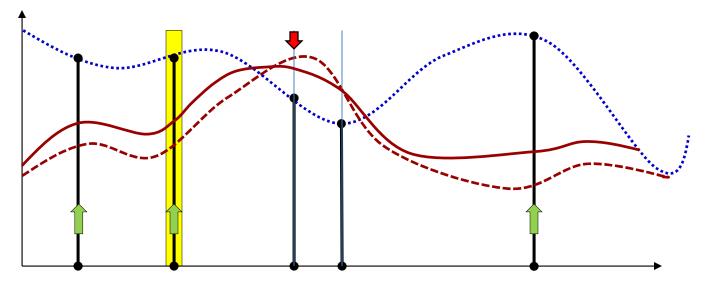
- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



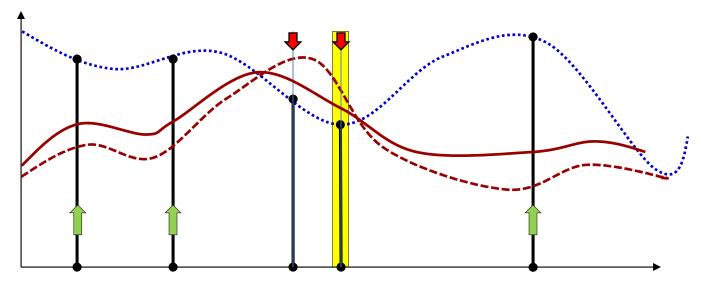
- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
 - Eventually, when we have processed all the training points, we will have adjusted the entire function
 - With *greater* overall adjustment than we would if we made a single "Batch" update

Incremental Update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights W_1, W_2, \dots, W_K
- Do:
 - For all t = 1:T
 - For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

 $W_k = W_k - \eta \nabla_{W_k} \mathbf{D} i \boldsymbol{\nu} (\boldsymbol{Y}_t, \boldsymbol{d}_t)^T$

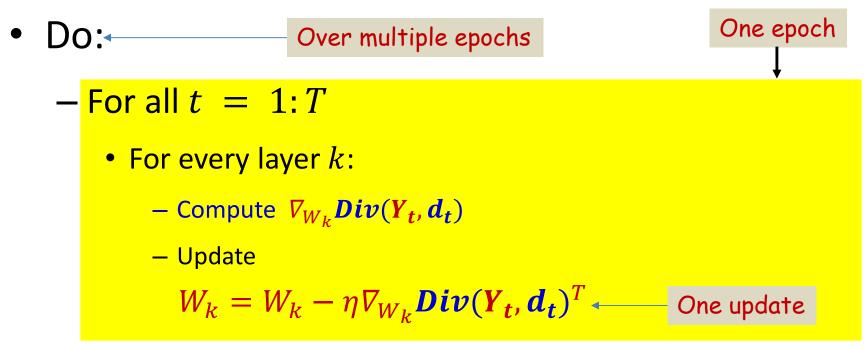
• Until Loss has converged

Incremental Updates

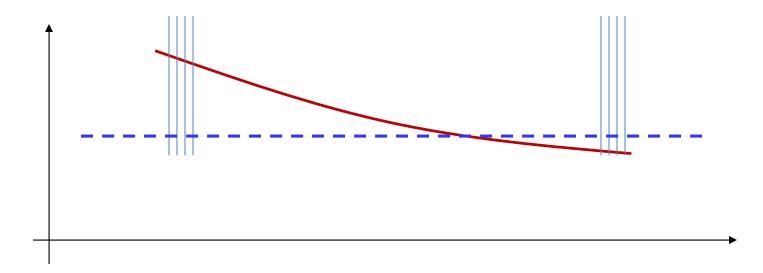
- The iterations can make multiple passes over the data
- A single pass through the entire training data is called an "epoch"
 - An epoch over a training set with T samples results in T updates of parameters

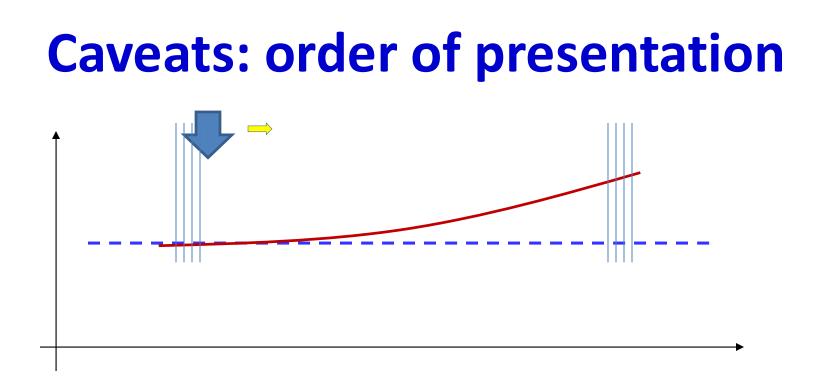
Incremental Update

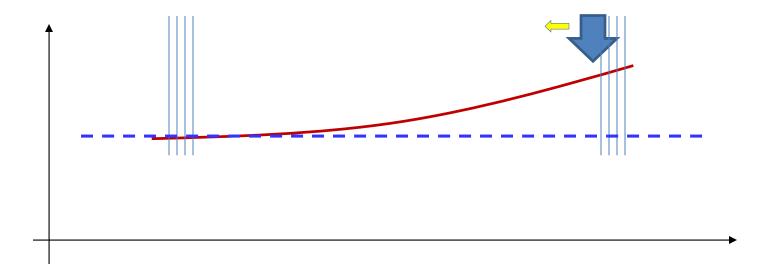
- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights W_1, W_2, \dots, W_K

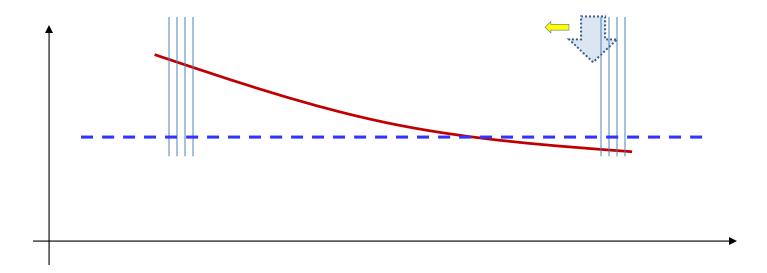


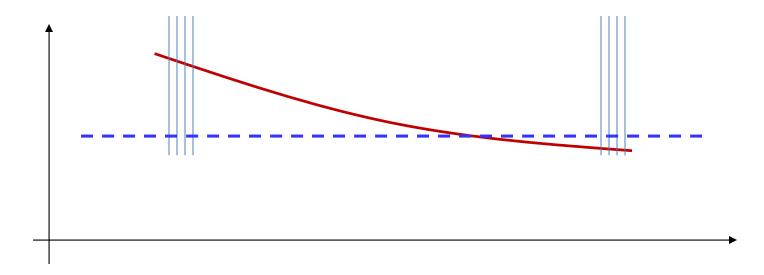
Until Loss has converged



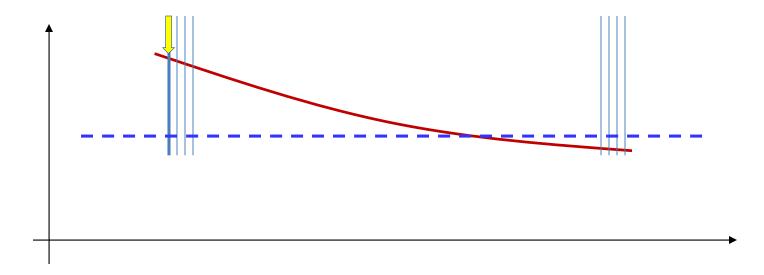




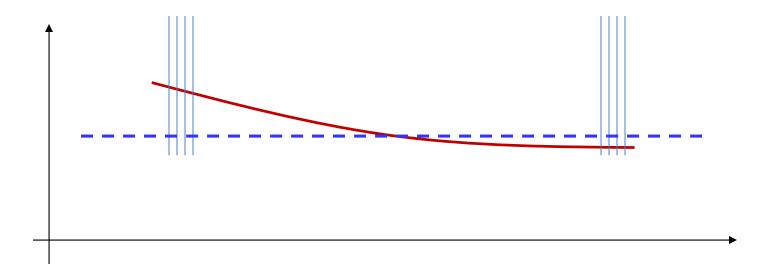




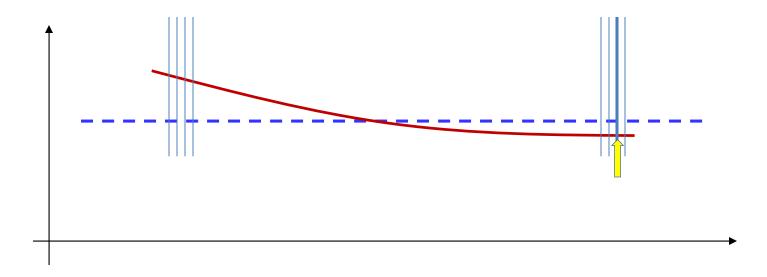
- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



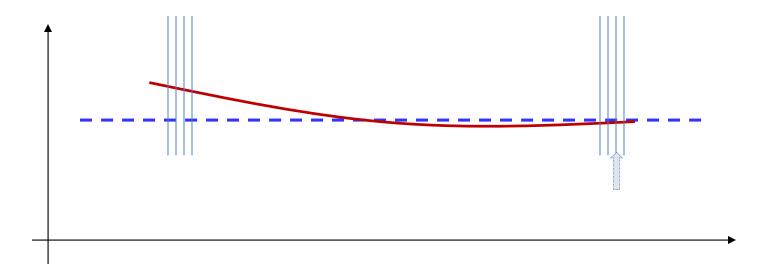
- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights W_1, W_2, \dots, W_K
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For all t = 1:T
 - For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

 $W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)^T$

• Until *Loss* has converged

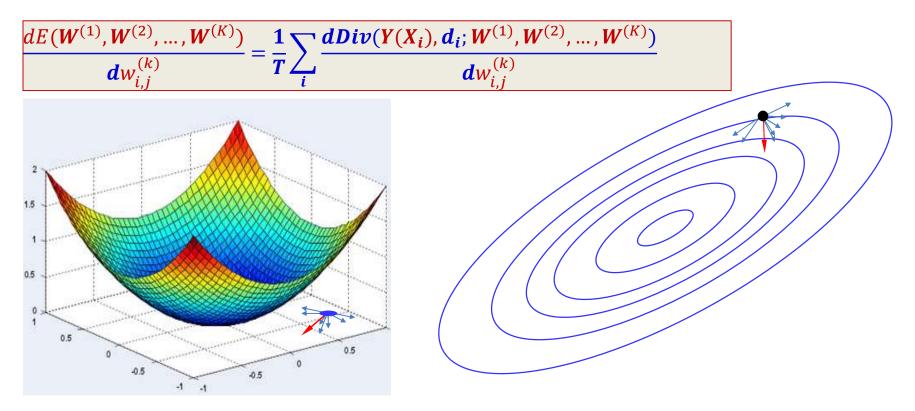
Story so far

- In any gradient descent optimization problem, presenting training instances incrementally can be more effective than presenting them all at once
 - Provided training instances are provided in random order
 - "Stochastic Gradient Descent"
- This also holds for training neural networks

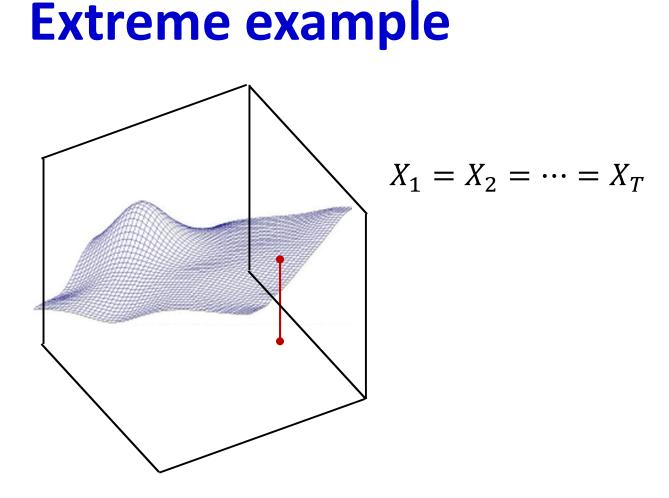
Explanations and restrictions

- So why does this process of incremental updates work?
- Under what conditions?
- For "why": first consider a simplistic explanation that's often given
 - Look at an extreme example

The expected behavior of the gradient

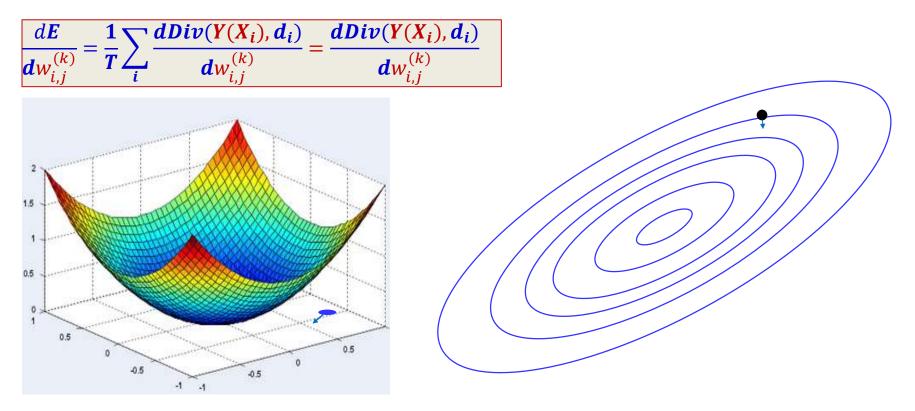


- The individual training instances contribute different directions to the overall gradient
 - The final gradient points is the average of individual gradients
 - It points towards the *net* direction

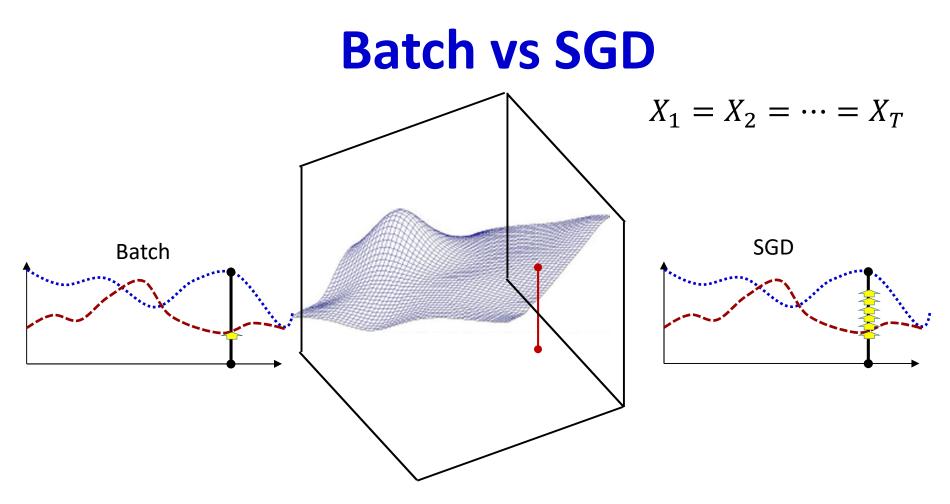


• Extreme instance of data clotting: all the training instances are exactly the same

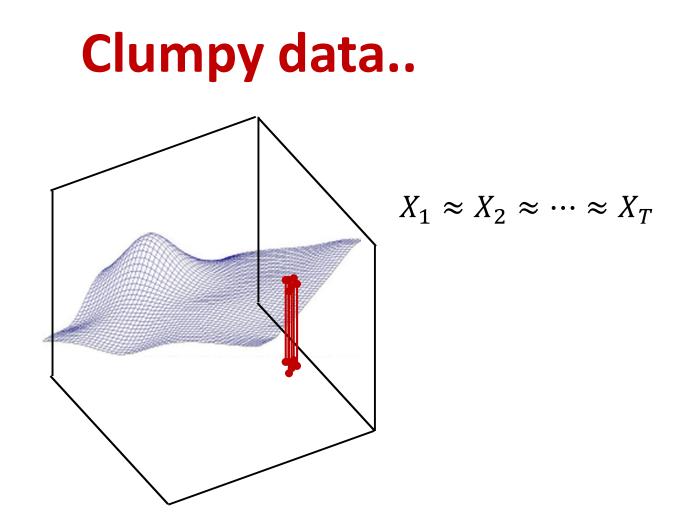
The expected behavior of the gradient



- The individual training instance contribute identical directions to the overall gradient
 - The final gradient points is simply the gradient for an individual instance

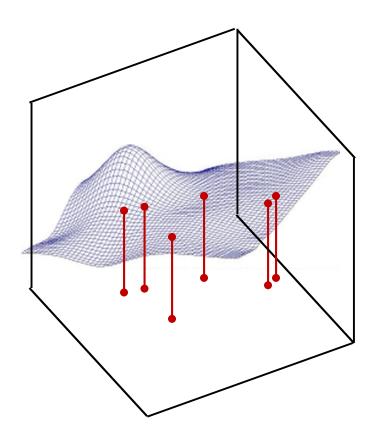


- Batch gradient descent operates over T training instances to get a *single* update
- SGD gets T updates for the same computation



• Also holds if all the data are not identical, but are tightly clumped together

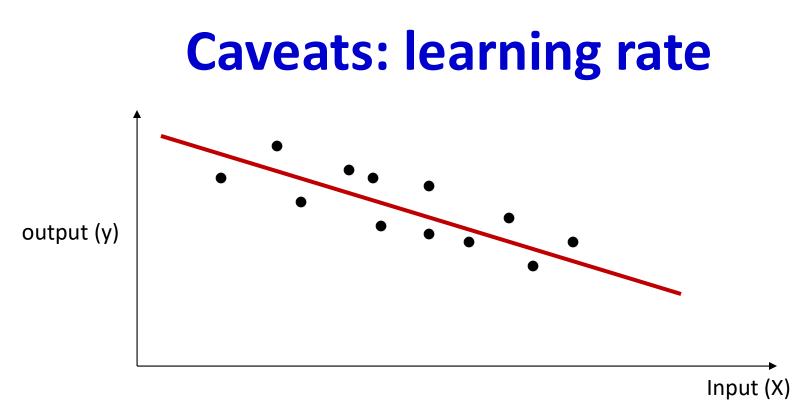
Clumpy data..



• As data get increasingly diverse, the benefits of incremental updates decrease, but do not entirely vanish

When does it work

- What are the considerations?
- And how well does it work?



- Except in the case of a perfect fit, even an optimal overall fit will look incorrect to *individual* instances
 - Correcting the function for individual instances will lead to never-ending, non-convergent updates
 - We must *shrink* the learning rate with iterations to prevent this
 - Correction for individual instances with the eventual miniscule learning rates will not modify the function

Incremental Update: Stochastic Gradient Descent

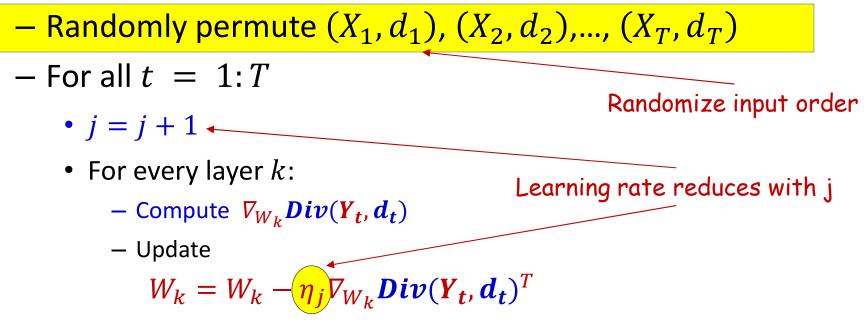
- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For all t = 1:T
 - j = j + 1
 - For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

 $W_k = W_k - \eta_j \nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)^T$

• Until *Loss* has converged

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:



• Until Loss has converged

SGD convergence

- SGD converges "almost surely" to a global or local minimum for most functions
 - Sufficient condition: step sizes follow the following conditions (Robbins and Munro 1951)

$$\sum_k \eta_k = \infty$$

• Eventually the entire parameter space can be searched

$$\sum_k \eta_k^2 < \infty$$

- The steps shrink
- The fastest converging series that satisfies both above requirements is

$$\eta_k \propto \frac{1}{k}$$

- This is the optimal rate of shrinking the step size for strongly convex functions
- More generally, the learning rates are heuristically determined
- If the loss is convex, SGD converges to the optimal solution
- For non-convex losses SGD converges to a local minimum

SGD convergence

- We will define convergence in terms of the number of iterations taken to get within ϵ of the optimal solution
 - $\left| f \left(W^{(k)} \right) f (W^*) \right| < \epsilon$
 - Note: f(W) here is the optimization objective on the *entire* training data, although SGD itself updates after every training instance
- Using the optimal learning rate 1/k, for strongly convex functions,

$$\left| f(W^{(k)}) - f(W^*) \right| < \frac{1}{k} \left| f(W^{(0)}) - f(W^*) \right|$$

- Strongly convex \rightarrow Can be placed inside a quadratic bowl, touching at any point
- Giving us the iterations to ϵ convergence as $O\left(\frac{1}{\epsilon}\right)$
- For generically convex (but not strongly convex) function, various proofs report an ϵ convergence of $\frac{1}{\sqrt{k}}$ using a learning rate of $\frac{1}{\sqrt{k}}$.

Batch gradient convergence

• In contrast, using the batch update method, for *strongly convex* functions,

$$\left| f(W^{(k)}) - f(W^*) \right| < c^k \left| f(W^{(0)}) - f(W^*) \right|$$

– Giving us the iterations to ϵ convergence as $O\left(log\left(\frac{1}{\epsilon}\right)\right)$

- For generic convex functions, iterations to ϵ convergence is $O\left(\frac{1}{\epsilon}\right)$
- Batch gradients converge "faster"
 - But SGD performs T updates for every batch update

SGD Convergence: Loss value

If:

- f is λ -strongly convex, and
- at step t we have a noisy estimate of the subgradient \hat{g}_t with $\mathbb{E}[\|\hat{g}_t\|^2] \leq G^2$ for all t,
- and we use step size $\eta_t = 1/\lambda_t$

Then for any T > 1:

$$\mathbb{E}[f(w_T) - f(w^*)] \le \frac{17G^2(1 + \log(T))}{\lambda T}$$

SGD Convergence

- We can bound the expected difference between the loss over our data using the optimal weights w^* and the weights w_T at any single iteration to $\mathcal{O}\left(\frac{\log(T)}{T}\right)$ for strongly convex loss or $\mathcal{O}\left(\frac{\log(T)}{\sqrt{T}}\right)$ for convex loss
- Averaging schemes can improve the bound to $\mathcal{O}\left(\frac{1}{T}\right)$ and $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$
- Smoothness of the loss is not required

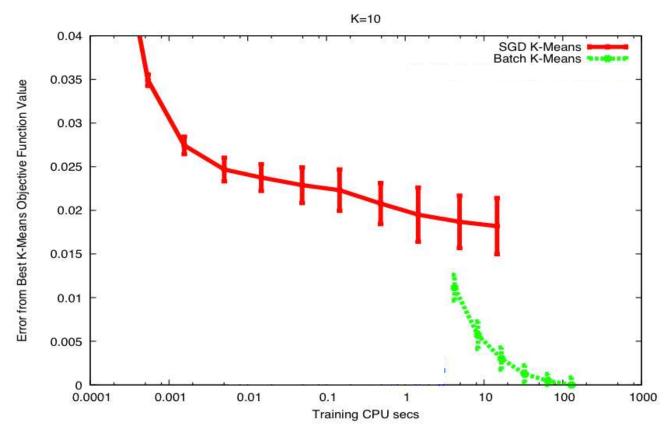
SGD Convergence and weight averaging

Polynomial Decay Averaging:

$$\overline{w}_t^{\gamma} = \left(1 - \frac{\gamma + 1}{t + \gamma}\right) \overline{w}_{t-1}^{\gamma} + \frac{\gamma + 1}{t + \gamma} w_t$$

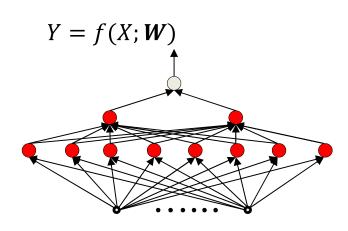
With γ some small positive constant, e.g. $\gamma = 3$ Achieves $\mathcal{O}\left(\frac{1}{T}\right)$ (strongly convex) and $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ (convex) convergence

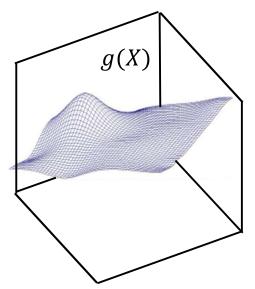
SGD example



- A simpler problem: K-means
- Note: SGD converges slower
- Also note the rather large variation between runs
 - Lets try to understand these results..

Recall: Modelling a function

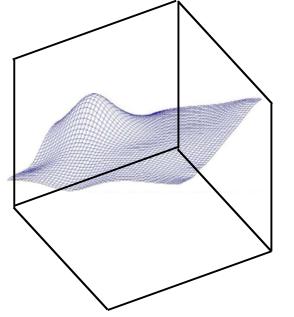


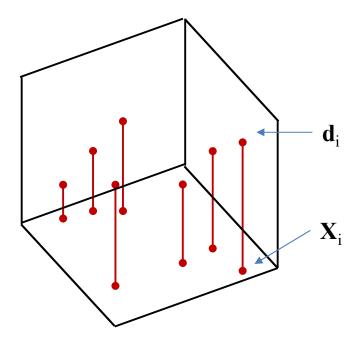


To learn a network f(X; W) to model a function g(X) we minimize the *expected divergence*

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E\left[div(f(X; W), g(X))\right]$$

Recall: The *Empirical* **risk**



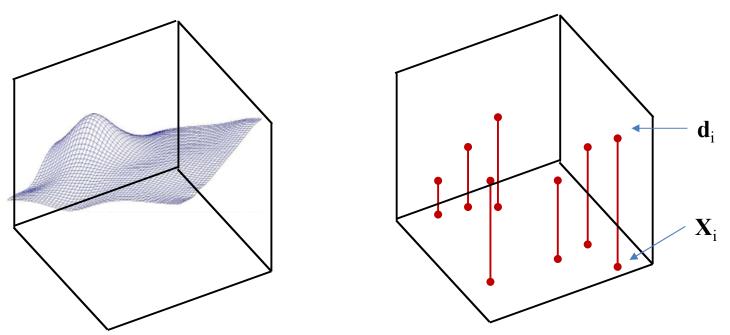


• In practice, we minimize the *empirical risk (or loss)*

$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$
$$\widehat{W} = \underset{W}{\operatorname{argmin}} Loss(W)$$

• The expected value of the empirical risk is actually the expected divergence E[Loss(W)] = E[div(f(X; W), g(X))]

Recall: The Empirical risk



• In practice, we minimize the *empirical risk (or loss)*

$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected divergence Though there is no guarantee that minimizing it will minimize the expected divergence

E[Loss(W)] = E[div(f(X; W), g(X))]

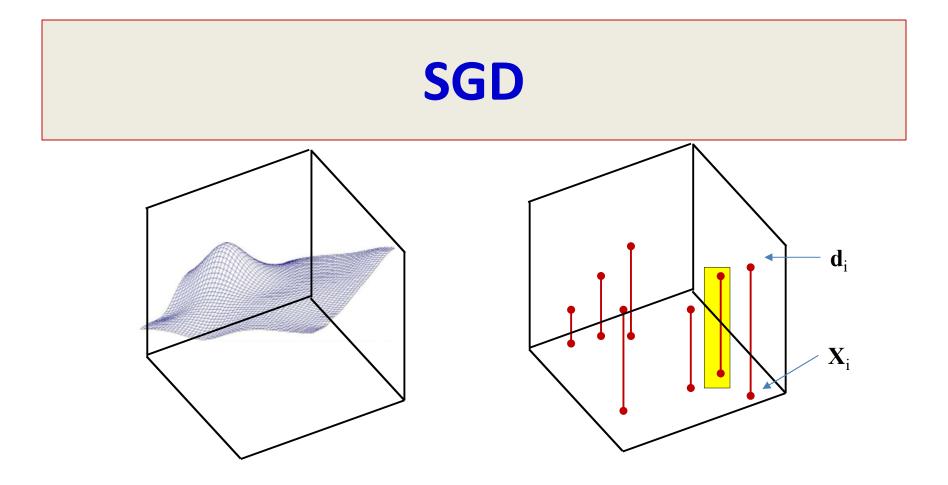
Recall: The Empirical risk $f(x) = \frac{1}{2} \int \frac{1}{2} \int$

minimizes the empirical risk will differ significantly from the W that minimizes the expected divergence

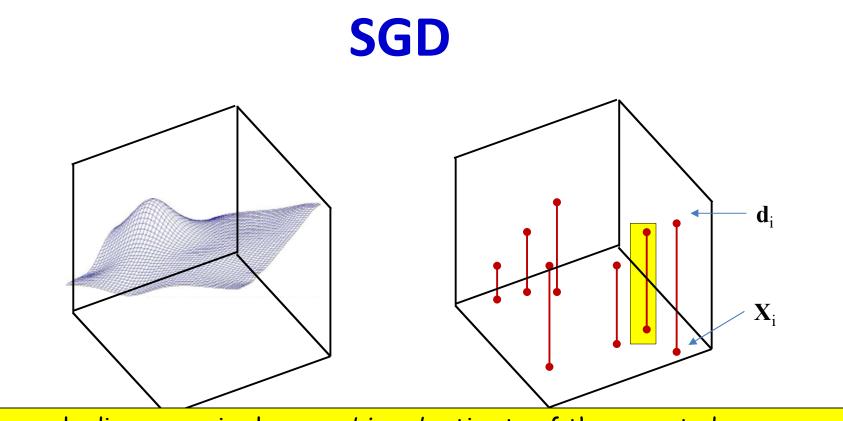
$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected divergence Though there is no guarantee that minimizing it will minimize the expected divergence

E[Loss(W)] = E[div(f(X; W), g(X))]

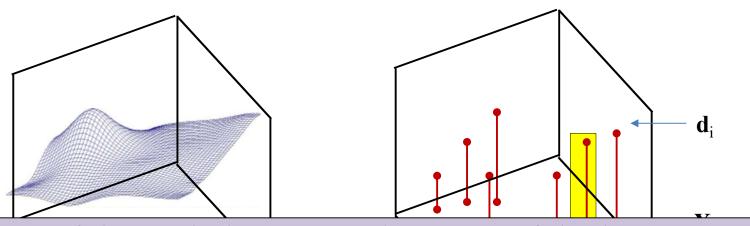


- At each iteration, SGD focuses on the divergence of a single sample div(f(X_i; W), d_i)
- The expected value of the sample error is **still** the expected divergence E[div(f(X; W), g(X))] 70



The sample divergence is also an unbiased estimate of the expected error

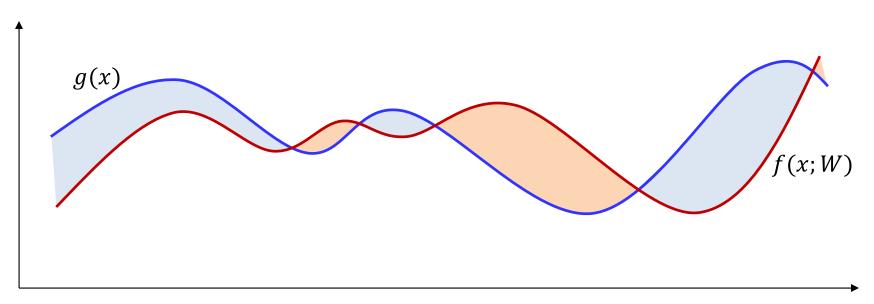
- At each iteration, SGD focuses on the divergence of a single sample div(f(X_i; W), d_i)
- The expected value of the sample error is **still** the expected divergence E[div(f(X; W), g(X))] 71



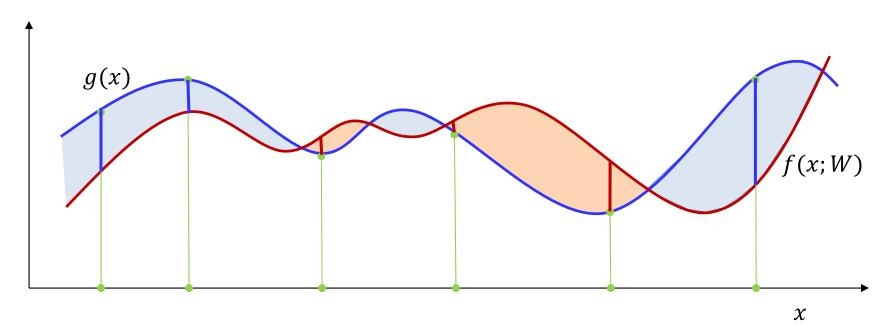
The variance of the sample divergence is the variance of the divergence itself: var(div). This is N times the variance of the empirical average minimized by batch update

The sample divergence is also an unbiased estimate of the expected error

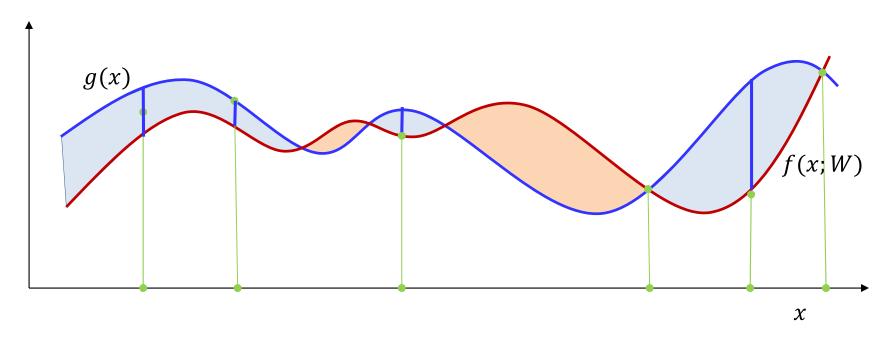
- At each iteration, SGD focuses on the divergence of a single sample div(f(X_i; W), d_i)
- The expected value of the sample error is **still** the expected divergence E[div(f(X; W), g(X))] 72



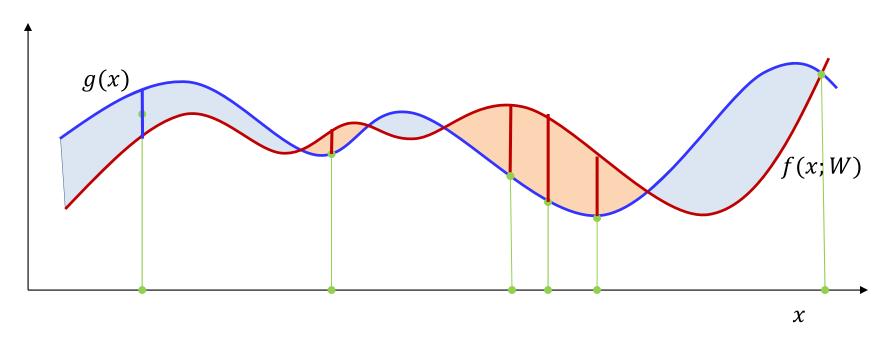
- The blue curve is the function being approximated
- The red curve is the approximation by the model at a given W
- The heights of the shaded regions represent the point-by-point error
 - The divergence is a function of the error
 - We want to find the W that minimizes the average divergence



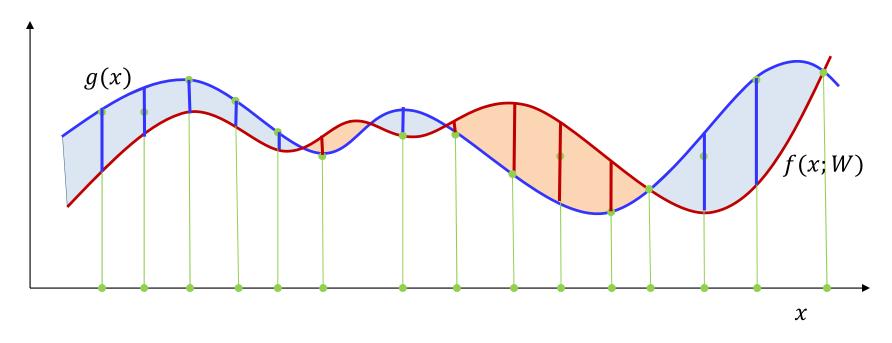
 Sample estimate approximates the shaded area with the average length of the lines



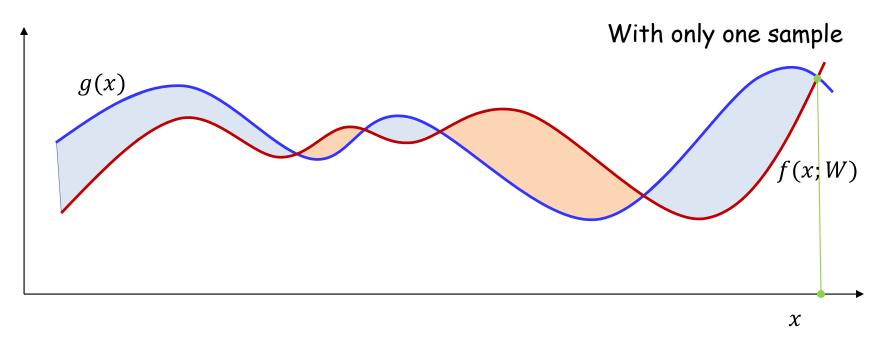
- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples



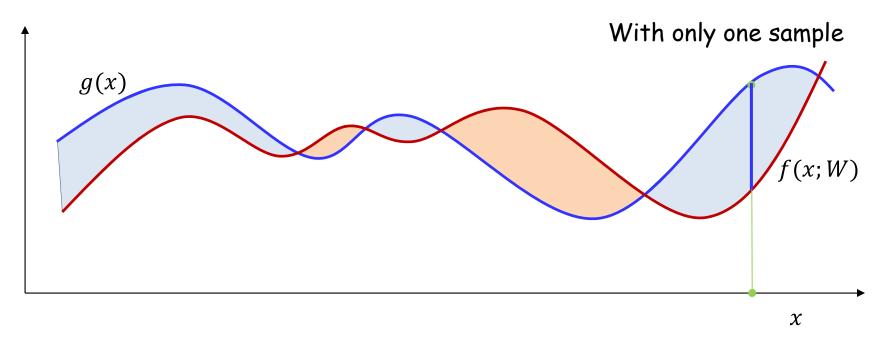
- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples



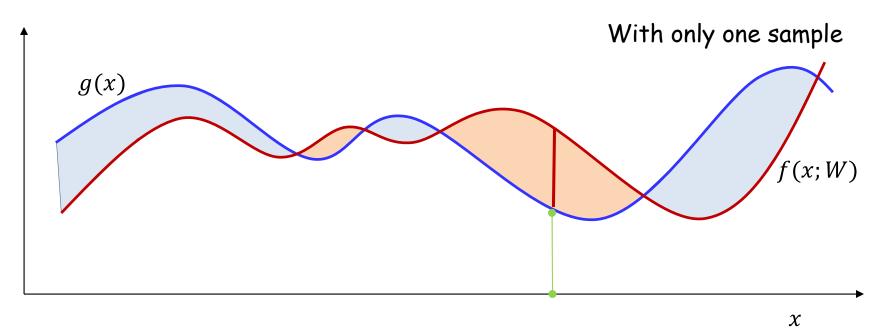
- Having more samples makes the estimate more robust to changes in the position of samples
 - The variance of the estimate is smaller



- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

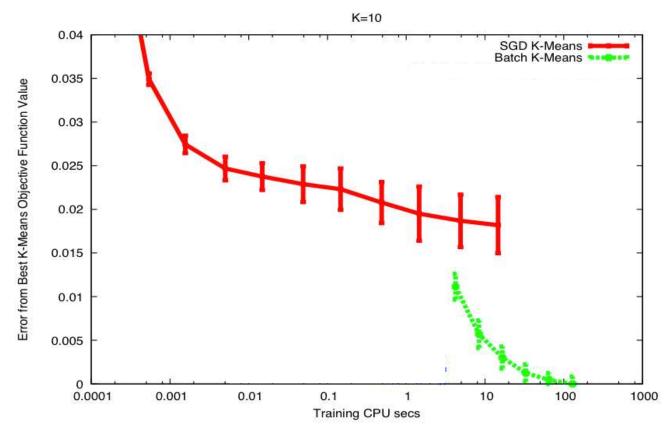


- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly



- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

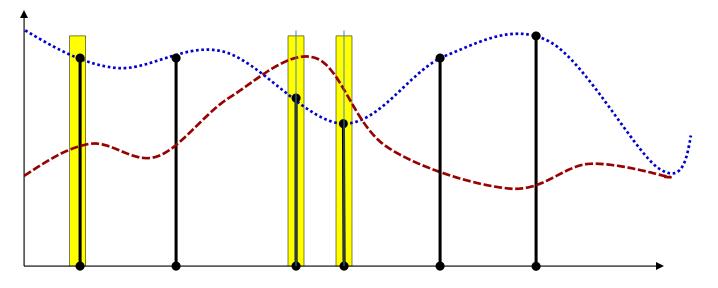
SGD example



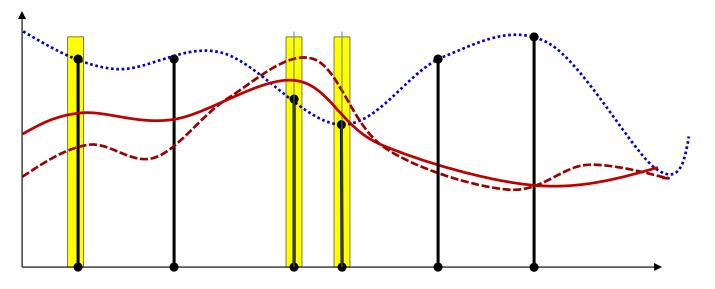
- A simpler problem: K-means
- Note: SGD converges slower
- Also has large variation between runs

SGD vs batch

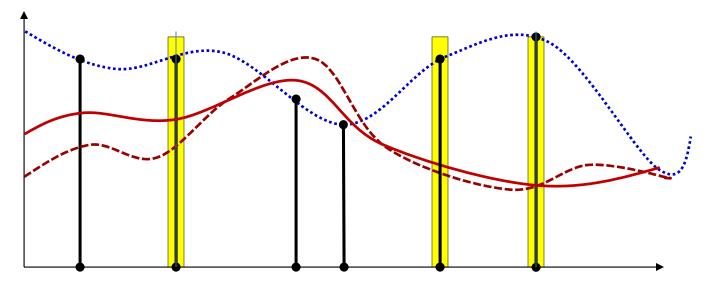
- SGD uses the gradient from only one sample at a time, and is consequently high variance
- But also provides significantly quicker updates than batch
- Is there a good medium?



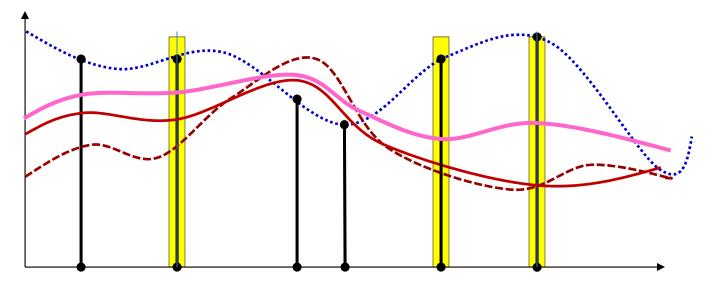
- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data



- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data



- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data



- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $-\Delta W_k = 0$
 - For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)^T$
 - Update
 - For every layer k:

$$W_k = W_k - \eta_j \Delta W_k$$

• Until *Err* has converged

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $-\Delta W_k = 0$
 - For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_W_k Div(Y_t, d_t)^T$
 - Update
 - For every layer k:

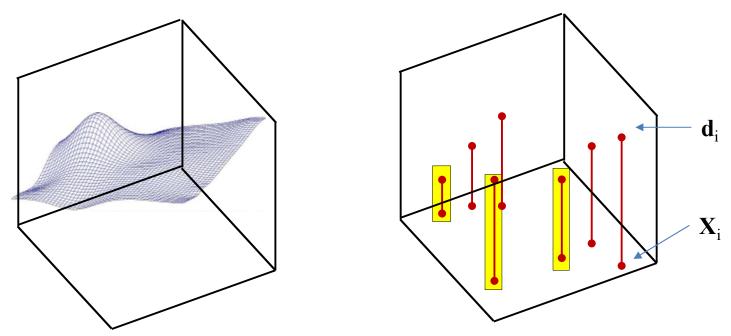
$$W_k = W_k + \eta_j \Delta W_k$$

• Until *Err* has converged

Mini-batch size

Shrinking step size

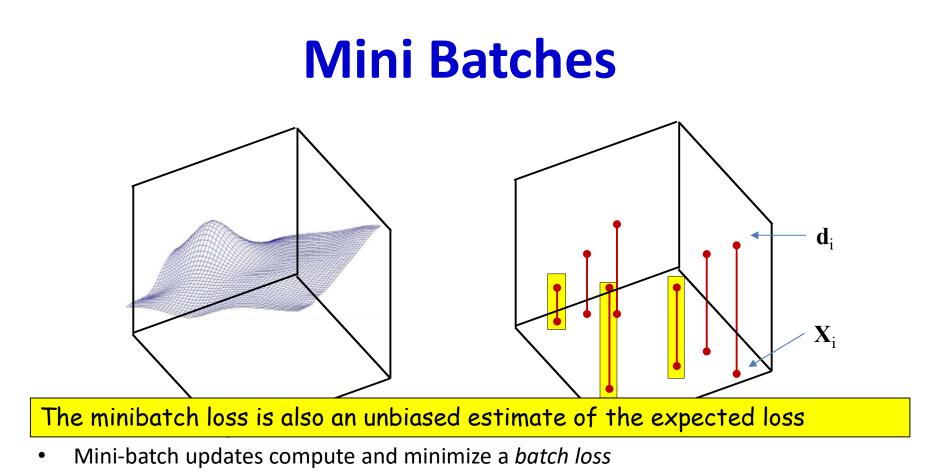
Mini Batches



• Mini-batch updates compute and minimize a *batch loss*

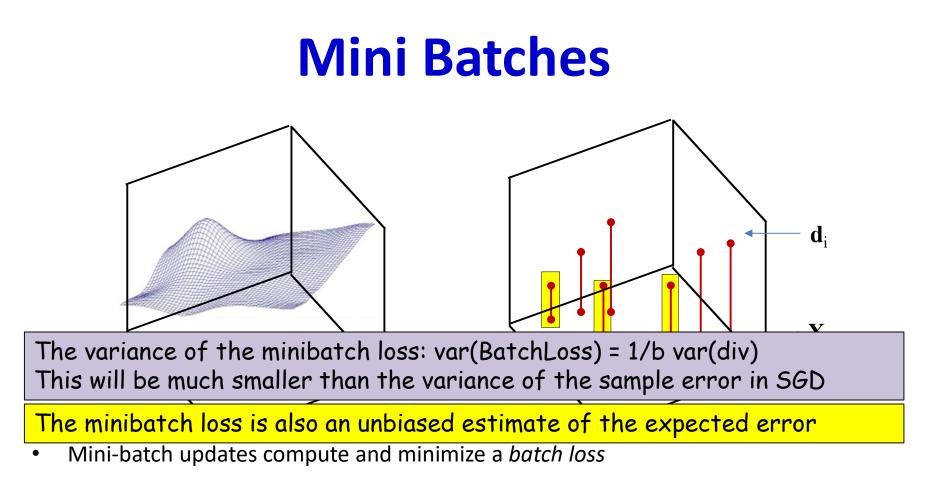
$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]



$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]



$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

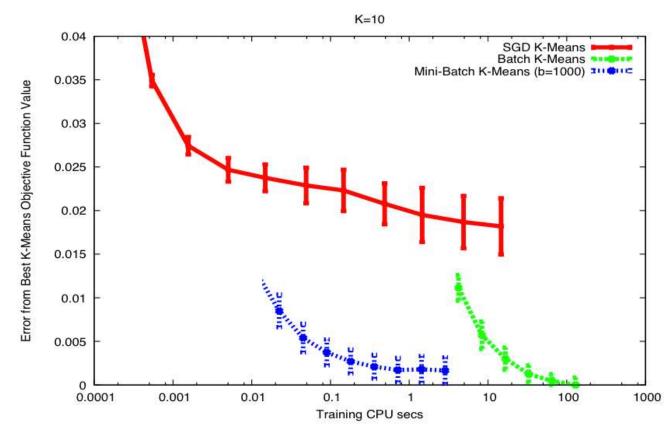
• The *expected value* of the *batch loss* is also the *expected divergence*

E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]

Minibatch convergence

- For convex functions, convergence rate for SGD is $\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$.
- For *mini-batch* updates with batches of size *b*, the convergence rate is $O\left(\frac{1}{\sqrt{bk}} + \frac{1}{k}\right)$
 - Apparently an improvement of \sqrt{b} over SGD
 - But since the batch size is b, we perform b times as many computations per iteration as SGD
 - We actually get a *degradation* of \sqrt{b}
- However, in practice
 - The objectives are generally not convex; mini-batches are more effective with the right learning rates
 - We also get additional benefits of vector processing

SGD example



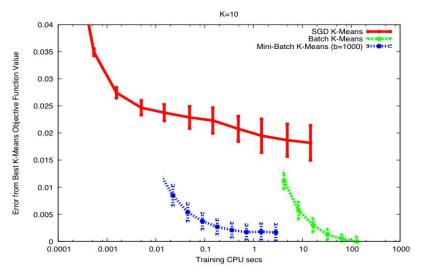
• Mini-batch performs comparably to batch training on this simple problem

But converges orders of magnitude faster

Measuring Loss

 Convergence is generally defined in terms of the *overall training* loss

Not sample or batch loss



- Infeasible to actually measure the overall training loss after each iteration
- More typically, we estimate is as
 - Divergence or classification error on a held-out set
 - Average sample/batch loss over the past N samples/batches

Training and minibatches

- In practice, training is usually performed using minibatches
 - The mini-batch size is a hyper parameter to be optimized
- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
 - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation

- SGD: Presenting training instances one-at-a-time can be more effective than full-batch training
 - Provided they are provided in random order
- For SGD to converge, the learning rate must shrink sufficiently rapidly with iterations
 - Otherwise the learning will continuously "chase" the latest sample
- SGD estimates have higher variance than batch estimates
- Minibatch updates operate on *batches* of instances at a time
 - Estimates have lower variance than SGD
 - Convergence rate is theoretically worse than SGD
 - But we compensate by being able to perform batch processing

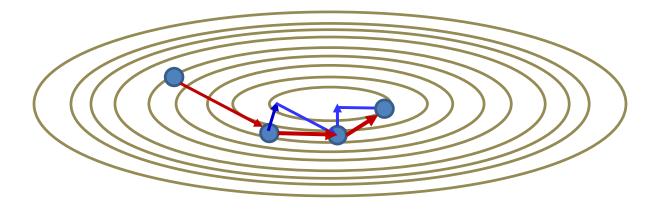
Training and minibatches

- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
 - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation

Moving on: Topics for the day

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations

Recall: Momentum



• The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - n \nabla_w Loss(W^{(k-1)})$

$$\Delta W (0) = \beta \Delta W (0) - \eta V_W LOSS(W (0) - 1))$$

• Updates using a running average of the gradient

Momentum and incremental updates

SGD instance or minibatch loss

• The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss \left(W^{(k-1)} \right)^T$$

- Incremental SGD and mini-batch gradients tend to have high variance
- Momentum smooths out the variations
 - Smoother and faster convergence

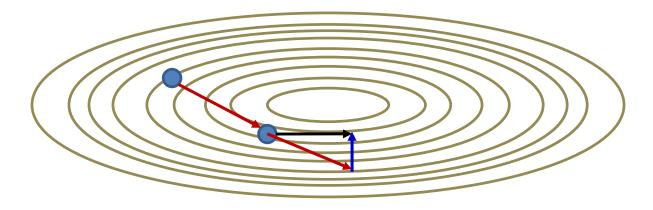
Momentum: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K; j = 0, \Delta W_k = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1:b:T
 - j = j + 1
 - For every layer k:
 - $-\nabla_{W_k}Loss = 0$
 - For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\nabla_{W_k} Loss += \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)$
 - Update
 - For every layer k:

$$\Delta W_k = \beta \Delta W_k - \eta_j (\nabla_{W_k} Loss)^T$$
$$W_k = W_k + \Delta W_k$$

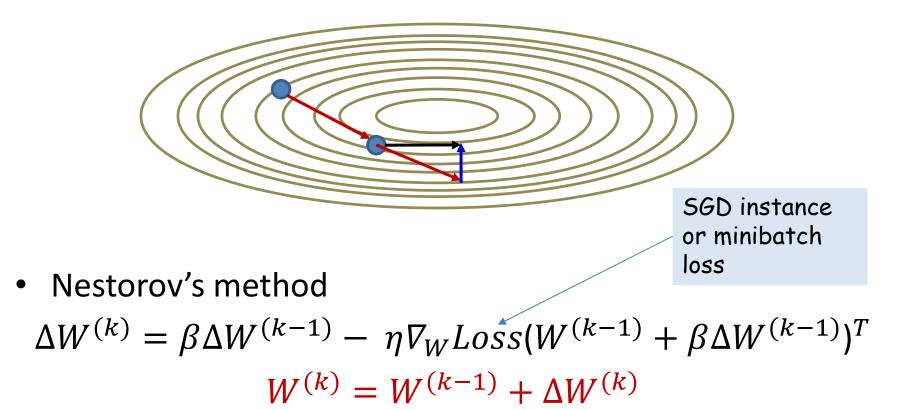
• Until *Loss* has converged

Nestorov's Accelerated Gradient



- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient at the resultant position
 - Add the two to obtain the final step
- This also applies directly to incremental update methods
 - The accelerated gradient smooths out the variance in the gradients

Nestorov's Accelerated Gradient



Nestorov: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K; j = 0, \Delta W_k = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $W_k = W_k + \beta \Delta W_k$
 - $\nabla_{W_k} Loss = 0$
 - For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\nabla_{W_k} Loss += \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)$
 - Update
 - For every layer k:

$$W_{k} = W_{k} - \eta_{j} \nabla_{W_{k}} Loss^{T}$$
$$\Delta W_{k} = \beta \Delta W_{k} - \eta_{j} \nabla_{W_{k}} Loss^{T}$$

• Until *Loss* has converged

Still higher-order methods

- Momentum and Nestorov's method improve convergence by normalizing the *mean* of the derivatives
- More recent methods take this one step further by also considering their variance
 - RMS Prop
 - Adagrad
 - AdaDelta

— …

- ADAM: very popular in practice
- All roughly equivalent in performance

Smoothing the trajectory

	Step	X component	Y component
	1	1	+2.5
(1AZ A	2	1	-3
$\left(\left(\frac{1}{1} \right) \right)$	3	2	+2.5
	4	1	-2
	5	1.5	1.5

- Observation: Steps in "oscillatory" directions show large total movement
 - In the example, total motion in the vertical direction is much greater than in the horizontal direction
 - Can happen even when momentum or Nestorov are used
- Improvement: Dampen step size in directions with high motion
 - Second order term

Normalizing steps by second moment

- Modify usual gradient-based update:
 - Scale updates in every component in inverse proportion to the total movement of that component in recent past
 - According to their variation (not just their average)
- This will change the relative update sizes for the individual components
 - In the above example it would scale *down* Y component
 - And scale up X component (in comparison)
- We will see two popular methods that embody this principle...

RMS Prop

- Notation:
 - Updates are by parameter
 - Derivative of loss w.r.t any individual parameter w is shown as $\partial_w D$
 - Batch or minibatch loss, or individual divergence for batch/minibatch/SGD
 - The **squared** derivative is $\partial_w^2 D = (\partial_w D)^2$
 - Short-hand notation represents the squared derivative, not the second derivative
 - The *mean squared* derivative is a running estimate of the average squared derivative. We will show this as $E[\partial_w^2 D]$
- Modified update rule: We want to
 - scale down updates with large mean squared derivatives
 - scale up updates with small mean squared derivatives

RMS Prop

- This is a variant on the *basic* mini-batch SGD algorithm
- Procedure:
 - Maintain a running estimate of the mean squared value of derivatives for each parameter
 - Scale update of the parameter by the *inverse* of the *root mean* squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1-\gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

RMS Prop

- This is a variant on the *basic* mini-batch SGD algorithm
- Procedure:
 - Maintain a running estimate of the mean squared value of derivatives for each parameter
 - Scale update of the parameter by the *inverse* of the *root mean* squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1-\gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

Note similarity to RPROP The magnitude of the derivative is being normalized out

RMS Prop (updates are for each weight of each layer)

- Do:
 - Randomly shuffle inputs to change their order
 - Initialize: k = 1; for all weights w in all layers, $E[\partial_w^2 D]_k = 0$
 - For all t = 1: B: T (incrementing in blocks of B inputs)
 - For all weights in all layers initialize $(\partial_w D)_k = 0$
 - For b = 0: B 1
 - Compute
 - » Output $Y(X_{t+b})$
 - » Compute gradient $\frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$

» Compute
$$(\partial_w D)_k + = \frac{1}{B} \frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$$

• update: for all
$$w \in \{w_{\{ij\}}^k \forall i, j, k\}$$

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1-\gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

• k = k + 1

Typical values: $\gamma = 0.9$ $\eta = 0.001$

• Until loss has converged

ADAM: RMSprop with momentum

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the *momentum-augmented* gradient
 - Considers both first and second moments
- Procedure:
 - Maintain a running estimate of the mean derivative for each parameter
 - Maintain a running estimate of the mean squared value of derivatives for each parameter
 - Scale update of the parameter by the *inverse* of the root mean squared derivative

$$m_{k} = \delta m_{k-1} + (1 - \delta)(\partial_{w}D)_{k}$$

$$v_{k} = \gamma v_{k-1} + (1 - \gamma)(\partial_{w}^{2}D)_{k}$$

$$\widehat{m}_{k} = \frac{m_{k}}{1 - \delta^{k}}, \qquad \widehat{v}_{k} = \frac{v_{k}}{1 - \gamma^{k}}$$

$$w_{k+1} = w_{k} - \frac{\eta}{\sqrt{\widehat{v}_{k} + \epsilon}} \widehat{m}_{k}$$

ADAM: RMSprop with momentum

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the *momentum-augmented* gradient
- Procedure:
 - Maintain a running estimate of the mean derivative for each parameter
 - Maintain a running estimate of the mean squared value parameter
 - Scale update of the parameter by the *inverse* of the derivative

$$m_k = \delta m_{k-1} + (1 - \delta) (\partial_w D)_k$$

1 (1

(a2)

Ensures that the δ and γ terms do not dominate in early iterations

$$\widehat{v}_k = \gamma v_{k-1} + (1 - \gamma)(0_w D)_k$$
$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

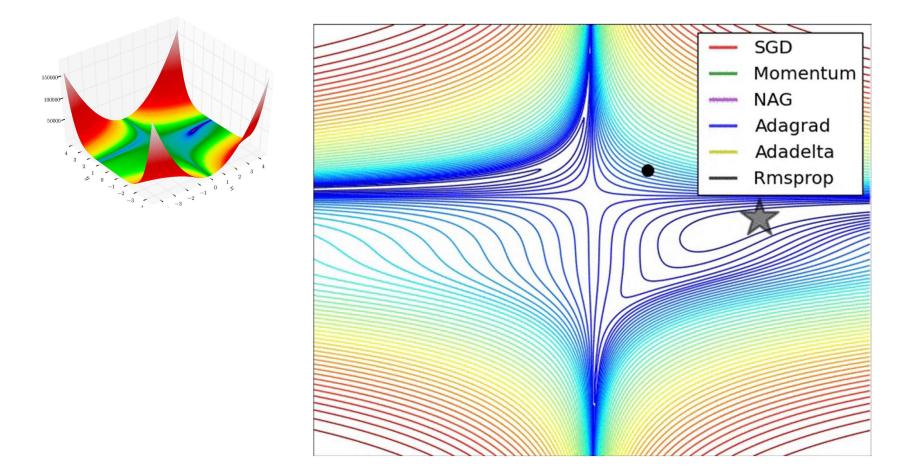
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \hat{m}_k$$

20

Other variants of the same theme

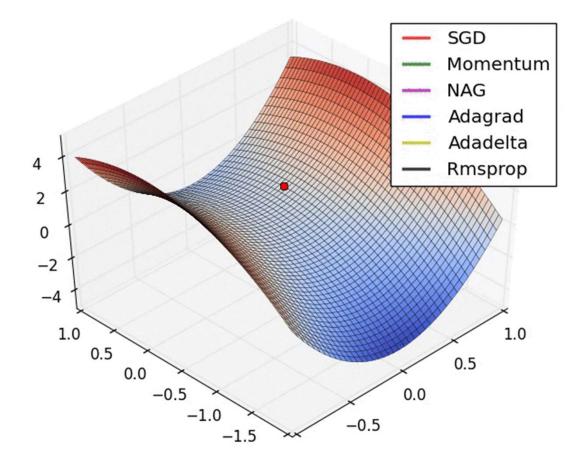
- Many:
 - Adagrad
 - AdaDelta
 - AdaMax
 - ...
- Generally no explicit learning rate to optimize
 - But come with other hyper parameters to be optimized
 - Typical params:
 - RMSProp: $\eta = 0.001, \gamma = 0.9$
 - ADAM: $\eta = 0.001, \delta = 0.9, \gamma = 0.999$

Visualizing the optimizers: Beale's Function



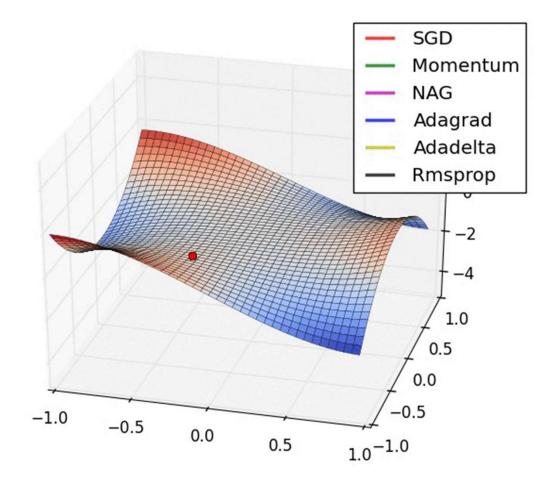
• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Long Valley



http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Saddle Point



http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Story so far

- Gradient descent can be sped up by incremental updates
 - Convergence is guaranteed under most conditions
 - Learning rate must shrink with time for convergence
 - Stochastic gradient descent: update after each observation. Can be much faster than batch learning
 - Mini-batch updates: update after batches. Can be more efficient than SGD
- Convergence can be improved using smoothed updates
 - RMSprop and more advanced techniques