
Neural Networks

Hopfield Nets and Boltzmann Machines
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Recap: Hopfield network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not 

respond

• If the sign of the field opposes its own sign, it “flips” to 

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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Recap: Energy of a Hopfield Network

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 −෍

𝑖

𝑏𝑖𝑦𝑖

• The system will evolve until the energy hits a local minimum

• In vector form

– Bias term may be viewed as an extra input pegged to 1.0

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0
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𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖



Recap: Hopfield net computation

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

𝐸 = −෍

𝑖

෍

𝑗>𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

does not change significantly any more

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝑦𝑖 𝑡 + 1 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 , 0 ≤ 𝑖 ≤ 𝑁 − 1
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Recap: Evolution

• The network will evolve until it arrives at a 

local minimum in the energy contour

state
PE
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𝐸 = −
1

2
𝐲𝑇𝐖𝐲



Recap: Content-addressable memory

• Each of the minima is a “stored” pattern

– If the network is initialized close to a stored pattern, it 
will inevitably evolve to the pattern

• This is a content addressable memory

– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7



Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 8

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 9

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve



Training a Hopfield Net to 
“Memorize” target patterns

• The Hopfield network can be trained to 

remember specific “target” patterns

– E.g. the pictures in the previous example

• This can be done by setting the weights 𝐖

appropriately

10

Random Question:
Can you use backprop to train Hopfield nets?

Hint: Think unwrapping…



Training a Hopfield Net to 
“Memorize” target patterns

• The Hopfield network can be trained to remember specific “target” 
patterns

– E.g. the pictures in the previous example

• A Hopfield net with 𝑁 neurons can designed to store up to 𝑁 target 
𝑁-bit memories

– But can store an exponential number of unwanted “parasitic” 
memories along with the target patterns

• Training the network: Design weights matrix 𝐖 such that the 
energy of … 

– Target patterns is minimized, so that they are in energy wells

– Other untargeted potentially parasitic patterns is maximized so that 
they don’t become parasitic
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Training the network

12state

Energy

Minimize energy of 
target patterns 

Maximize energy of 
all other patterns 

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)



Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲 ෡𝐖 = argmin

𝐖
෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

Minimize energy of 
target patterns 

Maximize energy of 
all other patterns 



Training the network
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𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Minimize energy of 
target patterns 

Maximize energy of 
all other patterns 



Simpler: Focus on confusing patterns

16state

Energy

• Lower energy at valid memories

• Initialize the network at valid memories and let it evolve

– It will settle in a valley. If this is not the target pattern, raise it

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇



More efficient training

• Really no need to raise the entire surface, or even 
every valley

• Raise the neighborhood of each target memory
– Sufficient to make the memory a valley

– The broader the neighborhood considered, the 
broader the valley

19state

Energy



Problem with Hopfield net

• Why is the recalled pattern not perfect?
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A Problem with Hopfield Nets

• Many local minima
– Parasitic memories

• May be escaped by adding some noise during evolution
– Permit changes in state even if energy increases..

• Particularly if the increase in energy is small
22

state

Energy

Parasitic memories



Recap – Analogy: Spin Glasses

• The total energy of the system

𝐸(𝑠) = 𝐶 −
1

2
෍

𝑖

𝑥𝑖𝑓 𝑝𝑖 = −෍

𝑖

෍

𝑗>𝑖

𝐽𝑖𝑗𝑥𝑖𝑥𝑗 −෍

𝑖

𝑏𝑖𝑥𝑗

• The system evolves to minimize the energy

– Dipoles stop flipping if flips result in increase of energy

Total field at current dipole:

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝐽𝑖𝑗𝑥𝑗 + 𝑏𝑖

Response of current diplose

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?

• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of the state at 
equilibrium

– The system “prefers” low energy states

– Evolution of the system favors transitions towards lower-energy states

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature 𝑇 can exist in 
one of many states

– Potentially infinite states

– At any time, the probability of finding the system in state 𝑠
at temperature 𝑇 is 𝑃𝑇(𝑠)

• At each state 𝑠 it has a potential energy 𝐸𝑠
• The internal energy of the system, representing its 

capacity to do work, is the average:

𝑈𝑇 =෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

𝐻𝑇 = −෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠

• The Helmholtz free energy of the system measures the 
useful work derivable from it and combines the two terms

𝐹𝑇 = 𝑈𝑇 + 𝑘𝑇𝐻𝑇

=෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠 − 𝑘𝑇෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠



The Helmholtz Free Energy of a System

𝐹𝑇 =෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠 − 𝑘𝑇෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠

• A system held at a specific temperature anneals by 

varying the rate at which it visits the various states, to 

reduce the free energy in the system, until a minimum 

free-energy state is achieved

• The probability distribution of the states at steady state 

is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

𝐹𝑇 =෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠 − 𝑘𝑇෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠

• Minimizing this w.r.t 𝑃𝑇 𝑠 , we get

𝑃𝑇 𝑠 =
1

𝑍
𝑒𝑥𝑝

−𝐸𝑠
𝑘𝑇

– Also known as the Gibbs distribution

– 𝑍 is a normalizing constant

– Note the dependence on 𝑇

– A 𝑇 = 0, the system will always remain at the lowest-
energy configuration with prob = 1.



Revisiting Thermodynamic Phenomena

• The evolution of the system is actually stochastic

• At equilibrium the system visits various states according to 
the Boltzmann distribution

– The probability of any state is inversely related to its energy

• and also temperatures: 𝑃 𝑠 ∝ 𝑒𝑥𝑝
−𝐸𝑠

𝑘𝑇

• The most likely state is the lowest energy state

state

PE



Returning to the problem with 
Hopfield Nets

• Many local minima
– Parasitic memories

• May be escaped by adding some noise during evolution
– Permit changes in state even if energy increases..

• Particularly if the increase in energy is small
31

state
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Parasitic memories



The Hopfield net as a distribution

• Mimics the Spin glass system

• The stochastic Hopfield network models a probability distribution over 
states

– Where a state is a binary string

– Specifically, it models a Boltzmann distribution

– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 𝑃 𝑆

– It is a generative model:  generates states according to 𝑃 𝑆

Visible 
Neurons

𝐸 𝑆 = −෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − 𝑏𝑖𝑠𝑖

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)



The field at a single node

• Let 𝑆 and 𝑆 ′ be otherwise identical states that only differ in the i-th bit

– S has i-th bit = +1 and S’ has i-th bit =  −1

𝑃 𝑆 = 𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖 𝑃(𝑠𝑗≠𝑖)

𝑃 𝑆′ = 𝑃 𝑠𝑖 = −1 𝑠𝑗≠𝑖 𝑃(𝑠𝑗≠𝑖)

𝑙𝑜𝑔𝑃 𝑆 − 𝑙𝑜𝑔𝑃 𝑆′ = 𝑙𝑜𝑔𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖 − 𝑙𝑜𝑔𝑃 𝑠𝑖 = −1 𝑠𝑗≠𝑖

𝑙𝑜𝑔𝑃 𝑆 − 𝑙𝑜𝑔𝑃 𝑆′ = 𝑙𝑜𝑔
𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖

1 − 𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖
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The field at a single node

• Let 𝑆 and 𝑆 ′ be the states with the ith bit in the +1 and 
− 1 states

log 𝑃(𝑆) = −𝐸 𝑆 + 𝐶

𝐸 𝑆 = −
1

2
𝐸𝑛𝑜𝑡 𝑖 +෍

𝑗≠𝑖

𝑤𝑖𝑗𝑠𝑗 + 𝑏𝑖

𝐸 𝑆′ = −
1

2
𝐸𝑛𝑜𝑡 𝑖 −෍

𝑗≠𝑖

𝑤𝑖𝑗𝑠𝑗 − 𝑏𝑖

• 𝑙𝑜𝑔𝑃 𝑆 − 𝑙𝑜𝑔𝑃 𝑆′ = 𝐸 𝑆′ − 𝐸 𝑆 = σ𝑗≠𝑖𝑤𝑖𝑗𝑠𝑗 + 𝑏𝑖
34



The field at a single node

𝑙𝑜𝑔
𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖

1 − 𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖
=෍

𝑗≠𝑖

𝑤𝑖𝑗𝑠𝑗 + 𝑏𝑖

• Giving us

𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖 =
1

1 + 𝑒
− σ𝑗≠𝑖𝑤𝑖𝑗𝑠𝑗+𝑏𝑖

• The probability of any node taking value 1 
given other node values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system

• Each neuron is now a stochastic unit with a binary state 𝑠𝑖,  which 
can take value 0 or 1 with a probability that depends on the local 
field

– Note the slight change from Hopfield nets

– Not actually necessary; only a matter of convenience

Visible 
Neurons

𝑧𝑖 =෍

𝑗

𝑤𝑖𝑗𝑠𝑗 + 𝑏𝑖

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences

– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons

𝑧𝑖 =෍

𝑗

𝑤𝑖𝑗𝑠𝑗 + 𝑏𝑖

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



Running the network

• Initialize the neurons

• Cycle through the neurons and randomly set the neuron to 1 or 0 according to the 
probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable

– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons

𝑧𝑖 =෍

𝑗

𝑤𝑖𝑗𝑠𝑗 + 𝑏𝑖

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)

39

Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?

• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)

40

Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?

• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)

41

Assuming T = 1



Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”

• Let 𝐲0, 𝐲1, 𝐲2, … , 𝐲𝐿 be the sequence of values (𝐿 large)

• Final predicted configuration: from the average of the final few iterations

𝐲 =
1

𝑀
෍

𝑡=𝐿−𝑀+1

𝐿

𝐲𝑡 > 0?

– Estimates the probability that the bit is 1.0. 

– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)

42

Assuming T = 1



Evolution of the stochastic network

• Let the system evolve to “equilibrium”

• Let 𝐲0, 𝐲1, 𝐲2, … , 𝐲𝐿 be the sequence of values (𝐿 large)

• Final predicted configuration: from the average of the final few iterations

𝐲 =
1

𝑀
෍

𝑡=𝐿−𝑀+1

𝐿

𝐲𝑡 > 0?

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. For 𝑇 = 𝑇0 𝑑𝑜𝑤𝑛 𝑡𝑜 𝑇𝑚𝑖𝑛

i. For iter 1. . 𝐿
a) For 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎
1

𝑇
෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)

43

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Including a “Temperature” term

• Including a temperature term in computing the local field

– This is much more in accord with Thermodynamic models

• At 𝑇 = ∞ the energy “surface” will be flat. At 𝑇 = 1 the 
surface will be the usual energy surface

– This can be used to improve the likelihood of finding good (or 
optimal) minimum-energy states

44

𝑧𝑖 =
1

𝑇
෍

𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑗

𝑃 𝑦𝑖 = 1 = 𝜎 𝑧𝑖

𝑃 𝑦𝑖 = 0 = 1 − 𝜎 𝑧𝑖



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field

– This is much more in accord with Thermodynamic models

• At 𝑇 = ∞ the energy “surface” will be flat. At 𝑇 = 1 the 
surface will be the usual energy surface

– This can be used to improve the likelihood of finding good (or 
optimal) minimum-energy states

45

The field quantifies the energy difference obtained by flipping the
current unit

𝑃 𝑦𝑖 = 1 = 𝜎 𝑧𝑖

𝑧𝑖 =
1

𝑇
෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field

– This is much more in accord with Thermodynamic models

• At 𝑇 = ∞ the energy “surface” will be flat. At 𝑇 = 1 the 
surface will be the usual energy surface

– This can be used to improve the likelihood of finding good (or 
optimal) minimum-energy states

46

If the difference is not large, the probability of flipping approaches 0.5

𝑃 𝑦𝑖 = 1 = 𝜎 𝑧𝑖

𝑧𝑖 =
1

𝑇
෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field

– This is much more in accord with Thermodynamic models

• At 𝑇 = ∞ the energy “surface” will be flat. At 𝑇 = 1 the 
surface will be the usual energy surface

– This can be used to improve the likelihood of finding good (or 
optimal) minimum-energy states

47

𝑃 𝑦𝑖 = 1 = 𝜎 𝑧𝑖

𝑧𝑖 =
1

𝑇
෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter:  increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior



Annealing

• Let the system evolve to “equilibrium”

• Let 𝐲0, 𝐲1, 𝐲2, … , 𝐲𝐿 be the sequence of values (𝐿 large)

• Final predicted configuration: from the average of the final few iterations

𝐲 =
1

𝑀
෍

𝑡=𝐿−𝑀+1

𝐿

𝐲𝑡 > 0?

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. For 𝑇 = 𝑇0 𝑑𝑜𝑤𝑛 𝑡𝑜 𝑇𝑚𝑖𝑛

i. For iter 1. . 𝐿

a) For 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎
1

𝑇
σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)

48



Evolution of a stochastic Hopfield net

• When do we stop?

• What is the final state of the system

– How do we “recall” a memory?

49

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. For 𝑇 = 𝑇0 𝑑𝑜𝑤𝑛 𝑡𝑜 𝑇𝑚𝑖𝑛

i. For iter 1. . 𝐿

a) For 0 ≤ 𝑖 ≤ 𝑁 − 1

𝑃 = 𝜎
1

𝑇
σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗

𝑦𝑖 𝑡 + 1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑃)



Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a 

conditional distribution

• What is the overall probability of the entire set 

of neurons taking any configuration 𝐲
50

𝑧𝑖 =
1

𝑇
෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑃 𝑦𝑖 = 1|𝑦𝑗≠𝑖 = 𝜎 𝑧𝑖



The overall probability

• The probability of any state 𝐲 can be shown to be 

given by the Boltzmann distribution

𝐸 𝐲 = −
1

2
𝐲𝑇𝐖𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

−𝐸(𝐲)

𝑇

– Minimizing energy maximizes log likelihood
51

𝑧𝑖 =
1

𝑇
෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

𝑃 𝑦𝑖 = 1|𝑦𝑗≠𝑖 = 𝜎 𝑧𝑖



The overall probability

• Stop when the running average of the log 

probability of patterns stops increasing

– I.e. when the (running average) of the energy of 

the patterns stops decreasing
52

𝐸 𝐲 = −
1

2
𝐲𝑇𝐖𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

−𝐸(𝐲)

𝑇



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences

– The Boltzmann distribution

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

𝑃 𝐲 = 𝐶𝑒𝑥𝑝 −
𝐸(𝐲)

𝑇

– The parameter of the distribution is the weights matrix 𝐖

• The conditional distribution of individual bits in the sequence is a logistic

• We will call this a Boltzmann machine

𝑧𝑖 =
1

𝑇
෍

𝑗

𝑤𝑗𝑖𝑠𝑗

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



The Boltzmann Machine

• The entire model can be viewed as a generative model

• Has a probability of producing any binary vector 𝐲:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

𝑃 𝐲 = 𝐶𝑒𝑥𝑝 −
𝐸(𝐲)

𝑇

𝑧𝑖 =
1

𝑇
෍

𝑗

𝑤𝑗𝑖𝑠𝑗

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and 
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability 
distribution to states 
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)

– This should assign more probability to patterns we “like” (or try to memorize) and less to 
other patterns

𝐸 𝑆 = −෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑆 =
𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖𝑠𝑗

σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′



Training the network

• Must train the network to assign a desired probability distribution 
to states 

• Given a set of “training” inputs 𝑆1, … , 𝑆𝑁
– Assign higher probability to patterns seen more frequently

– Assign lower probability to patterns that are not seen at all

• Alternately viewed:  maximize likelihood of stored states

Visible 
Neurons

𝐸 𝑆 = −෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑆 =
𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖𝑠𝑗

σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′



Maximum Likelihood Training

• Maximize the average log likelihood of all “training” 

vectors 𝐒 = {𝑆1, 𝑆2, … , 𝑆𝑁}

– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

log 𝑃 𝑆 = ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

ℒ =
1

𝑁
෍

𝑆∈𝐒

log 𝑃 𝑆

=
1

𝑁
෍

𝑆

෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..

• The first term is just the average sisj over all training 
patterns

• But the second term is summed over all states

– Of which there can be an exponential number!

ℒ =
1

𝑁
෍

𝑆

෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑ℒ

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −? ? ?



The second term

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=

1

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"

𝑑logσ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"
𝑠𝑖
′𝑠𝑗
′

=
1

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"
෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ 𝑠𝑖

′𝑠𝑗
′



The second term

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=

1

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"

𝑑logσ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"
𝑠𝑖
′𝑠𝑗
′

=
1

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"
෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ 𝑠𝑖

′𝑠𝑗
′

𝑃(𝑆′)



The second term

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=

1

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"

𝑑logσ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"
𝑠𝑖
′𝑠𝑗
′

=
1

σ𝑆" 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
"𝑠𝑗
"
෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ 𝑠𝑖

′𝑠𝑗
′



The second term

• The second term is simply the expected value 

of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we 

can compute it by sampling!

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



Estimating the second term

• The expectation can be estimated as the average of 
samples drawn from the distribution

• Question:  How do we draw samples from the Boltzmann 
distribution?

– How do we draw samples from the network?

෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′ ≈

1

𝑀
෍

𝑆′∈𝐒𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑖
′𝑠𝑗
′

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



The simulation solution

• Initialize the network randomly and let it “evolve”

– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state

• Repeat this many many times

• Let the collection of states be 

𝐒𝑠𝑖𝑚𝑢𝑙 = {𝑆𝑠𝑖𝑚𝑢𝑙,1, 𝑆𝑠𝑖𝑚𝑢𝑙,1=2, … , 𝑆𝑠𝑖𝑚𝑢𝑙,𝑀}



The simulation solution for the second 
term

• The second term in the derivative is computed 

as the average of sampled states when the 

network is running “freely”

෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′ ≈

1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



Maximum Likelihood Training

• The overall gradient ascent rule

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

Sampled estimate



Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



Overall Training

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

state

Energy

Note the similarity to the update rule for the Hopfield network



Adding Capacity to the Hopfield 
Network / Boltzmann Machine

• The network can store up to 𝑁 𝑁-bit patterns

• How do we increase the capacity

69



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons
K Neurons

70



Expanded Network

• New capacity:   ~(𝑁 + 𝐾) patterns

– Although we only care about the pattern of the first N 
neurons

– We’re interested in N-bit patterns

N Neurons
K Neurons

71



Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons

– The neurons that only serve to increase the capacity but whose 
actual values are not important:  Hidden neurons

– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Training the network

• For a given pattern of visible neurons, there are any 

number of hidden patterns (2K)

• Which of these do we choose?

– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible 
Neurons

Hidden 
Neurons



The patterns

• In fact we could have multiple hidden patterns 
coupled with any visible pattern

– These would be multiple stored patterns that all give 
the same visible output

– How many do we permit

• Do we need to specify one or more particular 
hidden patterns?

– How about all of them

– What do I mean by this bizarre statement?



Boltzmann machine without hidden 
units

• This basic framework has no hidden units

• Extended to have hidden units

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



With hidden neurons

• Now, with hidden neurons the complete state 

pattern for even the training patterns is 

unknown

– Since they are only defined over visible neurons

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits

– We want to learn to represent the visible bits

– The hidden bits are the “latent” representation learned by the network

• 𝑆 = (𝑉,𝐻)

– 𝑉 = visible bits

– 𝐻 = hidden bits

Visible 
Neurons

Hidden 
Neurons

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑉 =෍

𝐻

𝑃(𝑆)

𝑃 𝑆 = 𝑃(𝑉,𝐻)



With hidden neurons

• We are interested in the marginal probabilities over visible bits

– We want to learn to represent the visible bits

– The hidden bits are the “latent” representation learned by the network

• 𝑆 = (𝑉,𝐻)

– 𝑉 = visible bits

– 𝐻 = hidden bits

Visible 
Neurons

Hidden 
Neurons

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑉 =෍

𝐻

𝑃(𝑆)

𝑃 𝑆 = 𝑃(𝑉,𝐻)

Must train to maximize 
probability of desired
patterns of visible bits



Training the network

• Must train the network to assign a desired 

probability distribution to visible states 

• Probability of visible state sums over all 

hidden states

Visible 
Neurons

𝐸 𝑆 = −෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗

𝑃 𝑆 =
𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖𝑠𝑗

σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑃 𝑉 =෍

𝐻

𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖𝑠𝑗

σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′



Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training” 
vectors 𝐕 = {𝑉1, 𝑉2, … , 𝑉𝑁}

– The first term also has the same format as the second term

• Log of a sum

– Derivatives of the first term will have the same form as for the second term

log 𝑃 𝑉 = log ෍

𝐻

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

ℒ =
1

𝑁
෍

𝑉∈𝐕

log 𝑃 𝑉

=
1

𝑁
෍

𝑉∈𝐕

log ෍

𝐻

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We’ve derived this math earlier

• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states 
for each visible configuration in our training set

– But the second term is summed over all states

ℒ =
1

𝑁
෍

𝑉∈𝐕

log ෍

𝐻

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′

𝑑ℒ

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑉∈𝐕

෍

𝐻

𝑒𝑥𝑝 σ𝑘<𝑙𝑤𝑘𝑙𝑠𝑘𝑠𝑙

σ𝐻′ 𝑒𝑥𝑝 σ𝑘<𝑙𝑤𝑘𝑙𝑠𝑘
" 𝑠𝑙

"
𝑠𝑖𝑠𝑗 −෍

𝑆′

𝑒𝑥𝑝 σ𝑘<𝑙𝑤𝑘𝑙𝑠𝑘
′ 𝑠𝑙

′

σ𝑆" 𝑒𝑥𝑝 σ𝑘<𝑙𝑤𝑖𝑗𝑠𝑘
" 𝑠𝑙

"
𝑠𝑖
′𝑠𝑗
′

𝑑ℒ

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑉∈𝐕

෍

𝐻

𝑃 𝑆|𝑉 𝑠𝑖𝑠𝑗 −෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



The simulation solution

• The first term is computed as the average 
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as 
the average of sampled states when the network 
is running “freely”

෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′ ≈

1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

෍

𝐻

𝑃(𝑆|𝑉)𝑠𝑖𝑠𝑗 ≈
1

𝐾
෍

𝐻∈𝐇𝑠𝑖𝑚𝑢𝑙

𝑠𝑖𝑠𝑗

𝑑ℒ

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑉∈𝐕

෍

𝐻

𝑃 𝑆|𝑉 𝑠𝑖𝑠𝑗 −෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



More simulations

• Maximizing the marginal probability of 𝑉 requires 
summing over all values of 𝐻

– An exponential state space

– So we will use simulations again

Visible 
Neurons

Hidden 
Neurons

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑉 =෍

𝐻

𝑃(𝑆)



Step 1

• For each training pattern 𝑉𝑖
– Fix the visible units to 𝑉𝑖
– Let the hidden neurons evolve from a random initial point to 

generate 𝐻𝑖
– Generate 𝑆𝑖 = [𝑉𝑖, 𝐻𝑖]

• Repeat K times to generate synthetic training
𝐒 = {𝑆1,1, 𝑆1,2, … , 𝑆1𝐾 , 𝑆2,1, … , 𝑆𝑁,𝐾}

Visible 
Neurons

Hidden 
Neurons



Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate
𝐒𝑠𝑖𝑚𝑢𝑙 = {𝑆𝑠𝑖𝑚𝑢𝑙,1, 𝑆𝑠𝑖𝑚𝑢𝑙,1=2, … , 𝑆𝑠𝑖𝑚𝑢𝑙,𝑀}

Visible 
Neurons

Hidden 
Neurons



Gradients

• Gradients are computed as before, except that 

the first term is now computed over the 

expanded training data

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=

1

𝑁𝐾
෍

𝑺

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



Overall Training

• Initialize weights

• Run simulations to get clamped and unclamped 
training samples

• Compute gradient and update weights

• Iterate

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=

1

𝑁𝐾
෍

𝑺

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



Boltzmann machines

• Stochastic extension of Hopfield nets

• Enables storage of many more patterns than 
Hopfield nets

• But also enables computation of probabilities 
of patterns, and completion of pattern



Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights

• Run simulations to get clamped and unclamped training samples

• Compute gradient and update weights

• Iterate

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=

1

𝑁𝐾
෍

𝑺

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑠𝑖 + 𝑏𝑖

𝑃(𝑠𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖



Boltzmann machines: Overall

• Running: Pattern completion

– “Anchor” the known visible units

– Let the network evolve

– Sample the unknown visible units

• Choose the most probable value



Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?



Boltzmann machines for classification

• Training patterns:

– [f1, f2, f3, ….  , class]

– Features can have binarized or continuous valued representations

– Classes have “one hot” representation

• Classification:

– Given features,  anchor features,  estimate a posteriori probability 
distribution over classes

• Or choose most likely class



Boltzmann machines: Issues

• Training takes for ever

• Doesn’t really work for large problems

– A small number of training instances over a small 
number of bits



Solution: Restricted Boltzmann 
Machines

• Partition visible and hidden units

– Visible units ONLY talk to hidden units

– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..

– Originally proposed as “Harmonium Models” by Paul 
Smolensky

VISIBLE

HIDDEN



Solution: Restricted Boltzmann 
Machines

• Still obeys the same rules as a regular Boltzmann machine

• But the modified structure adds a big benefit..

VISIBLE

HIDDEN

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑠𝑖 + 𝑏𝑖 𝑃(𝑠𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖



Solution: Restricted Boltzmann 
Machines

VISIBLE

HIDDEN

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑣𝑖 + 𝑏𝑖 𝑃(ℎ𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖

𝑦𝑖 =෍

𝑗

𝑤𝑗𝑖ℎ𝑖 + 𝑏𝑖 𝑃(𝑣𝑖 = 1) =
1

1 + 𝑒−𝑦𝑖
VISIBLE

HIDDEN



Recap: Training full Boltzmann 
machines: Step 1

• For each training pattern 𝑉𝑖
– Fix the visible units to 𝑉𝑖
– Let the hidden neurons evolve from a random initial point to 

generate 𝐻𝑖
– Generate 𝑆𝑖 = [𝑉𝑖, 𝐻𝑖]

• Repeat K times to generate synthetic training
𝐒 = {𝑆1,1, 𝑆1,2, … , 𝑆1𝐾 , 𝑆2,1, … , 𝑆𝑁,𝐾}

-1

1

1

1 -1

Visible Neurons
Hidden Neurons



Sampling: Restricted Boltzmann 
machine

• For each sample:

– Anchor visible units

– Sample from hidden units

– No looping!!

VISIBLE

HIDDEN

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑣𝑖 + 𝑏𝑖

𝑃(ℎ𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖



Recap: Training full Boltzmann 
machines: Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate
𝐒𝑠𝑖𝑚𝑢𝑙 = {𝑆𝑠𝑖𝑚𝑢𝑙,1, 𝑆𝑠𝑖𝑚𝑢𝑙,1=2, … , 𝑆𝑠𝑖𝑚𝑢𝑙,𝑀}

-1

1

1

1 -1

Visible 
Neurons

Hidden 
Neurons



Sampling: Restricted Boltzmann 
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑣𝑖 + 𝑏𝑖

𝑃(ℎ𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖

𝑦𝑖 =෍

𝑗

𝑤𝑗𝑖ℎ𝑖 + 𝑏𝑖

𝑃(𝑣𝑖 = 1) =
1

1 + 𝑒−𝑦𝑖



Pictorial representation of RBM training

• For each sample:

– Initialize 𝑉0 (visible) to training instance value

– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h∞

v0
v1 v2 v∞



Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to 
hidden node j)

• <vi, hj> represents average over many generated training 
samples

v0

h0

v1

h1

v2

h2

v∞

h∞

−=



jiji

ij

hvhv
w

vp 0)(log

i

j

i i i

j j j



Recall: Hopfield Networks

• Really no need to raise the entire surface, or even 
every valley

• Raise the neighborhood of each target memory
– Sufficient to make the memory a valley

– The broader the neighborhood considered, the 
broader the valley
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A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of 

the gradient

v0

h0

v1

h1

10)(log
−=




jiji

ij

hvhv
w

vp

i

j

i

j



Restricted Boltzmann Machines

• Excellent generative models for binary (or 
binarized) data

• Can also be extended to continuous-valued data

– “Exponential Family Harmoniums with an Application 
to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression

– How?

– More commonly used to pretrain models
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Continuous-values RBMs

VISIBLE

HIDDEN

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑣𝑖 + 𝑏𝑖 𝑃(ℎ𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖

𝑦𝑖 =෍

𝑗

𝑤𝑗𝑖ℎ𝑖 + 𝑏𝑖
𝑃(𝑣𝑖) = 𝑟(𝑦𝑖)𝑒𝑥𝑝 𝑦𝑖VISIBLE

HIDDEN

Hidden units may also be continuous values



Other variants

• Left:  “Deep” Boltzmann machines

• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm



Topics missed..

• Other algorithms for Learning and Inference 
over RBMs

– Mean field approximations

• RBMs as feature extractors

– Pre training

• RBMs as generative models

• More structured DBMs

• …
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