Neural Networks

Hopfield Nets and Boltzmann Machines
Recap: Hopfield network

- At each time each neuron receives a “field” $\sum_{j \neq i} w_{ji}y_j + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it “flips” to match the sign of the field

\[y_i = \Theta \left(\sum_{j \neq i} w_{ji}y_j + b_i \right) \]

\[\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \leq 0 \end{cases} \]
Recap: Energy of a Hopfield Network

\[y_i = \Theta \left(\sum_{j \neq i} w_{ji}y_j + b_i \right) \]

\[\Theta(z) = \begin{cases}
+1 \text{ if } z > 0 \\
-1 \text{ if } z \leq 0
\end{cases} \]

\[E = - \sum_{i,j<i} w_{ij}y_iy_j - \sum_i b_iy_i \]

- The system will evolve until the energy hits a local minimum
- In vector form
 - Bias term may be viewed as an extra input pegged to 1.0

\[E = -\frac{1}{2}y^TWy - b^Ty \]
Recap: Hopfield net computation

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate until convergence

\[y_i(t + 1) = \Theta \left(\sum_{j \neq i} w_{ji} y_j \right), \quad 0 \leq i \leq N - 1 \]

- Very simple
- Updates can be done sequentially, or all at once
- Convergence

\[E = - \sum_i \sum_{j>i} w_{ji} y_j y_i \]

does not change significantly any more
Recap: Evolution

- The network will evolve until it arrives at a local minimum in the energy contour.

Mathematical expression:

\[E = -\frac{1}{2} y^T W y \]
Recap: Content-addressable memory

• Each of the minima is a “stored” pattern
 – If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern

• This is a content addressable memory
 – Recall memory content from partial or corrupt values

• Also called associative memory
Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
Examples: Content addressable memory

Noisy pattern completion: Initialize the entire network and let the entire network evolve

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
Examples: Content addressable memory

Pattern completion: Fix the “seen” bits and only let the “unseen” bits evolve

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/
Training a Hopfield Net to “Memorize” target patterns

• The Hopfield network can be trained to remember specific “target” patterns
 – E.g. the pictures in the previous example

• This can be done by setting the weights W appropriately

Random Question: Can you use backprop to train Hopfield nets?

Hint: Think unwrapping...
Training a Hopfield Net to “Memorize” target patterns

• The Hopfield network can be trained to remember specific “target” patterns
 – E.g. the pictures in the previous example

• A Hopfield net with N neurons can designed to store up to N target N-bit memories
 – But can store an exponential number of unwanted “parasitic” memories along with the target patterns

• **Training the network:** Design weights matrix W such that the energy of ...
 – Target patterns is minimized, so that they are in energy wells
 – *Other untargeted* potentially parasitic patterns is maximized so that they don’t become parasitic
Training the network

\(\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \not\in \mathbf{Y}_P} E(\mathbf{y}) \)

\textbf{Minimize energy of target patterns}

\textbf{Maximize energy of all other patterns}
Optimizing W

\[E(y) = -\frac{1}{2}y^T Wy \]

\[\hat{W} = \arg\min_W \sum_{y \in Y_P} E(y) - \sum_{y \notin Y_P} E(y) \]

- Simple gradient descent:

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P} yy^T \right) \]

Minimize energy of target patterns

Maximize energy of all other patterns
Training the network

\[W = W + \eta \left(\sum_{y \in Y_P} yy^T - \sum_{y \notin Y_P} yy^T \right) \]

Minimize energy of target patterns
Maximize energy of all other patterns
Simpler: Focus on confusing patterns

\[\mathbf{w} = \mathbf{w} + \eta \left(\sum_{y \in \mathcal{Y}_P} y y^T - \sum_{y \notin \mathcal{Y}_P \& y = \text{valley}} y y^T \right) \]

- Lower energy at valid memories
- Initialize the network at valid memories and let it evolve
 - It will settle in a valley. If this is not the target pattern, raise it

![Diagram showing energy landscape and state transitions](image-url)
More efficient training

• Really no need to raise the entire surface, or even every valley

• Raise the *neighborhood* of each target memory
 – Sufficient to make the memory a valley
 – The broader the neighborhood considered, the broader the valley
Problem with Hopfield net

- Why is the recalled pattern not perfect?
A Problem with Hopfield Nets

- Many local minima
 - Parasitic memories

- May be escaped by adding some *noise* during evolution
 - Permit changes in state even if energy increases.
 - Particularly if the increase in energy is small
Recap – Analogy: Spin Glasses

Total field at current dipole:

\[f(p_i) = \sum_{j \neq i} J_{ij} x_j + b_i \]

Response of current dipole:

\[x_i = \begin{cases} x_i \text{ if } \text{sign}(x_i f(p_i)) = 1 \\ -x_i \text{ otherwise} \end{cases} \]

- The total energy of the system

\[E(s) = C - \frac{1}{2} \sum_i x_i f(p_i) = - \sum_i \sum_{j>i} J_{ij} x_i x_j - \sum_i b_i x_j \]

- The system evolves to minimize the energy
 - Dipoles stop flipping if flips result in increase of energy
Revisiting Thermodynamic Phenomena

- Is the system actually in a specific state at any time?
- No – the state is actually continuously changing
 - Based on the temperature of the system
 - At higher temperatures, state changes more rapidly
- What is actually being characterized is the *probability* of the state at equilibrium
 - The system “prefers” low energy states
 - Evolution of the system favors transitions towards lower-energy states
The Helmholtz Free Energy of a System

• A thermodynamic system at temperature T can exist in one of many states
 – Potentially infinite states
 – At any time, the probability of finding the system in state s at temperature T is $P_T(s)$

• At each state s it has a potential energy E_s

• The *internal energy* of the system, representing its capacity to do work, is the average:

$$U_T = \sum_s P_T(s) E_s$$
The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

\[H_T = - \sum_s P_T(s) \log P_T(s) \]

• The *Helmholtz* free energy of the system measures the *useful* work derivable from it and combines the two terms

\[F_T = U_T + kTH_T \]

\[= \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]
The Helmholtz Free Energy of a System

\[F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s) \]

- A system held at a specific temperature *anneals* by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved.

- The probability distribution of the states at steady state is known as the *Boltzmann distribution*.
The Helmholtz Free Energy of a System

\[F_T = \sum_s P_T(s) E_s - kT \sum_s P_T(s) \log P_T(s) \]

- Minimizing this w.r.t \(P_T(s) \), we get

\[P_T(s) = \frac{1}{Z} \exp \left(\frac{-E_s}{kT} \right) \]

- Also known as the Gibbs distribution
- \(Z \) is a normalizing constant
- Note the dependence on \(T \)
- A \(T = 0 \), the system will always remain at the lowest-energy configuration with prob = 1.
Revisiting Thermodynamic Phenomena

- The evolution of the system is actually *stochastic*.
- At equilibrium the system visits various states according to the Boltzmann distribution:
 - The probability of any state is inversely related to its energy and also temperatures: $P(s) \propto \exp \left(\frac{-E_s}{kT} \right)$
- The most likely state is the lowest energy state.
Returning to the problem with Hopfield Nets

- Many local minima
 - Parasitic memories

- May be escaped by adding some *noise* during evolution
 - Permit changes in state even if energy increases
 - Particularly if the increase in energy is small
The Hopfield net as a distribution

- Mimics the Spin glass system
- The stochastic Hopfield network models a probability distribution over states
 - Where a state is a binary string
 - Specifically, it models a Boltzmann distribution
 - The parameters of the model are the weights of the network
- The probability that (at equilibrium) the network will be in any state is $P(S)$
 - It is a generative model: generates states according to $P(S)$

$$E(S) = - \sum_{i<j} w_{ij} s_i s_j - b_i s_i$$

$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$
The field at a single node

- Let S and S' be otherwise identical states that only differ in the i-th bit
 - S has i-th bit = $+1$ and S' has i-th bit = -1

\[
\begin{align*}
P(S) &= P(s_i = 1 \mid s_{\neq i})P(s_{\neq i}) \\
P(S') &= P(s_i = -1 \mid s_{\neq i})P(s_{\neq i})
\end{align*}
\]

\[
\log P(S) - \log P(S') = \log P(s_i = 1 \mid s_{\neq i}) - \log P(s_i = -1 \mid s_{\neq i})
\]

\[
\log P(S) - \log P(S') = \log \frac{P(s_i = 1 \mid s_{\neq i})}{1 - P(s_i = 1 \mid s_{\neq i})}
\]
The field at a single node

- Let S and S' be the states with the ith bit in the $+1$ and -1 states.

\[
\log P(S) = -E(S) + C
\]

\[
E(S) = -\frac{1}{2} \left(E_{not\ i} + \sum_{j \neq i} w_{ij}s_j + b_i \right)
\]

\[
E(S') = -\frac{1}{2} \left(E_{not\ i} - \sum_{j \neq i} w_{ij}s_j - b_i \right)
\]

- $\log P(S) - \log P(S') = E(S') - E(S) = \sum_{j \neq i} w_{ij}s_j + b_i$
The field at a single node

\[\log \left(\frac{P(s_i = 1 | s_{j \neq i})}{1 - P(s_i = 1 | s_{j \neq i})} \right) = \sum_{j \neq i} w_{ij} s_j + b_i \]

- Giving us

\[P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-\left(\sum_{j \neq i} w_{ij} s_j + b_i \right)}} \]

- The probability of any node taking value 1 given other node values is a logistic
Redefining the network

First try: Redefine a regular Hopfield net as a stochastic system

Each neuron is now a stochastic unit with a binary state s_i, which can take value 0 or 1 with a probability that depends on the local field

- Note the slight change from Hopfield nets
- Not actually necessary; only a matter of convenience

$$z_i = \sum_j w_{ij}s_j + b_i$$

$$P(s_i = 1|s_{j\neq i}) = \frac{1}{1 + e^{-z_i}}$$
The Hopfield net is a distribution

- The Hopfield net is a probability distribution over binary sequences
 - The Boltzmann distribution
- The conditional distribution of individual bits in the sequence is a logistic

\[
\begin{align*}
 z_i &= \sum_j w_{ij} s_j + b_i \\
 P(s_i = 1|s_{j\neq i}) &= \frac{1}{1 + e^{-z_i}}
\end{align*}
\]
Running the network

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or 0 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until “convergence”), sample the individual neurons

$$z_i = \sum_j w_{ij} s_j + b_i$$

$$P(s_i = 1|s_{j\neq i}) = \frac{1}{1 + e^{-z_i}}$$
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)

\[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]

\[y_i(t + 1) \sim \text{Binomial}(P) \]

Assuming \(T = 1 \)
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern
 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)
 \[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]
 \[y_i(t + 1) \sim \text{Binomial}(P) \]

• When do we stop?
• What is the final state of the system
 – How do we “recall” a memory?

Assuming \(T = 1 \)
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

\[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)

\[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]

\[y_i(t + 1) \sim \text{Binomial}(P) \]

• When do we stop?

• What is the final state of the system
 – How do we “recall” a memory?
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. Iterate \(0 \leq i \leq N - 1 \)

 \[P = \sigma \left(\sum_{j \neq i} w_{ji} y_j \right) \]

 \[y_i(t + 1) \sim \text{Binomial}(P) \]

- Let the system evolve to “equilibrium”
- Let \(y_0, y_1, y_2, ..., y_L \) be the sequence of values (\(L \) large)
- Final predicted configuration: from the average of the final few iterations

 \[y = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} y_t \right) > 0 ? \]

 - Estimates the probability that the bit is 1.0.
 - If it is greater than 0.5, sets it to 1.0
Evolution of the stochastic network

1. Initialize network with initial pattern
 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. For \(T = T_0 \) down to \(T_{\text{min}} \)

Noisy pattern completion: Initialize the entire network and let the entire network evolve

Pattern completion: Fix the “seen” bits and only let the “unseen” bits evolve

- Let the system evolve to “equilibrium”
- Let \(y_0, y_1, y_2, \ldots, y_L \) be the sequence of values (\(L \) large)
- Final predicted configuration: from the average of the final few iterations

\[y = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} y_t \right) > 0? \]
Including a “Temperature” term

Including a temperature term in computing the local field
 - This is much more in accord with Thermodynamic models

At $T = \infty$ the energy “surface” will be flat. At $T = 1$ the surface will be the usual energy surface
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states

\[
\begin{align*}
 z_i &= \frac{1}{T} \sum_{j \neq i} w_{ij} y_j \\
 P(y_i = 1) &= \sigma(z_i) \\
 P(y_i = 0) &= 1 - \sigma(z_i)
\end{align*}
\]
Recap: Stochastic Hopfield Nets

- Including a temperature term in computing the local field
 - This is much more in accord with Thermodynamic models

- At $T = \infty$ the energy “surface” will be flat. At $T = 1$ the surface will be the usual energy surface
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states

\[
Z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j
\]

\[
P(y_i = 1) = \sigma(Z_i)
\]
Recap: Stochastic Hopfield Nets

- Including a temperature term in computing the local field
 \[z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j \]
 \[P(y_i = 1) = \sigma(z_i) \]

The field quantifies the energy difference obtained by flipping the current unit.

- At \(T = \infty \) the energy “surface” will be flat. At \(T = 1 \) the surface will be the usual energy surface.
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states.

If the difference is not large, the probability of flipping approaches 0.5.

This is much more in accord with Thermodynamic models.

46
Recap: Stochastic Hopfield Nets

- Including a temperature term in computing the local field.
 - This is much more in accord with thermodynamic models.
 - At $T = \infty$, the energy “surface” will be flat. At $T = 1$, the surface will be the usual energy surface.
 - This can be used to improve the likelihood of finding good (or optimal) minimum-energy states.

- The field quantifies the energy difference obtained by flipping the current unit.

$$ z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j $$

$$ P(y_i = 1) = \sigma(z_i) $$

- If the difference is not large, the probability of flipping approaches 0.5.

- T is a “temperature” parameter: increasing it moves the probability of the bits towards 0.5.
- At $T = 1.0$ we get the traditional definition of field and energy.
- At $T = 0$, we get deterministic Hopfield behavior.

- This can be used to improve the likelihood of finding good (or optimal) minimum-energy states.
Annealing

1. Initialize network with initial pattern
 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]

2. For \(T = T_0 \) down to \(T_{\text{min}} \)
 i. For iter 1..L
 a) For \(0 \leq i \leq N - 1 \)
 \[
 P = \sigma \left(\frac{1}{T} \sum_{j \neq i} w_{ji} y_j \right)
 \]
 \[
 y_i(t + 1) \sim \text{Binomial}(P)
 \]

- Let the system evolve to “equilibrium”
- Let \(y_0, y_1, y_2, ..., y_L \) be the sequence of values (\(L \) large)
- Final predicted configuration: from the average of the final few iterations
 \[
 y = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} y_t \right) > 0?
 \]
Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern
 \[y_i(0) = x_i, \quad 0 \leq i \leq N - 1 \]
2. For \(T = T_0 \) down to \(T_{\text{min}} \)
 i. For iter 1..\(L \)
 a) For \(0 \leq i \leq N - 1 \)
 \[P = \sigma \left(\frac{1}{T} \sum_{j \neq i} w_{ji} y_j \right) \]
 \[y_i(t + 1) \sim \text{Binomial}(P) \]

- When do we stop?
- What is the final state of the system
 – How do we “recall” a memory?
Recap: Stochastic Hopfield Nets

- The probability of each neuron is given by a conditional distribution.
- What is the overall probability of the entire set of neurons taking any configuration y?

$$z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j$$

$$P(y_i = 1 | y_{j \neq i}) = \sigma(z_i)$$
The overall probability

\[z_i = \frac{1}{T} \sum_{j \neq i} w_{ji} y_j \]

\[P(y_i = 1|y_{j \neq i}) = \sigma(z_i) \]

- The probability of any state \(y \) can be shown to be given by the **Boltzmann distribution**

\[E(y) = -\frac{1}{2} y^T W y \quad P(y) = C \exp \left(\frac{-E(y)}{T} \right) \]

- Minimizing energy maximizes log likelihood
The overall probability

\[E(y) = -\frac{1}{2} y^T W y \quad P(y) = C \exp \left(\frac{-E(y)}{T} \right) \]

- Stop when the running average of the log probability of patterns stops increasing
 - I.e. when the (running average) of the energy of the patterns stops decreasing
The Hopfield net is a distribution

- The Hopfield net is a probability distribution over binary sequences
 - The Boltzmann distribution
 \[E(y) = -\frac{1}{2} y^T W y \]
 \[P(y) = \text{const} \exp \left(-\frac{E(y)}{T} \right) \]
 - The parameter of the distribution is the weights matrix \(W \)

- The conditional distribution of individual bits in the sequence is a logistic
- We will call this a Boltzmann machine

\[z_i = \frac{1}{T} \sum_j w_{ji} s_j \]

\[P(s_i = 1 | s_j \neq i) = \frac{1}{1 + e^{-z_i}} \]
The entire model can be viewed as a *generative model*

Has a probability of producing any binary vector \(\mathbf{y} \):

\[
E(\mathbf{y}) = -\frac{1}{2} \mathbf{y}^T \mathbf{W} \mathbf{y}
\]

\[
P(\mathbf{y}) = C \exp \left(-\frac{E(\mathbf{y})}{T} \right)
\]
Training the network

- Training a Hopfield net: Must learn weights to “remember” target states and “dislike” other states
 - “State” == binary pattern of all the neurons

- Training Boltzmann machine: Must learn weights to assign a desired probability distribution to states
 - (vectors \mathbf{y}, which we will now call S because I’m too lazy to normalize the notation)
 - This should assign more probability to patterns we “like” (or try to memorize) and less to other patterns

Mathematical Formulas:

$$E(S) = - \sum_{i<j} w_{ij} s_i s_j$$

$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$

$$P(S) = \frac{\exp \left(\sum_{i<j} w_{ij} s_i s_j \right)}{\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right)}$$
Training the network

Visible Neurons

- Must train the network to assign a desired probability distribution to states
- Given a set of “training” inputs S_1, \ldots, S_N
 - Assign higher probability to patterns seen more frequently
 - Assign lower probability to patterns that are not seen at all
- Alternately viewed: maximize likelihood of stored states

$$E(S) = - \sum_{i<j} w_{ij} s_i s_j$$

$$P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}$$

$$P(S) = \frac{\exp \left(\sum_{i<j} w_{ij} s_i s_j \right)}{\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right)}$$
Maximum Likelihood Training

\[
\log(P(S)) = \left(\sum_{i<j} w_{ij} s_i s_j \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)
\]

\[
\mathcal{L} = \frac{1}{N} \sum_{S \in \mathcal{S}} \log(P(S))
\]

Average log likelihood of training vectors (to be maximized)

\[
= \frac{1}{N} \sum_{S} \left(\sum_{i<j} w_{ij} s_i s_j \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)
\]

- Maximize the average log likelihood of all “training” vectors \(S = \{S_1, S_2, \ldots, SN\}\)
 - In the first summation, \(s_i\) and \(s_j\) are bits of \(S\)
 - In the second, \(s'_i\) and \(s'_j\) are bits of \(S'\)
Maximum Likelihood Training

\[\mathcal{L} = \frac{1}{N} \sum_s \left(\sum_{i<j} w_{ij} s_i s_j \right) - \log \left(\sum_{s'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right) \]

\[\frac{d\mathcal{L}}{d w_{ij}} = \frac{1}{N} \sum_s s_i s_j - ??? \]

- We will use gradient ascent, but we run into a problem..
- The first term is just the average \(s_i s_j \) over all training patterns
- But the second term is summed over all states
 - Of which there can be an exponential number!
The second term

\[
\frac{d\log \left(\sum_S \exp \left(\sum_{i<j} w_{ij} s_i' s_j' \right) \right)}{d w_{ij}} = \frac{1}{\sum_{S''} \exp \left(\sum_{i<j} w_{ij} s_i'' s_j'' \right)} \sum_S \exp \left(\sum_{i<j} w_{ij} s_i' s_j' \right) s_i' s_j' \\
\frac{d \log \sum_S \exp \left(\sum_{i<j} w_{ij} s_i' s_j' \right)}{d w_{ij}} = \sum_S \frac{\exp \left(\sum_{i<j} w_{ij} s_i' s_j' \right)}{\sum_{S''} \exp \left(\sum_{i<j} w_{ij} s_i'' s_j'' \right)} s_i' s_j'
\]
The second term

\[
\frac{d \log \left(\sum_S \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{dw_{ij}} = \frac{1}{\sum_{S''} \exp \left(\sum_{i<j} w_{ij} s''_i s''_j \right) \sum_S \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) s'_i s'_j} \sum_S \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) s'_i s'_j
\]

\[
= \frac{1}{\sum_{S''} \exp \left(\sum_{i<j} w_{ij} s''_i s''_j \right) \sum_S \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) s'_i s'_j} \sum_S \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) s'_i s'_j
\]

\[P(S')\]
The second term

\[
\frac{d \log \left(\sum_s \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{d w_{ij}} = \frac{1}{\sum_{s''} \exp \left(\sum_{i<j} w_{ij} s''_i s''_j \right)} \sum_{s'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) s'_i s'_j
\]

\[
\frac{d \log \left(\sum_s \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{d w_{ij}} = \sum_{s'} \frac{\exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right)}{\sum_{s''} \exp \left(\sum_{i<j} w_{ij} s''_i s''_j \right)} s'_i s'_j
\]

\[
\frac{d \log \left(\sum_s \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{d w_{ij}} = \sum_{s'} P(S') s'_i s'_j
\]
The second term

\[
\frac{d \log \left(\sum_{s'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{d w_{ij}} = \sum_{s'} P(S') s'_i s'_j
\]

• The second term is simply the expected value of \(s_i s_j \), over all possible values of the state

• We cannot compute it exhaustively, but we can compute it by sampling!
Estimating the second term

\[
\frac{d \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{dw_{ij}} = \sum_{S'} P(S') s'_i s'_j
\]

\[
\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in S_{\text{samples}}} s'_i s'_j
\]

- The expectation can be estimated as the average of samples drawn from the distribution.

- Question: How do we draw samples from the Boltzmann distribution?
 - How do we draw samples from the network?
The simulation solution

- Initialize the network randomly and let it “evolve”
 - By probabilistically selecting state values according to our model
- After many many epochs, take a snapshot of the state
- Repeat this many many times
- Let the collection of states be
 \[S_{simul} = \{ S_{simul,1}, S_{simul,1=2}, \ldots, S_{simul,M} \} \]
The simulation solution for the second term

\[
\frac{d\log \left(\sum_{s'} \exp \left(\sum_{i<j} w_{ij} s'_i s'_j \right) \right)}{dw_{ij}} = \sum_{s'} P(S') s'_i s'_j
\]

\[
\sum_{s'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

- The second term in the derivative is computed as the average of sampled states when the network is running “freely”
Maximum Likelihood Training

The overall gradient ascent rule

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{s} s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

Sampled estimate

\[
w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]

• The overall gradient ascent rule
Overall Training

- Initialize weights
- Let the network run to obtain simulated state samples
- Compute gradient and update weights
- Iterate

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{s} s_i s_j - \frac{1}{M} \sum_{s' \in S_{\text{simul}}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
Overall Training

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{s} s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j
\]

\[w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}\]

Note the similarity to the update rule for the Hopfield network.
Adding Capacity to the Hopfield Network / Boltzmann Machine

• The network can store up to N-bit patterns
• How do we increase the capacity
• Add a large number of neurons whose actual values you don’t care about!
Expanded Network

• New capacity: $\sim (N + K)$ patterns
 – Although we only care about the pattern of the first N neurons
 – We’re interested in N-bit patterns
• Terminology:
 – The neurons that store the actual patterns of interest: Visible neurons
 – The neurons that only serve to increase the capacity but whose actual values are not important: Hidden neurons
 – These can be set to anything in order to store a visible pattern
Training the network

• For a given pattern of visible neurons, there are any number of hidden patterns \(2^K\)

• Which of these do we choose?
 – Ideally choose the one that results in the lowest energy
 – But that’s an exponential search space!
The patterns

• In fact we could have *multiple* hidden patterns coupled with any visible pattern
 – These would be multiple stored patterns that all give the same visible output
 – How many do we permit

• Do we need to specify one or more particular hidden patterns?
 – How about *all* of them
 – What do I mean by this bizarre statement?
Boltzmann machine without hidden units

- This basic framework has no hidden units
- Extended to have hidden units

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_s s_is_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_is'_j \\
\]

\[
w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
Now, with hidden neurons the complete state pattern for even the *training* patterns is unknown.

- Since they are only defined over visible neurons.
With hidden neurons

• We are interested in the *marginal* probabilities over *visible* bits
 – We want to learn to represent the visible bits
 – The hidden bits are the “latent” representation learned by the network

\[
P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}
\]

\[
P(S) = P(V, H)
\]

\[
P(V) = \sum_H P(S)
\]

• \(S = (V, H) \)
 – \(V \) = visible bits
 – \(H \) = hidden bits
With hidden neurons

- We are interested in the marginal probabilities over visible bits
 - We want to learn to represent the visible bits
 - The hidden bits are the “latent” representation learned by the network

- \(S = (V, H) \)
 - \(V \) = visible bits
 - \(H \) = hidden bits

\[
P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}
\]

\[
P(S) = P(V, H)
\]

\[
P(V) = \sum_{H} P(S)
\]

- We are interested in the marginal probabilities over visible bits
 - We want to learn to represent the visible bits
 - The hidden bits are the “latent” representation learned by the network

\[S = (V, H) \]
- \(V \) = visible bits
- \(H \) = hidden bits

Must train to maximize probability of desired patterns of visible bits
Training the network

- Must train the network to assign a desired probability distribution to visible states
- Probability of visible state sums over all hidden states

\[
E(S) = - \sum_{i<j} w_{ij} s_i s_j
\]

\[
P(S) = \frac{\exp \left(\sum_{i<j} w_{ij} s_i s_j \right)}{\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s_i' s_j' \right)}
\]

\[
P(V) = \sum_H \frac{\exp \left(\sum_{i<j} w_{ij} s_i s_j \right)}{\sum_{S'} \exp \left(\sum_{i<j} w_{ij} s_i' s_j' \right)}
\]
Maximum Likelihood Training

\[
\log(P(V)) = \log \left(\sum_H \exp \left(\sum_{i<j} w_{ij}s_is_j \right) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij}s'_is'_j \right) \right)
\]

\[\mathcal{L} = \frac{1}{N} \sum_{V \in \mathcal{V}} \log(P(V))\]

Average log likelihood of training vectors (to be maximized)

\[
= \frac{1}{N} \sum_{V \in \mathcal{V}} \log \left(\sum_H \exp \left(\sum_{i<j} w_{ij}s_is_j \right) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i<j} w_{ij}s'_is'_j \right) \right)
\]

- Maximize the average log likelihood of all visible bits of “training” vectors \(\mathcal{V} = \{V_1, V_2, ..., V_N\} \)
 - The first term also has the same format as the second term
 - Log of a sum
 - Derivatives of the first term will have the same form as for the second term
Maximum Likelihood Training

\[
L = \frac{1}{N} \sum_{V \in V} \log \left(\sum_{H} \exp \left(\sum_{i<j} w_{ij} s_i s_j \right) \right) - \log \left(\sum_{S_r} \exp \left(\sum_{i<j} w_{ij} s_i s'_j \right) \right)
\]

\[
\frac{dL}{dw_{ij}} = \frac{1}{N} \sum_{V \in V} \sum_{H} \frac{\exp(\sum_{k<l} w_{kl} s_k s_l)}{\sum_{H'} \exp(\sum_{k<l} w_{kl} s'_{k'} s'_{l'})} s_i s_j - \sum_{S_r} \frac{\exp(\sum_{k<l} w_{kl} s'_k s'_l)}{\sum_{S'_{"}} \exp(\sum_{k<l} w_{ij} s'_{k} s'_{l})} s'_i s'_j
\]

\[
\frac{dL}{dw_{ij}} = \frac{1}{N} \sum_{V \in V} \sum_{H} P(S|V) s_i s_j - \sum_{S'_i} P(S') s'_i s'_j
\]

- We’ve derived this math earlier
- But now both terms require summing over an exponential number of states
 - The first term fixes visible bits, and sums over all configurations of hidden states for each visible configuration in our training set
 - But the second term is summed over all states
The simulation solution

\[
\frac{d\mathcal{L}}{dw_{ij}} = \frac{1}{N} \sum_{V \in \mathcal{V}} \sum_{H} P(S|V)s_i s_j - \sum_{S'} P(S')s'_i s'_j
\]

\[
\sum_{H} P(S|V)s_i s_j \approx \frac{1}{K} \sum_{H \in \mathcal{H}_{\text{simul}}} s_i s_j
\]

\[
\sum_{S'} P(S')s'_i s'_j \approx \frac{1}{M} \sum_{S' \in \mathcal{S}_{\text{simul}}} s'_i s'_j
\]

- The first term is computed as the average sampled hidden state with the visible bits fixed
- The second term in the derivative is computed as the average of sampled states when the network is running “freely”
More simulations

- Maximizing the marginal probability of V requires summing over all values of H
 - An exponential state space
 - So we will use simulations again

\[
P(S) = \frac{\exp(-E(S))}{\sum_{S'} \exp(-E(S'))}
\]

\[
P(V) = \sum_H P(S)
\]
Step 1

For each training pattern V_i
- Fix the visible units to V_i
- Let the hidden neurons evolve from a random initial point to generate H_i
- Generate $S_i = [V_i, H_i]$

Repeat K times to generate synthetic training
$S = \{S_{1,1}, S_{1,2}, \ldots, S_{1K}, S_{2,1}, \ldots, S_{N,K}\}$
• Now *unclamp* the visible units and let the entire network evolve several times to generate

\[S_{\text{simul}} = \{ S_{\text{simul},1}, S_{\text{simul},1=2}, \ldots, S_{\text{simul},M} \} \]
Gradients are computed as before, except that the first term is now computed over the \textit{expanded} training data.

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{S} s_i s_j - \frac{1}{M} \sum_{S' \in S_{\text{simul}}} s'_i s'_j
\]
Overall Training

- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

\[
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_is_j - \frac{1}{M} \sum_{s_i \in S_{simul}} s'_i s'_j
\]

\[
w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
\]
Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than Hopfield nets
• But also enables computation of probabilities of patterns, and completion of pattern
Boltzmann machines: Overall

\[z_i = \sum_j w_{ji} s_i + b_i \]

\[P(s_i = 1) = \frac{1}{1 + e^{-z_i}} \]

Training:
- Given a set of training patterns
 - Which could be repeated to represent relative probabilities
- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

\[\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_s s_i s_j - \frac{1}{M} \sum_{s' \in S_{simul}} s'_i s'_j \]

\[w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}} \]
Boltzmann machines: Overall

• Running: Pattern completion
 – “Anchor” the *known* visible units
 – Let the network evolve
 – Sample the unknown visible units
 • Choose the most probable value
Applications

- Filling out patterns
- Denoising patterns
- *Computing conditional probabilities of patterns*
- *Classification!!*
 - *How?*
Boltzmann machines for classification

• Training patterns:
 – \([f_1, f_2, f_3, ..., \text{class}]\)
 – Features can have binarized or continuous valued representations
 – Classes have “one hot” representation

• Classification:
 – Given features, anchor features, estimate a posteriori probability distribution over classes
 – Or choose most likely class
Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems
 – A small number of training instances over a small number of bits
Solution: *Restricted* Boltzmann Machines

- Partition visible and hidden units
 - Visible units ONLY talk to hidden units
 - Hidden units ONLY talk to visible units
- Restricted Boltzmann machine..
 - Originally proposed as “Harmonium Models” by Paul Smolensky
Solution: *Restricted Boltzmann Machines*

- Still obeys the same rules as a regular Boltzmann machine
- But the modified structure adds a big benefit..

\[z_i = \sum_j w_{ji}s_i + b_i \]

\[P(s_i = 1) = \frac{1}{1 + e^{-z_i}} \]
Solution: \textit{Restricted Boltzmann Machines}

\[z_i = \sum_j w_{ji} v_i + b_i \]

\[P(h_i = 1) = \frac{1}{1 + e^{-z_i}} \]

\[y_i = \sum_j w_{ji} h_i + b_i \]

\[P(v_i = 1) = \frac{1}{1 + e^{-y_i}} \]
Recap: Training full Boltzmann machines: Step 1

- For each training pattern V_i
 - Fix the visible units to V_i
 - Let the hidden neurons evolve from a random initial point to generate H_i
 - Generate $S_i = [V_i, H_i]$

- Repeat K times to generate synthetic training
 $$S = \{S_{1,1}, S_{1,2}, \ldots, S_{1K}, S_{2,1}, \ldots, S_{N,K}\}$$
Sampling: Restricted Boltzmann machine

- For each sample:
 - Anchor visible units
 - Sample from hidden units
 - No looping!!

\[z_i = \sum_{j} w_{ji} v_i + b_i \]

\[P(h_i = 1) = \frac{1}{1 + e^{-z_i}} \]
Recap: Training full Boltzmann machines: Step 2

• Now unclamp the visible units and let the entire network evolve several times to generate

\[S_{simul} = \{ S_{simul,1}, S_{simul,1=2}, \ldots, S_{simul,M} \} \]
Sampling: Restricted Boltzmann machine

- For each sample:
 - Iteratively sample hidden and visible units for a long time
 - Draw final sample of both hidden and visible units

\[
\begin{align*}
 z_i &= \sum_j w_{ji} v_i + b_i \\
 P(h_i = 1) &= \frac{1}{1 + e^{-z_i}} \\
 y_i &= \sum_j w_{ji} h_i + b_i \\
 P(v_i = 1) &= \frac{1}{1 + e^{-y_i}}
\end{align*}
\]
Pictorial representation of RBM training

• For each sample:
 – Initialize V_0 (visible) to training instance value
 – Iteratively generate hidden and visible units
 • For a very long time
Pictorial representation of RBM training

- Gradient (showing only one edge from visible node i to hidden node j)

\[
\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty
\]

- $\langle v_i, h_j \rangle$ represents average over many generated training samples
Recall: Hopfield Networks

- Really no need to raise the entire surface, or even every valley.
- Raise the neighborhood of each target memory.
 - Sufficient to make the memory a valley.
 - The broader the neighborhood considered, the broader the valley.
A Shortcut: Contrastive Divergence

- Sufficient to run one iteration!

\[\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1 \]

- This is sufficient to give you a good estimate of the gradient
Restricted Boltzmann Machines

• Excellent generative models for binary (or binarized) data
• Can also be extended to continuous-valued data
 – “Exponential Family Harmoniums with an Application to Information Retrieval”, Welling et al., 2004
• Useful for classification and regression
 – How?
 – More commonly used to pretrain models
Continuous-values RBMs

Hidden units may also be continuous values

\[z_i = \sum_j w_{ji} v_i + b_i \]
\[y_i = \sum_j w_{ji} h_i + b_i \]

\[P(h_i = 1) = \frac{1}{1 + e^{-z_i}} \]
\[P(v_i) = r(y_i) \exp(y_i) \]
Other variants

- Left: “Deep” Boltzmann machines
- Right: Helmholtz machine
 - Trained by the “wake-sleep” algorithm
Topics missed..

• Other algorithms for Learning and Inference over RBMs
 – Mean field approximations
• RBMs as feature extractors
 – Pre training
• RBMs as generative models
• More structured DBMs
• ...