
HW1P1 Toy Problem

1 Introduction

In this part of the assignment, we will work on a sequence of steps to build an MLP.
We will use the vector notation that we learned in class. However, in keeping with the
convention used by python, our vectors will be row vectors and not column vectors as taught in
class. As a result, all operations will be transposed, w.r.t. the operations in class slides.
We learned in class that a layer of perceptrons performs the following computation:

𝑌!"# = 𝑓(𝑌$%𝑊 +𝐵)
where 𝑌$% is the input to the layer, 𝑊 and 𝐵 are the weights and bias of the layer, and 𝑓() is an
activation function. We also learned that the perceptron may be viewed as a sequence of two
distinct steps:

1) Compute an affine function of the input 𝑍	 = 	𝑌$%𝑊 +𝐵
2) Apply an activation function 𝑌!"# = 𝑓(𝑍)

In practical implementations of neural networks, it is convenient to think of the above two steps
as two distinct operations and not part of a common operation. From this perspective, the above
operation is viewed as actually being a sequence of two layers:

1) Layer 1 computes 𝑌!"#& = 𝑌$%𝑊 +𝐵. This layer is just an affine transform and is
generally referred to as a linear layer.

2) Layer 2 computes 𝑌!"#' = 𝑓(𝑌!"#&). This layer applies an activation function to the
output of the earlier linear layer and is sometimes referred to as an activation layer. The
actual activation function 𝑓() can be one of the various standard activation functions,
such as a threshold, sigmoid, tanh, ReLU, softplus, applied individually to the
components of 𝑌!"#& or a vector activation such as a softmax applied to the entire vector
𝑌!"#& to compute 𝑌!"#'.

Once viewed in this manner, a multi-layer perceptron (or MLP) is just a sequence of layers of
operations on data. Each layer operates on an input vector and transforms it to produce an output
vector. The actual layer may be a linear layer, an activation layer, or one of a number of other
layer types we will encounter in this assignment.

2 MLP Forward

2.1 Implementing an MLP for an isolated input vector

As a preliminary exercise, we will implement a simple MLP comprising several layers, step by
step. The MLP will read in an input 𝑋, and the weights and biases for the layers, and finally
output a vector. In this exercise you will work with small inputs
Throughout the exercise we will use our “mytorch” framework. “mytorch” will eventually grow
to a full suite of operations that you could use to build your own neural net toolkit. We will
leverage object-oriented coding style in “mytorch” framework. Before continuing to read, please
check the handout to know the attributes of each class in “mytorch”.

2.1.1 Implementing a linear layer:
Implement a linear layer in mytorch.py. Remember that the linear layer performs the
computation:

𝑌!"# = 𝑌$%𝑊 +𝐵
You will write a function that takes in an input vector 𝑌$%, a weights matrix 𝑊, and a bias vector
𝐵 and outputs the result 𝑌!"#.
Dimensionality checks (using the column vector notation): If the input vector is 𝑌$% 𝑁-
dimensional (a 1 × 𝑁 vector in the row-vector notation), and your layer has 𝑀 outputs (i.e 𝑀
neurons),

● What is the dimension of 𝑌!"#?
● What is the size of 𝑊?
● What is the size of 𝐵?

Instructions on writing mytorch.linear:
In mytorch/linear.py, implement Linear.forward() function:

● Input shape (x): (batch size, in feature)
● Output shape (out): (batch size, out feature)

From the linear formula above, we can see that in actual code, the calculation of a single linear
layer is composed of two steps:

1) The first step is the dot product between the input variable x and the weight w, which can
be done using np.dot or np.matmul.

2) The second step is the sum of their dot product results and the bias b.
Hint: Add a variable to keep track of intermediate values necessary for the backward
computation.

Testing the linear layer on a single input:
The Toy problem below is just to help you understand what your outputs look like and to sort of
understand the reasoning behind any mistakes you are making. This way, you will be able to
debug your problems in a more fine grained way.

Figure 2.1a: Illustration of perceptron structure.

We will read in a single input vector and apply a linear layer to it

1) Read in the input vector X from (file name).
● Verify that the vector is exactly X = [[4, 3]].

To “verify” you could print out the variable (X in this case) and inspect the values
visually.

2) We will now input X to a linear layer that outputs a 4-dimensional output vector.
● What will the size of the weights matrix W be?
● What will the size of the bias vector B be?

3) Read in the weights matrix W and bias vector B. Verify that
 W = [[4, 2, -2],
 [5, 4, 5]]
 B = [[1, 2, 3]]

4) Apply the linear layer to the input

 Y1lin = linear.forward (X)
5) Verify that Y1lin = [[32, 22, 10]]

2.1.2 Implementing an activation layer:
Implement an activation layer in mytorch.py. Recall that an activation layer computes the
operation:

𝑌!"# = 𝑓(𝑌$%)
You will write a function that takes in an input vector 𝑌$%, applies an activation function to it, and
return the result as the output vector 𝑌!"#. We will implement different activations within
mytorch.

Instructions on writing mytorch.activation:
In mytorch/activation.py, implement the forward function for each activation class. And we
also show the way to calculate the derivative during the backward pass.

● The identity has been implemented for you as an example.
● The output of the activation should be stored in the state.
● The state variable should be used for calculating the derivative during the backward pass.

REFERENCE: Derivative of the Sigmoid function

1) Sigmoid Forward
𝑆(𝑧) = &

&()!"

2) Sigmoid Derivative
𝑆*(𝑧) = 𝑆(𝑧) ⋅ (1 − 𝑆(𝑧))

3) Tanh Forward
𝑡𝑎𝑛ℎ(𝑧) =)#+)!#

)#()!"

4) Tanh Derivative
𝑡𝑎𝑛ℎ*(𝑧) = 1 − 𝑡𝑎𝑛ℎ(𝑧)'

5) ReLU Forward
𝑅(𝑧) = 9𝑧				𝑧 > 0

0				𝑧 ≤ 0
6) ReLU Derivative

𝑅(𝑧) = &1				𝑧 > 0
0				𝑧 ≤ 0

Testing the sigmoid activation on a single input:
We will read in a single input vector and apply a sigmoid activation to it.

1) Apply the sigmoid activation to the output of the linear layer.
Y1 = sigmoid.forward (Y1lin)

2) Verify that Y1 = [[1.0, 1.0, 1.0]]

Testing the ReLU activation on a single input:
We will read in a single input vector and apply a ReLU activation to it.

1) Apply the ReLU activation to the output of the linear layer.
Y1 = relu.forward(Y1lin)

2) Verify that Y1 = [[32, 22, 10]]

Testing the Tanh activation on a single input:
We will read in a single input vector and apply a Tanh activation to it.

1) Apply the Tanh activation to the output of the linear layer.
Y1 = tanh.forward (Y1lin)

2) Verify that Y1 = [[1.0, 1.0, 1.0]]

Testing the softmax activation on a single input:
We will apply the softmax activation to the output of the linear layer.
Question: A softmax activation outputs a probability distribution over a number of classes. If
we apply a softmax to the output of e., how many classes are we modelling?

1) Apply the softmax activation to the output of the linear layer.

Y1 = softmax.forward (Y1lin)

2) Verify that Y1 = [[9.9995e-01, 4.5398e-05, 2.7893e-10]]

2.1.3 Implementing a complete MLP:
We will now implement a complete MLP that nominally has two hidden layers and one output
layer. The hidden layers will use a ReLU activation, and the output layer will have softmax
activation.
Recall that what we call a “layer” in this context typically implies a layer of perceptrons. In
implementation a layer of perceptrons comprises two layers – a linear layer and an activation
layer. So an MLP with two hidden layers and one output layer will, in fact, have six layers,
including three linear layers and three activation layers.

Figure 2.1b: Illustration of MLP structure.

So the complete MLP here will look like the following. Make sure all the instances have been
properly initialized. We skip the initialization step in all pseudo codes in this document. Assume
that input X, and the weights and bias matrices W1, W2, W3, B1, B2 and B3 have been loaded.

Y1lin = linear1.forward(X)
Y1 = relu1.forward(Y1lin)

Y2lin = linear2.forward(Y1)
Y2 = relu2.forward(Y2lin)

Y3lin = linear3.forward(Y2)
Y3 = softmax.forward(Y3lin)

There are other ways of writing this code of course. For instance, you can store all your layers in
a list, and loop over the hidden layers. In this case it is often convenient to call your input the
zeroth layer.

Y = X
for layer = 1:num_hidden_layers
 Ylin = LinerLayers[layer].forward(Y)
 Y = ActivationLayers[layer].forward(Ylin)
end

The output layer immediately follows the hidden layers
YlinFinal = LinerLayers[-1].forward(Y)
Yout = softmax.forward(Ylin)

We will let you figure out what the variables mean.
There are other even smarter ways of writing this. We won’t get into it here.
Terminology: The outputs of the final linear layer (i.e. YlinFinal) are often called the logits.
You will encounter this term frequently.

Testing the MLP on a single input:
Now test your code.

1) Load the input X from X.py, and the weights and biases from W.py
● Verify that input X = [[4, 3]]
● verify that weights and biases：

W1 = [[4, 2, -2],
[5, 4, 5]]

B1 = [[0, 0, 0]]

W2 = [[2, 5, 6],
 [2, -3, -3],
 [-2, 4, 3]]

B2 = [[0, 0, 0]]

W3 = [[5, 5],
 [3, -1],
 [5, 4]]

B3 = [[0, 0]]

2) Run your MLP on X

● Verify that the output of the first (hidden) linear layer is
Y1lin = [[31, 20, 7]]

● Verify that the output of the first activation layer is
 Y1 = [[31, 20, 7]]

● Verify that the output of the second (hidden) linear layer is
Y2lin = [[88, 123, 147]]

● Verify that the output of the second activation layer is
 Y2 = [[88, 123, 147]]

● Verify that the output of the linear layer before the output activation is
Y3lin = [[1544, 905]]

● Verify that the final output is
 Y3 = [[1544, 905]]

2.2 Implementing an MLP for a batch of inputs:

In fact, an isolated input represented as a row vector has the shape of (1, in_feature), which is a
special case of batch_size=1 compared to the batch inputs’ shape (batch_size, in_feature).
Thanks to Python's broadcasting mechanism, we can use our isolated input “mytorch”
framework to verify the batch input results during forward propagation.

2.2.1 Implementing a linear layer:
We will read in a batch inputs and apply a linear layer to it

1) Read in the input array X from (file name).
● Verify that the array is exactly X = [[4,3], [5,6], [7,8]].

2) With the previous linear network parameters W and B, we apply the linear layer to the
input

W = [[4, 2, -2],
 [5, 4, 5]]

B = [[1, 2, 3]]

Y1lin = linear.forward(X)

3) We can verify that our batch output array
 Y1lin = [[32, 22, 10],

 [51, 36, 23],
 [69, 48, 29]]

2.2.2 Implementing an activation layer:
Testing the sigmoid activation on a batch input array:
We will read in a batch input array and apply a sigmoid activation to it.

1) Apply the sigmoid activation to the output array of the linear layer.
Y1 = sigmoid.forward(Y1lin)

2) Verify that Y1 = [[1.0, 1.0, 1.0],

 [1.0, 1.0, 1.0],
 [1.0, 1.0, 1.0]]

Testing the ReLU activation on a batch input array:
We will read in a batch input array and apply a ReLU activation to it.

1) Apply the ReLU activation to the output array of the linear layer.
Y1 = relu.forward(Y1lin)

2) Verify that Y1 = [[32, 22, 10],

 [51, 36, 23],
 [69, 48, 29]]

Testing the Tanh activation on a batch input array:

We will read in a batch input array and apply a Tanh activation to it.
1) Apply the Tanh activation to the output array of the linear layer.

Y1 = tanh.forward(Y1lin)

2) Verify that Y1 = [[1.0, 1.0, 1.0],

 [1.0, 1.0, 1.0],
 [1.0, 1.0, 1.0]]

Testing the softmax activation on a batch input array:
We will read in a batch input array and apply a sigmoid activation to it.

1) Apply the Tanh activation to the output array of the linear layer.
Y1 = softmax.forward(Y1lin)

2) Verify that Y1 = [[9.9995e-01, 4.5398e-05, 2.7893e-10],

 [1.0000e+00, 3.0590e-07, 6.9144e-13],
 [1.0000e+00, 7.5826e-10, 4.2484e-18]]

2.2.3 Implementing a complete MLP:
As with the single-input complete MLP steps, let's test our code:

1) Load the input array X from X.py, and the weights and biases from W.py
● Verify that input X = [[4,3],[5,6],[7,8]]
● verify that weights and biases：

W1 = [[4, 2, -2],
 [5, 4, 5]]

B1 = [[0, 0, 0]]

W2 = [[2, 5, 6],
 [2, -3, -3],
 [-2, 4, 3]]

B2 = [[0, 0, 0]]

W3 = [[5, 5],
 [3, -1],
 [5, 4]]

B3 = [[0, 0]]

2) Run your MLP on X

● Verify that the output of the first (hidden) linear layer is
Y1lin = [[31, 20, 7],
 [50, 34, 20],
 [68, 46, 26]]

● Verify that the output of the first activation layer is
 Y1 = [[31, 20, 7],
 [50, 34, 20],
 [68, 46, 26]]

● Verify that the output of the second (hidden) linear layer is
Y2lin = [[88, 123, 147],
 [128, 228, 258],
 [176, 306, 348]]

● Verify that the output of the second activation layer is
 Y2 = [[88, 123, 147],
 [128, 228, 258],
 [176, 306, 348]]

● Verify that the output of the linear layer before the output activation is
Y3lin = [[1544, 905],
 [2614, 1444],
 [3538, 1966]]

● Verify that the final output is
 Y3 = [[1544, 905],
 [2614, 1444],
 [3538, 1966]]

2.3 Computing the Loss

The loss quantifies the discrepancy between the actual output of a network, and the target output,
and is typically computed on training inputs, for which both the input 𝑋 and the target output –
what we want the network output to be in response to 𝑋 – are given. The loss generally takes the
form of a divergence function (sometimes offset by an additive constant that does not affect the
derivatives). Common loss functions are the cross-entropy loss and the L2 loss.

● The L2 loss is generally used when the network attempts to predict real-valued variables.
For real-valued vector predictions, let 𝑌 and 𝐷 be the actual and desired outputs of the
network in response to an input 𝑋. The the L2 loss is given by

𝐿 =
1
2@

(𝑌$–𝐷$)'
$

where 𝑌$ and 𝐷$ are the i-th components 𝑌 and 𝐷 of respectively.

● The cross-entropy loss is defined between two probability distributions, and is generally
used for classification problems where the network outputs a probability distribution 𝑌
over the classes in response to an input. For an 𝑁-class classification network 𝑌 here
would be a 1 × 𝑁 vector of probabilities where 𝑌$ would be the probability assigned to
the i-th class. The target output would be for the network to assign 0 probability for all
the wrong classes, and a probability of 1 for the correct class. So 𝐷 here would be a
1 × 𝑁 one-hot vector, where the component corresponding to the true class of the input is
1, and the rest are 0. The cross-entropy loss between 𝑌 and 𝐷 is defined as

𝐿 = −@𝐷$ 𝑙𝑜𝑔 𝑙𝑜𝑔	𝑌$
$

	

For one-hot 𝐷, this reduces to 𝐿 = − 𝑙𝑜𝑔 𝑙𝑜𝑔	𝑌, 	, where 𝑌, is the probability assigned to
the true class of the input by the network. Observe that minimizing the loss maximizes
the probability of the correct class.

2.3.1 Implementing loss functions:
You are now required to implement various loss functions in mytorch. The loss function will
take in the actual network output and the desired target output and return the loss value and will
have the form

L = L2.forward(Y, D)
L = crossentropy.forward(Y, D)

Etc.

Testing the losses
We will now test your loss implementations to ensure they are working properly.
Testing your L2 loss implementation

1) Sanity check:
● Set Y = [[1,2,3]] and D = [[2,3,4]].
● Compute the L2 loss L = L2.forward(Y,D). Verify that the L2 loss

computed is 1.0.

2) Network check:
● Run the network from (COMPLETE MLP SECTION) on input X.py, and

consider the output Y3lin to be the final output of the network (i.e. if the network
was a regression network with no final softmax).

● Set D = [[1540,900]] and compute the L2 loss. Verify that the L2 loss
computed is 20.5

Testing your cross-entropy loss implementation

1) Sanity check:
● Set Y = [[0.2,0.3,0.5]] and D to be a one-hot vector with target class id

c = 2 (i.e. corresponding to the class with 0.3 probability in Y).
● Compute the cross-entropy loss L = crossentropy.forward(Y,D).

Verify that the loss computed is -log(0.3).
● Repeat the above with C = 1 and C = 3 and verify that L = -log(0.2)

and -log(0.5) respectively

2) Network check:
● Run the network from (COMPLETE MLP SECTION) on input X.py, to obtain

the final softmax output Y3.
● Set c = 1 and verify that the cross-entropy loss computed is 0.0

3 MLP Backward

3.1 Computing Derivatives
To train a network, we will need to compute derivatives of the loss between the actual and target
outputs of the network, with respect to its parameters. To do so however, we will also need to
compute derivatives for all intermediate variables computed by the network.
Recall the derivative rules from class. By the convention we employed, the shape of the
derivative of a scalar loss with respect to a vector or matrix variable is transposed with respect to
the variable. Thus, the derivative for a row vector will be a column vector, and the derivative for
a matrix will have the shape of its transpose, both of which make programming in python, which
uses row vectors, very inconvenient.
Fortunately for us, we can redo all the arithmetic in terms of the transposes of the derivatives,
which have the same shape as the variables themselves.
The transpose of the derivative of a scalar variable with respect to a vector is called a gradient,
i.e. for a function such as 𝐿 = 𝑓(𝑋) where 𝐿 is a scalar and 𝑋 is a row vector, the gradient of 𝑌
with respect to 𝑋 has the same shape as 𝑋. When the output of the function is also a row vector
(i.e. for a function such as 𝑌 = 𝑓(𝑋) where 𝑌 and 𝑋 are both row vectors), the transpose of the
derivative of 𝑌 with respect to 𝑋 is the Jacobian. For simplicity we will (taking liberties with
terminology), refer to both gradients and Jacobians generically as gradients.
All the equations below are in terms of gradients, rather than regular derivatives. All equations
remain consistent. We will represent the gradient of a variable 𝑌 with respect to variable 𝑋 as
𝛻-𝑌.
We can now specify the following rules:
● The gradient of the loss (which is a scalar) with respect to a 1	 × 𝑁 row vector is a 1	 × 𝑁

row vector.

Figure 3.1a: Illustration of variable dimensions for 𝐿	 = 	𝑓(𝑋) with scalar 𝐿 and row vector 𝑋

The i-th component of 𝛻-𝐿 is the partial derivative ./
.-$

.
● The gradient of the loss with respect to an 𝑀	 × 𝑁 matrix will also be an 𝑀	 × 𝑁 matrix.

Figure 3.1b: Illustration of variable dimensions for 𝐿	 = 	𝑓(𝑋) with scalar 𝐿 and 𝑀	 × 𝑁 matrix 𝑋

The (𝑖, 𝑗)th element of 𝛻-𝐿 is the partial derivative ./

.-$,&
.

● The Jacobian of a 1	 × 𝑁	row vector with respect to a 1	 × 𝑀 row vector will be an 𝑁	 × 𝑀

matrix.

Figure 3.1c: Illustration of variable dimensions for 𝑍	 = 	𝑓(𝑋), where 𝑍 is an 1 × 𝑁 vector and 𝑋, is 1	 × 𝑀

The (𝑖, 𝑗)th element of 𝛻-𝑍 is the partial derivative .0$
.-&

. Note the indices: The numerator

index in the partial derivative corresponds to the first (row) index in the Jacobian matrix 𝛻-𝑍,
and the denominator index corresponds to the second (column) index.

● In any application of the chain rule, the dimensions must match up. So, for instance, if we
have
𝐿	 = 	𝑓(𝑍)	 where 𝑍	 = 	ℎ(𝑋), where 𝐿 is a scalar (e.g. a loss), 𝑍 is an 1	 × 𝑀 row vector
and 𝑋 is an 1	 × 𝑁 row vector, then, by the rules given just above
o 𝛻-𝐿, the gradient of 𝐿 w.r.t. 𝑋 must be a 1	 × 𝑁 row vector.
o 𝛻0𝐿, the gradient of 𝐿 w.r.t. 𝑍 must be a 1	 × 𝑀 row vector
o 𝛻-𝑍, the Jacobian of 𝑍 w.r.t. 𝑋 must be an 𝑀	 × 𝑁 matrix
o The chain rule for the derivatives now is given by:

𝛻-𝐿 = 𝛻0𝐿	𝛻-𝑍	

The following figure illustrates the chain rule relation.

Figure 3.1d: Illustration of how sizes must match up when we use the chain rule. The relation used is 𝐿	 =
	𝑓(𝑍) where 𝑍 = 𝐺(𝑋). L is a scalar, Z is a 1 ×𝑀 vector, and 𝑋 is a 1	 × 𝑁 vector. The objective is to

compute 𝛻'𝐿, the gradient of 𝐿 w.r.t. 𝑋.

The consequence of the above rules is that the shape of the derivative of the loss with respect to
any network parameter or intermediate variable in the network will be the transpose of the shape
of the parameter or variable.

Additional rules:
We will additionally use the following simple rules in computing derivatives:

a. For any computation of the kind [𝑎, 𝑏, 𝑐] 	= 	𝐹(𝑑, 𝑒, 𝑓), where the operation takes in
variables 𝑑, 𝑒 and 𝑓, and computes values 𝑎, 𝑏 and 𝑐, the derivative computation will be
backward:

𝜕𝑑,  𝜕𝑒,  𝜕𝑓 = 𝐵(𝜕𝑎, 𝜕𝑏, 𝜕𝑐)
where 𝜕𝑎, 𝜕𝑏, 𝜕𝑐, 𝜕𝑑, 𝜕𝑒 and 𝜕𝑓 are the derivatives of the loss with respect to 𝑎, 𝑏, 𝑐, 𝑑,
𝑒 and 𝑓 respectively and B() is the function that computes the derivative for F().

Note the reverse in the order of variables: while computing derivatives, the derivatives
w.r.t. 𝜕𝑎, 𝜕𝑏, 𝜕𝑐, the output variables 𝑎, 𝑏, 𝑐 of the “forward” function 𝐹() are input to the
“backward” function 𝐵(). The output of the backward function 𝐵() are 𝜕𝑑, 𝜕𝑒, 𝜕𝑓, the
derivatives w.r.t 𝑑, 𝑒 and 𝑓, which are the inputs to 𝐹().

b. In order to compute the derivatives 𝜕𝑑, 𝜕𝑒 and 𝜕𝑓, you first need 𝜕𝑎, 𝜕𝑏 and	𝜕𝑐. So, if
we have a sequence of operations:

[𝑎, 𝑏, 𝑐] 	= 	𝐹(𝑑, 𝑒, 𝑓)
[𝑢, 𝑣, 𝑤] 	= 	𝐺(𝑎, 𝑏, 𝑐)

then we must first compute derivatives for 𝜕𝑎, 𝜕𝑏, 𝜕𝑐 from 𝜕𝑢, 𝜕𝑣, 𝜕𝑤,and then use those
to compute 𝜕𝑑, 𝜕𝑒, 𝜕𝑓. So to compute the derivatives with respect to the earliest
variables in the sequence of operations, we must compute them in reverse order, starting
with the last operation, and then working our way backwards.

Now we are set to go.

3.2 The gradient of the loss

The loss is always a scalar. It is a function of the output of the network and has the form:
𝐿	 = 	𝑙𝑜𝑠𝑠(𝑌, 𝐷)

Where 𝑌 is the output of the network (in response to some training input), and 𝐷 is the desired
output in response to the same input.
As a first step of backpropagation, we require 𝛻1𝐿, the derivative of the loss with respect to the
network output 𝑌. For a simple binary classifier that outputs a single probability value between
0 and 1, or for a simple regression where the network predicts a scalar value, this derivative is
just 2/

21
. Please check the lectures for the formulae for this derivative for different losses for

scalar outputs.
For multi-class classification or vector regression, the output 𝑌 will be a vector. In our notation,
it will be a 1	 × 𝑁 row vector, where 𝑁	is the number of classes (for multi-class classification),
or the dimensionality of the output prediction (for vector regression). In this case, the gradient
𝛻1𝐿 will be a 1	 × 𝑁 row vector, whose i-th component is the partial derivative ./

.1$
. Please refer

to the lectures to see how to compute these partial derivatives for various losses, including the
softmax loss.

3.2.1 A short-cut for L2 and Softmax losses
In regression problems the network does not generally have an output activation layer and ends
with a linear layer. In terms of our 3-layer example earlier, the network output would simply be
Y3lin, i.e. the network output Y = Y3lin. The L2 loss will generally be used in this setting.
In classification problems the network does generally have an output softmax layer following the
final linear layer. So in our 3-layer example, the final linear layer’s output is Y3lin, i.e. the
logits, but the actual output of the network is Y3, i.e. Y = Y3. The cross-entropy loss will be
used in this setting.
In both cases, the gradient of the loss (L2 for the regression problem, cross-entropy for the
classification problem) with respect to the final linear layer outputs (which would be the network
output for the regression problem, and the logits for the classification problem) is simply the
error between actual and desired outputs.

𝛻134$%𝐿 = 𝑌–𝐷
where Y is the network output and D is the desired output. For regression problems D is the
actual target output. For classification problems D is the one-hot vector representation of the
target output. Note the order, this is important: the gradient is Y – D and not D – Y. The logic is
obvious: if 𝑌$ is less than 𝐷$, the derivative is negative, and the gradient-descent rule will

increase 𝑌$, which makes sense. If 𝑌$ is greater than 𝐷$, the derivative is positive, and the
gradient-descent rule will decrease 𝑌$.
For proof of this simple relation, refer to the appendix. The fact that the gradient is simply the
error is often why gradient back-propagation is also called error backpropagation.

3.2.2 Implementing the gradient of the loss functions:
You are now required to implement gradients for the loss functions in mytorch. We will make
two distinctions:

a) For the L2 loss, we will return the loss with respect to the final network output. Here the
loss will have the form

𝑔𝑟𝑎𝑑𝑌	 = 	𝐿2. 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒()
and simply return 𝑠𝑒𝑙𝑓. 𝑌 − 𝑠𝑒𝑙𝑓. 𝐷 (you need to store these variables when calling the
forward function).

b) For the cross-entropy loss it is more convenient to return the gradient with respect to the
logits entering the softmax, rather than the output of the softmax itself. The loss function
will take in the actual network output (not the logits) and the desired target output and
return the loss value and will have the form

𝑔𝑟𝑎𝑑𝑍	 = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦. 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒()
and this too will simply return 𝑠𝑒𝑙𝑓. 𝑌	– 	𝑠𝑒𝑙𝑓. 𝐷. (The variable is called gradZ in the code
above to emphasize that it is the loss w.r.t. the input to the softmax)
𝐷 may be a one-hot vector, or any other target distribution. Note that although the gradient is
with respect to the logits, the logits themselves are not required for the computation; we only
need the output of the softmax.

Testing the loss gradient
We will now test your implementations of loss gradients.
Testing your L2 loss gradient implementation

i) Sanity check:
a. Set Y = [1, 2, 3] and D = [2, 3, 4].
b. Compute the gradient of L2 loss. Verify that the L2 loss computed is [-1, -1,

-1].

ii) Network check:
a. Run the network and inputs of 2.2.3, and consider the output Y3lin to be the

final output of the network (i.e. if the network was a regression network with no
final softmax).

b. Set D = [240, 4] and compute the gradient of the L2 loss. Verify that the
gradient computed is [1304, 901].

Testing your implementation cross-entropy loss gradient at the logits
i) Sanity check:

a. Set Y = [0.2, 0.3, 0.5] and D to be a one-hot vector with target class id
c = 2.

b. Compute the gradient of cross-entropy loss
L = softmaxCrossEntropy.derivative()

Verify that the gradient computed is [0.2, -0.7, 0.5].
c. Repeat the above with c = 1 and c = 3 and verify that answers are [-0.8,

0.3, 0.5] and [0.2, 0.3, -0.5] respectively

ii) Network check:
a. Run the network and inputs of 2.2.3, to obtain the final softmax output Y3.
b. Set c = 1 and verify that the gradient of the loss with respect to the logits is

[0, 0].

3.3 The gradient of the activation layers

The typical activation layer has the form 𝑌	 = 	𝑓(𝑍), where 𝑍 is the output of the linear layer
leading into the activation, and 𝑌 is the output of the activation. In principle, given 𝛻1𝐿 (the
gradient of the loss w.r.t. the layer output), 𝛻0𝐿, the gradient w.r.t the input, can be computed
using the chain rule as 𝛻0𝐿 = 𝛻1𝐿	𝛻0𝑌, where 𝛻0𝑌 is the Jacobian of 𝑌 w.r.t. 𝑍.
However, computing 𝛻0𝐿 in this manner requires the Jacobian 𝛻0𝑌, which will generally be a
large diagonal matrix for scalar component-wise activations. Explicitly computing and storing it
and subsequently performing the matrix multiplication required by the explicit implementation
of the chain rule can be memory-intensive and consequently inefficient.
Instead, we will usually directly compute 𝛻0𝐿 from 𝛻1𝐿 without explicit computation of the
Jacobian.
In particular, for “scalar” activations that are applied individually to the components of 𝑍 to get
the corresponding component of 𝑌 (e.g. sigmoid, ReLU, tanh), the gradient is easily computed
through component-wise application of the chain rule:

𝜕𝐿
𝜕𝑍$

=
𝜕𝐿
𝜕𝑌$

𝑓 ’(𝑍$)

𝛻0𝐿 = _
𝜕𝐿
𝜕𝑍'

,
𝜕𝐿
𝜕𝑍'

, ⋯ a

where 𝑓 ’(𝑍$) is the derivative (or subderivative/subgradient) of the activation function computed
at 𝑍$. For the formulae of the derivatives of specific activation functions, please refer to the
lectures.

Implementing the gradient for activation layers:
You are now required to implement gradients for the activations in mytorch. You need to write
functions of the kind:

gradZ = relu.derivative(gradY)
The routine takes in the loss gradient for the output of the layer and returns the loss gradient for
the input vector. You must implement this for ReLu, Sigmoid and Tanh activations.

Testing the gradient of the sigmoid activation on a single input:

a. Sanity check: Set Z = [1, 2, 3] and gradY = [1,-1,1]. Assume a sigmoid
activation. Compute gradZ using sigmoid.derivative().

● Verify that gradZ = [0.197, -0.105, 0.045]
b. From part 2.1.2, set Z = Y1. Set gradY = [1, -1, 1].

● Verify that gradZ = [1.3e-14, 2.8e-10, 4.5e-5]

Testing the gradient of the ReLu activation on a single input:
a. Sanity check: Set Z = [1, 2, 3] and gradY = [1,-1,1]. Assume a ReLu

activation. Compute gradZ using relu.derivative().
● Verify that gradZ = [1, -1, 1]

b. From part 2.1.2, set Z = Y1. Set gradY = [1, -1, 1].
● Verify that gradZ = [1, -1, 1]

Testing the gradient of the Tanh activation on a single input:

a. Sanity check: Set Z = [1, 2, 3] and gradY = [1,-1,1]. Assume a Tanh
activation. Compute gradZ using tanh.derivative().

● Verify that gradZ = [0.420, -0.071, 0.010]
b. From part 2.1.2, set Z = Y1. Set gradY = [1, -1, 1].

● Verify that gradZ = [0, 0, 8.2e-9]]

3.4 The gradient of a linear layer

A linear layer is the primary component of a network that has parameters – namely the weights
matrix and the bias. Recall that it implements the operation 𝑌	 = 	𝑍𝑊	 + 	𝐵. Thus, when we
compute gradients for a linear layer, we not only compute derivatives with respect to the layer
input Z, but also the parameters W (the weights) and B (the bias).
The relations are:

𝛻0𝐿 = 𝛻1𝐿𝑊6
𝛻7𝐿 = 𝑍6𝛻1𝐿
𝛻8𝐿 = 𝛻1𝐿

Note that some of the terms in these equations are transposed with respect to the equations
because we are now speaking of gradients rather than derivatives, and because we employ a row-
vector notation for the vectors.

3.4.1 Implementing the gradient for a linear layer
You are now required to implement gradients for the linear layer in mytorch. You need to write
functions of the kind:

gradZ = linear.backward(gradY)
The routine takes in the loss gradient for the output of the layer and returns the loss gradient for
the input vector. Also, it will update the gradients of the parameters, i.e. weight and bias.

Testing the gradient of the linear layer on a single input:

a. Sanity check: Set Z = [1, 2], W = [[4, 2, -2], [5, 4, 5]], B =
[1,1,1] and gradY = [1,-1,1]. Compute gradZ, gradW and gradB using
linear.backward().

● Verify that gradZ = [0, 6],
gradW = [[1, -1, 1], [2, -2, 2]],
gradB = [1, -1, 1]

b. From part 2.1.1, set Z = X. Set gradY = [1, -1, 1]. Compute the gradients for
the weights and biases of the first linear layer (i.e for W1 and B1).

● Verify that gradZ = [0, 6],
gradW = [[4, -4, 4], [3, -3, 3]],
gradB = [1, -1, 1]

3.5 Implementing the backward pass for a complete MLP:

We will now implement the backward pass for a complete MLP.
Specifically we will test it for the network from 2.1.3. The parameters of the network are the
weights and biases W1, W2, W3, B1, B2 and B3 have been loaded.

Using your implementation of the loss, loss gradient, and the gradients of the various layers we
will now

(a) compute the loss for the input, and
(b) perform a backward pass through this network.

We assume you have already loaded the input X (from X.py) and computed the forward pass
through the network for 2.1.3. The desired target output D must also have been loaded along
with X.

Your backward pass code will look like the following:

Loss = softmaxCrossEntropy(Y3, D)
First compute the gradient for the input to the final softmax
layer
gradY3lin = softmaxCrossEntropy.derivative()
Compute the gradients past the preceding linear layer.
gradY2 = linear3.backward(gradY3lin)
The previous ReLu layer took in Y2lin and returned Y2. So…
gradY2lin = relu3.derivative()* gradY2
The preceding linear layer took in Y1 and output Y2lin
gradY1 = linear2.backward(gradY2lin)
The preceding ReLU layer took in Y1lin and output Y1
gradY1lin = relu2.derivative()* gradY1
The preceding linear layer took in X and output Y1lin
gradX = linear1.backward(gradY1lin)

As in the case of the forward pass, there are other ways to write the above, e.g. as a loop. The
loop version would look like this. Note that it exactly reverses the order of operations of the
forward loop.

First compute gradients for the final linear layer logits &
params
gradYlin = softmaxCrossEntropy.derivative()
gradY2 = linear3.backward(gradYlin)

We now wind down from the last-but-one layer down to the input
for layer = num_hidden_layers-1 downto 1
 gradYlin = ActivationLayers[layer].derivative()* gradY
 gradY = LinearLayers[layer].backward(gradYlin)
End

Again, there are other even smarter ways of writing this. We won’t get into it here.

Testing your complete MLP backward code:

Figure 3.5a: Illustration of the MLP structure.

a. Make sure you have correctly loaded the inputs, weight and bias as part 2.1.3.
b. Verify that the gradient of the third layer are

gradY3lin = [[-239, -4]]
 gradB3 = [[-239, -4]]
 gradW3 = [[-21032, -352],
 [-29397, -492],
 [-35133, 588]]
c. Verify that the gradient of the output of the second layer after activation is

 gradY2 = [[-1215, -713, -1211]]
d. Verify that the gradient of the third layer are

 gradY2in = [[-1215, -713, -1211]]
 gradB2 = [[-1215, -713, -1211]]
 gradW2 = [[-37665, -22103, -37541],
 [-24300, -14260, -24220],
 [-8505, -4991, -8477]]

e. Verify that the gradient of the output of the first layer after activation is
 gradY1 = [[-13261, 3342, -4055]]

f. Verify that the gradient of the third layer are
 gradY1in = [[-13261, 3342, -4055]]
 gradB1 = [[-13261, 3342, -4055]]
 gradW1 = [[-53044, 13368, -16220],
 [-39783, 10026, -12165]]

g. Verify that the gradient of the input is

 gradX = [[-38250, -73212]]

3.6 Implementing the backward pass for a complete MLP with a batch of inputs

As discussed in the lecture, we average the gradient of all parameters of the network in a batch
before conducting gradient descent. To obtain the gradient of B (batch size) inputs, the simplest
and stupidest way is just repeating the backward operation B times using a loop function then
saving and averaging all required gradients. However, to make the computation more efficient,
matrix multiplication is always involved.
Now, let us consider a simple perceptron example. We have L=G(Y) and Y=ZW+B, where G() is
the loss function. Here, we define Z as a 𝐵𝑆	 × 𝑁matrix where each row represents one input
vector and Y the 𝐵𝑆	 × 𝑀matrix where each row represents the output of the corresponding input
vector. Similarly, the desired output D is also represented as a matrix with the same shape of Y.
Like what we did when batchsize=1 (Y and Z are row vectors), 𝛻1𝐿 for L2 and
SoftmaxCrossEntorpyAtLogits still can be computed by

𝛻1𝐿 = 𝑌 − 𝐷
And the averaged gradient of 𝛻7𝐿 and 𝛻8𝐿 can be obtained by

𝛻7𝐿 = 𝑍6𝛻1𝐿/BS
𝛻8𝐿 = 𝐼𝛻1𝐿/BS

where I is a 1 × 𝐵𝑆 row vector which all values equal to one and BS is the batch size. Verify
what happened in the matrix multiplication by yourself.

Figure 3.6a: Illustration of how sizes must match up when we use the chain rule in a batch of gradients. The
left one is under the special case of BS = 1 and the right one BS=3. The relation used is 𝐿	 = 	𝐺(𝑌) where 𝑌 =
𝑍𝑊 + 𝐵. L is a scalar, Y is a 𝐵𝑆 ×𝑀 matrix, and 𝑍 is a 𝐵𝑆	 × 𝑁 matrix. The objective is to compute 𝛻(𝐿, the

gradient of 𝐿 w.r.t. 𝑍.

To compute the gradient of 𝛻0𝐿, let us first get back to the simplest setting, batchsize=1. As
shown in Figure 3.6a, we use the chain row to compute the gradient w.r.t. Z (𝛻0𝐿 = 𝛻1𝐿	𝛻0𝑌 =
𝛻1𝐿𝑊6). In this equation, we found 𝛻0𝑌 is irrelevant to Z and always equals to 𝑊6. This way, to
compute a batch of gradients 𝛻0𝐿 using matrix multiplication, we can simply utilize the same
equation as batchsize=1 whilst in a matrix version

 𝛻0𝐿 = 𝛻1𝐿	𝛻0𝑌 = 𝛻1𝐿𝑊6
See Figure to verify what happened in matrix multiplication. Note that 𝛻0𝑌is not averaged in a
batch.
Hints: The matrix multiplication is just leveraged for computational efficiency and the results
should have no difference with those using loops. So feel free to use the loop function if you find
the matrix multiplication is hard to understand at this moment.

Testing your complete MLP backward code with a batch of inputs:

Figure 3.6b: Illustration of the MLP structure.

a. Make sure you have correctly loaded the inputs, weight and bias as part 2.2.3.

 D = [240, 4]
b. Verify that the gradient of the third layer are

gradY3lin = [[-239, -4],
 [-319, -1],
 [-68, -4]]
 gradB3 = [[-208.7, -3.7]]
 gradW3 = [[-24610.7, -496]
 [-40979, -826]
 [-47033, -948]]

c. Verify that the gradient of the output of the second layer after activation is
 gradY2 = [[-1215, -713, -1211],
 [-1605, -955, -1603],
 [-365, -199, -36]]

d. Verify that the gradient of the third layer are
 gradY2in = [[-1215, -713, -1211],
 [-1605, -955, -1603],
 [-365, -199, -36]]
 gradB2 = [[-1061.7, -622.3, -950]]
 gradW2 = [[-47578.3, -27795, -47390.3]
 [-31886.7, -18628, -31760.7]
 [-16698.3, -9755, -16632.3]]

e. Verify that the gradient of the output of the first layer after activation is
 gradY1 = [[-13261, 3342, -4055],
 [-17603, 4464, -5419],

 [-17603, 4464, -5419]]
f. Verify that the gradient of the third layer are

 gradY1in = [[-13261, 3342, -4055],
 [-17603, 4464, -5419],
 [-17603, 4464, -5419]]
 gradB1 = [[-16155.7, 4090, -4964.3]]
 gradW1 = [[-56084.7, 14105.7, -17112.3]
 [-58827, 14795.3, -17949]]

g. Verify that the gradient of the input is
 gradX = [[-38250, -73212],
 [-50646, -97254],
 [-11354, -21367]]
3.7 Gradient Descent

To train the MLP to produce desired outputs, we optimize the parameters of the network using
gradient descent. As discussed in the lecture, gradient descent is just updating the parameters
along with the opposite direction of their corresponding gradients in a fixed step size, a.k.a.
learning rate. For the stochastic gradient descent, the parameters can be updated as

𝑊 = 𝑊 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝑊
𝐵 = 𝐵 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝐵

where 𝑙𝑟is the learning rate.
Since the gradients calculated from single inputs are always noisy, for most of the time, we
conduct gradient descent in a mini-batch. As we discussed in 3.6, the gradients are averaged in a
batch before being adopted to update parameters.

Testing gradient descent on MLP with a single instance input:
We will use a learning rate of .1
a. Make sure you have correctly loaded the inputs, weight and bias as part 2.2.1.
b. Ensure that you computed all the gradients correctly (answers in 3.5)
c. Verify that the updated weights and bias matrices between the input and the first hidden layer
are:

W1 = [[5308.4, -1334.8, 1620],
 [3983.3, -998.6, 1221.5]]
 B1 = [[1326.1, -334.2, 405.5]]

d. Verify that the updated weights and bias matrices between the first hidden layer and second
hidden layer are:

 W2 = [[3768.5, 2215.3, 3760.1],
 [2432, 1423, 2419],
 [848.5 503.1 850.7]]

 B2 = [[121.5, 71.3, 121.1]]
e. Verify that the updated weights and bias matrices between the second hidden layer and output
layer are:

W3 = [[2108.2, 40.2],
 [2942.7, 48.2],
 [3518.3, -54.8]]
B3 = [[23.9, 0.4]]

Testing gradient descent on MLP with a batch of inputs:
We will use a learning rate of .1
a. Make sure you have correctly loaded the inputs, weight and bias as part 2.2.3.
b. Ensure that you computed all the gradients correctly (answers in 3.6)
c. Verify that the updated weights and bias matrices between the input and the first hidden layer
are:

 W1 = [[5612.47, -1408.57, 1709.23],
 [5887.7, -1475.53, 1799.9]]

 B1 = [[1615.57, -409, 496.43]]
d. Verify that the updated weights and bias matrices between the first hidden layer and second
hidden layer are:
 W2 = [[4759.83, 2784.5, 4745.03],
 [3190.67, 1859.8, 3173.07],
 [1667.83, 979.5, 1666.23]]
 B2 = [[106.17, 62.23, 95]]
e. Verify that the updated weights and bias matrices between the second hidden layer and output
layer are:

W3 = [[2466.07, 54.6],
 [4100.9, 81.6],
 [4708.3, 98.8]]

B3 = [[20.87, 0.37]]

4 Batch Normalization

Properly leveraging batch normalization is essential for NN training. As discussed in the lecture,
batch normalization can speed up the training process, alleviating overfitting and mitigating
gradient explosion and gradient vanishing. In this section, we will implement a batch
normalization layer step by step.

4.1 Batch Normalization Training Forward

Recall that the batch normalization has two phases in forward operation: training and evaluation.
We will first study the training phase.

In the training phases, batch normalization layer first norms the inputs across the batch then
apply the affine transformation on the normalized data. It can be described as

𝑢8 =
1
𝐵@𝑥$

9

$:&

𝜎8' =
1
𝐵@

(𝑥$ − 𝑢8)'
9

$:&

𝑥d$ =
𝑥$ − 𝑢8
e𝜎8' + 𝜖

𝑦$ = 𝛾𝑥d$ + 𝛽

where we use the annotations in the lecture.
As mentioned in the previous section, in mytorch framework, a batch of input can be denoted as
a 𝐵𝑆	 × 𝑀matrix X where 𝑀is the feature dimension of inputs. In this way, to implement the BN
layer in mytorch, your code should be like the following.

First compute the mean of the input, mean is a 1xM row vector.
mean = np.mean(X, axis=0)
Then compute the variance of the input, var is a 1xM row vector.
var = np.var(X, axis=0)
Norm the input X using the mean and variance computed from above. Remember to add
a small constant to avoid zero division.
norm = (X - mean)/sqrt(var + eps)
Do the affine transformation, gamma and beta are 1xM row vectors.
Y = norm * gamma + beta
Update the running_mean and running_var, alpha is a scaler to control the updating
speed.
running_mean = alpha * running_mean + (1 - alpha) * mean
running_var = alpha * running_var + (1 - alpha) * var

Hints: You may find that dimensions of the above code are not matched. Try this in numpy to
see what will happen. If you want to learn more about that, you can search numpy broadcasting
on google.

Testing your complete batch norm forward code with a batch of inputs in training phase:
We will include batch norm at each of the hidden layers, updating our MLP as such (include new
diagram):

Figure 4.1b: Illustration of the MLP structure with batch normalization layer.

We will use the same weights, biases, and inputs as in 2.2.3:

X = [[4,3],[5,6],[7,8]]
W1 = [[4, 2, -2],
 [5, 4, 5]]

B1 = [[0, 0, 0]]

W2 = [[2, 5, 6],
 [2, -3, -3],
 [-2, 4, 3]]

B2 = [[0, 0, 0]]

W3 = [[5, 5],
 [3, -1],
 [5, 4]]

B3 = [[0, 0]]

Also, consider the following parameters:

eps = .001 alpha = .9
Consider M to denote the input feature size at a hidden layer. The gamma and running_var at
each hidden layer will be an array of 1s of size 1*M. On the other hand, the beta and
running_mean at each hidden layer will be an array of 0s of size 1*M.
a. Verify the following initial output for the first hidden layer, before batch norm:

Y1lin = [[31, 20, 7],
 [50, 34, 20],
 [68, 46, 26]]

b. Verify the following values for the first hidden layer, during batch norm:
 mean1 = [49.67, 33.33, 17.66]

 var1 = [228.22, 112.89, 62.89]

 norm1 = [[-1.23562548, -1.25490605, -1.34504963],
 [0.02206474, 0.0627453, 0.29422961],
 [1.21356074, 1.19216075, 1.05082002]]

 Y1bn = [[-1.23562548, -1.25490605, -1.34504963],
 [0.02206474, 0.0627453, 0.29422961],
 [1.21356074, 1.19216075, 1.05082002]]

 running_mean1 = [4.96666667, 3.33333333, 1.76666667]

 running_var1 = [23.72222222, 12.18888889, 7.18888889]

c. Verify the final output for the first hidden layer after batch norm and RELU:
 Y1 = [[0, 0, 0],
 [0.02206474, 0.0627453, 0.29422961],
 [1.21356074, 1.19216075, 1.05082002]]

d. Verify the following initial output for the second hidden layer, before batch norm:
 Y2lin = [[0, 0, 0],
 [-0.41883913, 1.09900622, 0.82684136],
 [2.70980293, 6.69460155, 6.85734227]]

e. Verify the following values for the second hidden layer, during batch norm:
 mean2 = [0.7636546, 2.59786926, 2.56139454]

 var2 = [1.92298436, 8.59291019, 9.34152788]

 norm2 = [[-0.55054929, -0.88617988, -0.8380005],
 [-0.85250724, -0.51128911, -0.56748635],
 [1.40305653, 1.39746899, 1.40548685]]

 Y2bn = [[-0.55054929, -0.88617988, -0.8380005],
 [-0.85250724, -0.51128911, -0.56748635],
 [1.40305653, 1.39746899, 1.40548685]]

 running_mean2 = [0.07636546, 0.25978693, 0.25613945]

 running_var2 = [1.09229844, 1.75929102, 1.83415279]

f. Verify the final output for the second hidden layer after batch norm and RELU:
 Y2 = [[0, 0, 0],
 [0, 0, 0],

 [1.40305653, 1.39746899, 1.40548685]]

g. Verify the following outputs for the final layer (no batchnorm):
 Y3lin = [[0, 0],
 [0, 0],
 [18.23512387, 11.23976106]]

 Y3/Softmax = [[5.00000000e-01, 5.00000000e-01],
 [5.00000000e-01, 5.00000000e-01],
 [9.99085084e-01, 9.14916212e-04]]

4.2 Batch Normalization Backward

In this section, you will implement the batchnorm backward function. As discussed in the
lecture, we calculate the gradients of batchnorm layer as such:

∂l
∂xd;

=
∂l
∂y;

∙ γ

∂l
∂σ<'

=@
∂l
∂xd;

=

;:&
∙ (x; 	− 	µ<) ∙

−1
2 (σ<' + ϵ)+3/'

∂l
∂µ<

= (@
∂l
∂xd;

=

;:&
∙

−1
eσ<' + ϵ

) +
∂l
∂σ<'

∙
∑ −2(x; 	− 	µ<)=
;:&

m

∂l
∂x;

=
∂l
∂xd;

∙
−1

eσ<' + ϵ
+

∂l
∂σ<'

∙
−2(x; 	− 	µ<)

m +
∂l
∂µ<

∙
1
m

∂l
∂γ =@

∂l
∂y;

∙ xd;
=

;:&

∂l
∂β =@

∂l
∂y;

=

;:&

You might currently be looking at these egyptian hieroglyphs looking calculations like:

But do not fret, we are here to help! We HIGHLY recommend that you first read through
Appendix C in the HW1P1 writeup. We will shallowly go over the implementation here, but the
writeup goes much more in depth.

There’s a lot of calculation going on in the backward pass. Thus, we suggest breaking up the
terms in your calculations. We don’t want to give you all the answers, so some parts of the code
will include the symbol “?” to signal that you should fill that part out yourself. Your code should
look something like this:

#get batch size

b = batch_size

#we’ll be using this term a lot – better make a constant!
sqrt_var_eps = np.sqrt(self.var + self.eps)

#Find the derivative of gamma and beta for gradient descent.
gradGamma = np.sum(norm * gradL, axis = ???, keepdims =???)
gradBeta = np.sum(gradL, axis = 0, keepdims = ???))

#Find the derivative of norm

 gradNorm = gamma * gradL

#Find the derivative of variance (this looks complicated but
isn’t too bad!)

gradVar = -.5*(np.sum((gradNorm * (x-mean))/ sqrt_var_eps
**3), axis = ???)))

#Find the derivative of the mean. Again, looks harder than it

actually is J
first_term_dmu = -(np.sum(gradNorm/sqrt_var_eps, axis

= ???)))
second_term_dmu = - (2/b)*(gradVar)*(np.sum(x-mean, axis

= ???)))
gradMu = first_term_dmu + second_term_dmu

#use all the derivative we have found to get our final
result!

first_term_dx = gradNorm/sqrt_var_eps
second_term_dx = gradVar * (2/b) * (x-mean)
third_term_dx = gradMu * (1/b)

return first_term_dx + second_term_dx + third_term_dx

Testing your complete batch norm backward code with a batch of inputs:
Let’s use the same model and values in section 4.1. Assume we just ran the forward pass of the
batch data in 4.1.1. Now, we want to backpropagate with batch norm in the two hidden layers.
Let’s take it step by step. Assume the correct labels for our data was [[5, 13], [5,13], [5,13]].

a. Verify you got the following cross-entropy loss and loss gradient:

Cross-entropy Loss: [12.47664925, 12.47664925, 90.96139156]

b. Verify the gradients of the output layer:
 gradY3lin = [[-4.5, -12.5],
 [-4.5, -12.5],
 [-4.00091492, -12.99908508]]

c. Verify the gradients of the weights and bias matrices between the second hidden layer and the
output layer:

gradB3 = [[-4.33363831, -12.66636169]]

 gradW3 = [[-1.87165613, -6.0810634],
[-1.86382646, -6.05562458],
[-1.87451132, -6.09034001]]

d. Verify the gradients of the second hidden layer:
 gradY2 = [[-85, -1, -72.5],
 [-85, -1, -72.5],

[-85, 0.99634034, -72.00091492]]

 graddgamma2 = [[-119.2907929, 1.39243562, -101.20175003]]

 graddbeta2 = [[-85, 0.99634034, -72.00091492]]

 gradY2bn = [[0, 0, 0],
 [0, 0, 0],

[-85, 0.99634034, -72.00091492]]

 gradY2lin = [[4.64108825, 0.02702718, -1.39715456],
 [-4.01976864, -0.03233549, 1.5887192],
 [-0.62131961, 0.00530831, -0.19156464]]

c. Verify the gradients of the weights and bias matrices between the first and second hidden
layer:
 graddW2 = [[-0.28090203, 0.0019095, -0.06580703],
 [-0.33097962, 0.00143316, -0.04289725],
 [-0.61188154, -0.001312, 0.08871679]]

graddB2 = [[-2.96059473e-15, 1.85037171e-17, -2.96059473e-
16]]

d. Verify the gradients of the first hidden layer:
 gradY1 = [[1.03438506, 13.39255864, -13.36553146],
 [1.33110046, -12.70868841, 12.67635292],
 [-2.36548552, -0.68387024, 0.68917855]]

 graddgamma1 = [[-2.8412962, -1.6127009, 4.45399636]]

 graddbeta1 = [[-1.03438506, -13.39255864, 13.36553146]]

 gradY1bn = [[0, 0, -0,]
 [1.33110046, -12.70868841, 12.67635292]
 [-2.36548552, -0.68387024, 0.68917855]]

 gradY1lin = [[-0.05464126, 0.35666977, -0.30997914],

 [0.11231814, -0.77278451, 0.98160062],
 [-0.05767688, 0.41611473, -0.67162147]]

e. Verify the gradients of the weights and bias matrices between the input and first hidden layer:
 graddW1 = [[-0.0202375, 0.1585199, -0.34442127],
 [0.01619,-0.07925995, -0.13776851]]

graddB1 = [[-4.62592927e-18, -1.85037171e-17, 0]]

Gradient descent is similar to what we did in 3.7, except at each layer with batch norm, we also
update the gamma and beta as such:

𝑔𝑎𝑚𝑚𝑎 = 𝑔𝑎𝑚𝑚𝑎 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝐺𝑎𝑚𝑚𝑎
𝑏𝑒𝑡𝑎 = 𝑏𝑒𝑡𝑎 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝐵𝑒𝑡𝑎

4.3 Batch Normalization Inference Forward

In the evaluation phase, batch normalization layer does not adopt statistics computed from the
given inputs, instead, it uses the stored statistics. Let’s assume gradient descent was not
performed from our backwards step, but we will still use the running mean and running var
calculated.

Your code should be like the following.

Norm the input X using the running_mean and running_var computed from the training
process.

norm = (X - running_mean)/sqrt(running_var + eps)
Do the affine transformation, gamma and beta are 1xM row vectors.

Y = norm * gamma + beta

Testing your complete batch norm forward code with a batch of inputs in evaluation
phase:
Consider the following input: X = [[10,14]]
a. Verify the following initial output for the first hidden layer, before batch norm:

Y1lin = [[110, 76, 50]]

b. Verify the following values for the first hidden layer, during batch norm:

norm1 = [[21.56500005, 20.81388639, 17.98938806]]

 Y1bn = [[21.56500005, 20.81388639, 17.98938806]]

c. Verify the final output for the first hidden layer after batch norm and RELU:
 Y1 = [[21.56500005, 20.81388639, 17.98938806]]

d. Verify the following initial output for the second hidden layer, before batch norm:
 Y2lin = [[48.77899674, 117.34089332, 120.91650531]]

e. Verify the following values for the second hidden layer, during batch norm:
 norm2 = [[46.59955049, 88.27079464, 89.09351895]]

 Y2bn = [[46.59955049 88.27079464 89.09351895]]

f. Verify the final output for the second hidden layer after batch norm and RELU:
 Y2 = [[46.59955049 88.27079464 89.09351895]]

g. Verify the following outputs for the final layer (no batchnorm):
 Y3lin = [[943.27773115, 501.10103365]]

 Y3/Softmax = [[1.00000000e+000, 9.22784414e-193]]

