
HW1P1 Toy Problem 
 
1 Introduction 
 
In this part of the assignment, we will work on a sequence of steps to build an MLP.   
We will use the vector notation that we learned in class. However, in keeping with the 
convention used by python, our vectors will be row vectors and not column vectors as taught in 
class. As a result, all operations will be transposed, w.r.t. the operations in class slides. 
We learned in class that a layer of perceptrons performs the following computation: 

𝑌!"# = 𝑓(𝑌$%𝑊 +𝐵) 
where 𝑌$% is the input to the layer, 𝑊 and 𝐵 are the weights and bias of the layer, and 𝑓() is an 
activation function.  We also learned that the perceptron may be viewed as a sequence of two 
distinct steps: 

1) Compute an affine function of the input 𝑍	 = 	𝑌$%𝑊 +𝐵 
2)  Apply an activation function 𝑌!"# = 𝑓(𝑍) 

In practical implementations of neural networks, it is convenient to think of the above two steps 
as two distinct operations and not part of a common operation.  From this perspective, the above 
operation is viewed as actually being a sequence of two layers:  

1) Layer 1 computes 𝑌!"#& = 𝑌$%𝑊 +𝐵.   This layer is just an affine transform and is 
generally referred to as a linear layer. 

2) Layer 2 computes 𝑌!"#' = 𝑓(𝑌!"#&).   This layer applies an activation function to the 
output of the earlier linear layer and is sometimes referred to as an activation layer. The 
actual activation function 𝑓() can be one of the various standard activation functions, 
such as a threshold, sigmoid, tanh, ReLU, softplus, applied individually to the 
components of 𝑌!"#& or a vector activation such as a softmax applied to the entire vector 
𝑌!"#& to compute 𝑌!"#'. 

Once viewed in this manner, a multi-layer perceptron (or MLP) is just a sequence of layers of 
operations on data.  Each layer operates on an input vector and transforms it to produce an output 
vector.  The actual layer may be a linear layer, an activation layer, or one of a number of other 
layer types we will encounter in this assignment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 MLP Forward 
 
2.1 Implementing an MLP for an isolated input vector 
 
As a preliminary exercise, we will implement a simple MLP comprising several layers, step by 
step. The MLP will read in an input 𝑋, and the weights and biases for the layers, and finally 
output a vector. In this exercise you will work with small inputs 
Throughout the exercise we will use our “mytorch” framework.  “mytorch” will eventually grow 
to a full suite of operations that you could use to build your own neural net toolkit. We will 
leverage object-oriented coding style in “mytorch” framework. Before continuing to read, please 
check the handout to know the attributes of each class in “mytorch”. 
 
2.1.1 Implementing a linear layer: 
Implement a linear layer in mytorch.py.  Remember that the linear layer performs the 
computation: 

𝑌!"# = 𝑌$%𝑊 +𝐵 
You will write a function that takes in an input vector 𝑌$%, a weights matrix 𝑊, and a bias vector 
𝐵 and outputs the result 𝑌!"#.  
Dimensionality checks (using the column vector notation):  If the input vector is 𝑌$% 𝑁-
dimensional (a 1 × 𝑁 vector in the row-vector notation), and your layer has 𝑀 outputs (i.e 𝑀 
neurons),  

● What is the dimension of 𝑌!"#?   
● What is the size of 𝑊?   
● What is the size of 𝐵? 

 
Instructions on writing mytorch.linear: 
In mytorch/linear.py, implement Linear.forward() function: 

● Input shape (x): (batch size, in feature)  
● Output shape (out): (batch size, out feature) 

From the linear formula above, we can see that in actual code, the calculation of a single linear 
layer is composed of two steps:  

1) The first step is the dot product between the input variable x and the weight w, which can 
be done using np.dot or np.matmul. 

2) The second step is the sum of their dot product results and the bias b. 
Hint: Add a variable to keep track of intermediate values necessary for the backward 
computation. 
 
 
 
 
 
 
 
 
 
 



Testing the linear layer on a single input: 
The Toy problem below is just to help you understand what your outputs look like and to sort of 
understand the reasoning behind any mistakes you are making. This way, you will be able to 
debug your problems in a more fine grained way. 
 

 
Figure 2.1a:  Illustration of perceptron structure. 

 
We will read in a single input vector and apply a linear layer to it 

1) Read in the input vector X from (file name).    
● Verify that the vector is exactly  X = [[4, 3]].   

To “verify” you could print out the variable (X in this case) and inspect the values 
visually.  

2) We will now input X to a linear layer that outputs a 4-dimensional output vector. 
● What will the size of the weights matrix W be? 
● What will the size of the bias vector B be? 

3) Read in the weights matrix W and bias vector B.  Verify that  
                                                         W = [[4, 2, -2],  
                                                                     [5, 4, 5]] 
                                                         B = [[1, 2, 3]] 

 
4) Apply the linear layer to the input 

                                Y1lin = linear.forward (X) 
5) Verify that Y1lin = [[32, 22, 10]] 

 
2.1.2 Implementing an activation layer: 
Implement an activation layer in mytorch.py.  Recall that an activation layer computes the 
operation: 

𝑌!"# = 𝑓(𝑌$%) 
You will write a function that takes in an input vector 𝑌$%, applies an activation function to it, and 
return the result as the output vector 𝑌!"#.  We will implement different activations within 
mytorch.  
 
Instructions on writing mytorch.activation: 
In mytorch/activation.py, implement the forward function for each activation class. And we 
also show the way to calculate the derivative during the backward pass. 



● The identity has been implemented for you as an example.  
● The output of the activation should be stored in the state.  
● The state variable should be used for calculating the derivative during the backward pass.  

 
REFERENCE: Derivative of the Sigmoid function 
 

1) Sigmoid Forward 
𝑆(𝑧) = &

&()!"
  

2) Sigmoid Derivative 
𝑆*(𝑧) = 𝑆(𝑧) ⋅ (1 − 𝑆(𝑧)) 

3) Tanh Forward 
𝑡𝑎𝑛ℎ(𝑧) = )#+)!#

)#()!"
  

4) Tanh Derivative 
𝑡𝑎𝑛ℎ*(𝑧) = 1 − 𝑡𝑎𝑛ℎ(𝑧)' 

5) ReLU Forward 
𝑅(𝑧) = 9𝑧				𝑧 > 0

0				𝑧 ≤ 0 
6) ReLU Derivative 

𝑅(𝑧) = &1				𝑧 > 0
0				𝑧 ≤ 0 

Testing the sigmoid activation on a single input: 
We will read in a single input vector and apply a sigmoid activation to it. 

1) Apply the sigmoid activation to the output of the linear layer. 
Y1 = sigmoid.forward (Y1lin) 

2) Verify that Y1 = [[1.0, 1.0, 1.0]] 
 
Testing the ReLU activation on a single input: 
We will read in a single input vector and apply a ReLU activation to it. 

1) Apply the ReLU activation to the output of the linear layer. 
Y1 = relu.forward(Y1lin) 

2) Verify that Y1 = [[32, 22, 10]] 
 

Testing the Tanh activation on a single input: 
We will read in a single input vector and apply a Tanh activation to it. 

1) Apply the Tanh activation to the output of the linear layer. 
Y1 = tanh.forward (Y1lin) 

2) Verify that Y1 = [[1.0, 1.0, 1.0]] 
 

Testing the softmax activation on a single input: 
We will apply the softmax activation to the output of the linear layer. 
Question:  A softmax activation outputs a probability distribution over a number of classes.  If 
we apply a softmax to the output of e., how many classes are we modelling? 

1) Apply the softmax activation to the output of the linear layer. 



Y1 = softmax.forward (Y1lin) 

2) Verify that Y1 = [[9.9995e-01, 4.5398e-05, 2.7893e-10]] 
 
2.1.3 Implementing a complete MLP: 
We will now implement a complete MLP that nominally has two hidden layers and one output 
layer. The hidden layers will use a ReLU activation, and the output layer will have softmax 
activation.  
Recall that what we call a “layer” in this context typically implies a layer of perceptrons. In 
implementation a layer of perceptrons comprises two layers – a linear layer and an activation 
layer. So an MLP with two hidden layers and one output layer will, in fact, have six layers, 
including three linear layers and three activation layers. 

 

 
Figure 2.1b:  Illustration of MLP structure. 

 
So the complete MLP here will look like the following. Make sure all the instances have been 
properly initialized. We skip the initialization step in all pseudo codes in this document. Assume 
that input X, and the weights and bias matrices W1, W2, W3, B1, B2 and B3 have been loaded.  

Y1lin = linear1.forward(X) 
Y1 = relu1.forward(Y1lin) 
 
Y2lin = linear2.forward(Y1) 
Y2 = relu2.forward(Y2lin) 
 
Y3lin = linear3.forward(Y2) 
Y3 = softmax.forward(Y3lin) 

 
There are other ways of writing this code of course.  For instance, you can store all your layers in 
a list, and loop over the hidden layers. In this case it is often convenient to call your input the 
zeroth layer. 

Y = X 
for layer = 1:num_hidden_layers 
    Ylin = LinerLayers[layer].forward(Y) 
    Y = ActivationLayers[layer].forward(Ylin) 
end 



# The output layer immediately follows the hidden layers 
YlinFinal = LinerLayers[-1].forward(Y) 
Yout = softmax.forward(Ylin) 
 

We will let you figure out what the variables mean. 
There are other even smarter ways of writing this. We won’t get into it here. 
Terminology:  The outputs of the final linear layer (i.e. YlinFinal) are often called the logits.  
You will encounter this term frequently. 
 
Testing the MLP on a single input: 
Now test your code. 

1) Load the input X from X.py,  and the weights and biases from W.py 
● Verify that input X = [[4, 3]] 
● verify that weights and biases： 

W1 = [[ 4, 2, -2], 
[ 5, 4, 5]] 

 

B1 = [[ 0, 0, 0]] 

W2 = [[ 2, 5, 6],  
              [ 2, -3, -3], 
              [-2, 4, 3]]  

B2 = [[ 0, 0, 0]] 

W3 = [[ 5, 5],  
              [ 3, -1],  
              [ 5, 4]]  

B3 = [[ 0, 0]] 

 
2) Run your MLP on X 

● Verify that the output of the first (hidden) linear layer is  
Y1lin = [[31, 20, 7]]  

● Verify that the output of the first activation layer is   
       Y1 = [[31, 20, 7]]  

● Verify that the output of the second (hidden) linear layer is  
Y2lin = [[88, 123, 147]]   

● Verify that the output of the second activation layer is  
        Y2 = [[88, 123, 147]]  

● Verify that the output of the linear layer before the output activation is 
Y3lin = [[1544, 905]] 

● Verify that the final output is  
       Y3 = [[1544, 905]] 
 

2.2 Implementing an MLP for a batch of inputs: 



 
In fact, an isolated input represented as a row vector has the shape of (1, in_feature), which is a 
special case of batch_size=1 compared to the batch inputs’ shape (batch_size, in_feature). 
Thanks to Python's broadcasting mechanism, we can use our isolated input “mytorch” 
framework to verify the batch input results during forward propagation. 
 
2.2.1 Implementing a linear layer: 
We will read in a batch inputs and apply a linear layer to it 

1) Read in the input array X from (file name).    
● Verify that the array is exactly  X = [[4,3], [5,6], [7,8]].   

2) With the previous linear network parameters W and B, we apply the linear layer to the 
input 

W = [[ 4, 2, -2],  
            [ 5, 4, 5]] 

B = [[1, 2, 3]] 

 
Y1lin = linear.forward(X) 

3) We can verify that our batch output array  
    Y1lin = [[32, 22, 10], 

                                                  [51, 36, 23], 
                          [69, 48, 29]] 
 

2.2.2 Implementing an activation layer: 
Testing the sigmoid activation on a batch input array: 
We will read in a batch input array and apply a sigmoid activation to it. 

1) Apply the sigmoid activation to the output array of the linear layer. 
Y1 = sigmoid.forward(Y1lin) 

 
2) Verify that Y1 = [[1.0, 1.0, 1.0], 

                                             [1.0, 1.0, 1.0], 
                                             [1.0, 1.0, 1.0]] 

 
Testing the ReLU activation on a batch input array: 
We will read in a batch input array and apply a ReLU activation to it. 

1) Apply the ReLU activation to the output array of the linear layer. 
Y1 = relu.forward(Y1lin) 

 
2) Verify that Y1 = [[32, 22, 10], 

                                             [51, 36, 23], 
                                             [69, 48, 29]] 
 
Testing the Tanh activation on a batch input array: 



We will read in a batch input array and apply a Tanh activation to it. 
1) Apply the Tanh activation to the output array of the linear layer. 

Y1 = tanh.forward(Y1lin) 

 
2) Verify that Y1 = [[1.0, 1.0, 1.0], 

                                             [1.0, 1.0, 1.0], 
                                             [1.0, 1.0, 1.0]] 
 
Testing the softmax activation on a batch input array: 
We will read in a batch input array and apply a sigmoid activation to it. 

1) Apply the Tanh activation to the output array of the linear layer. 
Y1 = softmax.forward(Y1lin) 

 
2) Verify that Y1 = [[9.9995e-01, 4.5398e-05, 2.7893e-10], 

                                             [1.0000e+00, 3.0590e-07, 6.9144e-13], 
                                             [1.0000e+00, 7.5826e-10, 4.2484e-18]] 
 
2.2.3 Implementing a complete MLP: 
As with the single-input complete MLP steps, let's test our code: 

1) Load the input array X from X.py,  and the weights and biases from W.py 
● Verify that input X = [[4,3],[5,6],[7,8]] 
● verify that weights and biases： 

W1 = [[ 4, 2, -2],  
      [ 5, 4, 5]] 
 

B1 = [[ 0, 0, 0]] 

W2 = [[ 2, 5, 6],  
      [ 2, -3, -3], 
      [-2, 4, 3]]  

B2 = [[ 0, 0, 0]] 

W3 = [[ 5, 5],  
      [ 3, -1],  
      [ 5, 4]]  

B3 = [[ 0, 0]] 

 
2) Run your MLP on X 

● Verify that the output of the first (hidden) linear layer is  
Y1lin = [[31, 20, 7], 
         [50, 34, 20], 
         [68, 46, 26]] 

● Verify that the output of the first activation layer is   
    Y1 = [[31, 20, 7], 
         [50, 34, 20], 
         [68, 46, 26]]  



● Verify that the output of the second (hidden) linear layer is  
Y2lin = [[88, 123, 147], 
         [128, 228, 258], 
         [176, 306, 348]]  

● Verify that the output of the second activation layer is  
       Y2 = [[88, 123, 147], 
         [128, 228, 258], 
         [176, 306, 348]]  

● Verify that the output of the linear layer before the output activation is 
Y3lin = [[1544, 905], 
         [2614, 1444], 
         [3538, 1966]]  

● Verify that the final output is  
   Y3 = [[1544, 905], 
         [2614, 1444], 
         [3538, 1966]]  

 
2.3 Computing the Loss 
 
The loss quantifies the discrepancy between the actual output of a network, and the target output, 
and is typically computed on training inputs, for which both the input 𝑋 and the target output – 
what we want the network output to be in response to 𝑋 – are given.  The loss generally takes the 
form of a divergence function (sometimes offset by an additive constant that does not affect the 
derivatives).  Common loss functions are the cross-entropy loss and the L2 loss.   

● The L2 loss is generally used when the network attempts to predict real-valued variables. 
For real-valued vector predictions, let 𝑌 and 𝐷 be the actual and desired outputs of the 
network in response to an input 𝑋. The the L2 loss is given by  

𝐿 =
1
2@

(𝑌$–𝐷$)'
$

 

where 𝑌$ and 𝐷$ are the i-th components 𝑌 and 𝐷 of respectively.  
 

● The cross-entropy loss is defined between two probability distributions, and is generally 
used for classification problems where the network outputs a probability distribution 𝑌 
over the classes in response to an input. For an 𝑁-class classification network 𝑌 here 
would be a 1 × 𝑁 vector of probabilities where 𝑌$ would be the probability assigned to 
the i-th class.  The target output would be for the network to assign 0 probability for all 
the wrong classes, and a probability of 1 for the correct class. So 𝐷 here would be a 
1 × 𝑁 one-hot vector, where the component corresponding to the true class of the input is 
1, and the rest are 0. The cross-entropy loss between 𝑌 and 𝐷 is defined as 

𝐿 = −@𝐷$ 𝑙𝑜𝑔 𝑙𝑜𝑔	𝑌$
$

	 



For one-hot 𝐷,  this reduces to 𝐿 = − 𝑙𝑜𝑔 𝑙𝑜𝑔	𝑌, 	, where 𝑌, is the probability assigned to 
the true class of the input by the network. Observe that minimizing the loss maximizes 
the probability of the correct class. 
 

2.3.1 Implementing loss functions: 
You are now required to implement various loss functions in mytorch.  The loss function will 
take in the actual network output and the desired target output and return the loss value and will 
have the form 

L = L2.forward(Y, D) 
L = crossentropy.forward(Y, D) 

Etc. 
 
Testing the losses 
We will now test your loss implementations to ensure they are working properly. 
Testing your L2 loss implementation 

1) Sanity check: 
● Set Y = [[1,2,3]] and D = [[2,3,4]].   
● Compute the L2 loss L = L2.forward(Y,D).  Verify that the L2 loss 

computed is 1.0. 
 

2) Network check: 
● Run the network from (COMPLETE MLP SECTION) on input X.py, and 

consider the output Y3lin to be the final output of the network (i.e. if the network 
was a regression network with no final softmax).  

● Set D = [[1540,900]] and compute the L2 loss.  Verify that the L2 loss 
computed is 20.5 

 
Testing your cross-entropy loss implementation 

1) Sanity check: 
● Set Y = [[0.2,0.3,0.5]] and D to be a one-hot vector with target class id 

c = 2 (i.e. corresponding to the class with 0.3 probability in Y).   
● Compute the cross-entropy loss L = crossentropy.forward(Y,D).  

Verify that the loss computed is -log(0.3). 
● Repeat the above with C = 1  and C = 3 and verify that L = -log(0.2)  

and -log(0.5) respectively 
 

2) Network check: 
● Run the network from (COMPLETE MLP SECTION) on input X.py, to obtain 

the final softmax output Y3.  
● Set c = 1 and verify that the cross-entropy loss computed is 0.0 

  



3 MLP Backward 
 
3.1 Computing Derivatives 
To train a network, we will need to compute derivatives of the loss between the actual and target 
outputs of the network, with respect to its parameters.  To do so however, we will also need to 
compute derivatives for all intermediate variables computed by the network. 
Recall the derivative rules from class.  By the convention we employed, the shape of the 
derivative of a scalar loss with respect to a vector or matrix variable is transposed with respect to 
the variable. Thus, the derivative for a row vector will be a column vector, and the derivative for 
a matrix will have the shape of its transpose, both of which make programming in python, which 
uses row vectors, very inconvenient. 
Fortunately for us, we can redo all the arithmetic in terms of the transposes of the derivatives, 
which have the same shape as the variables themselves.   
The transpose of the derivative of a scalar variable with respect to a vector is called a gradient, 
i.e. for a function such as 𝐿 = 𝑓(𝑋) where 𝐿 is a scalar and 𝑋 is a row vector, the gradient of 𝑌 
with respect to 𝑋 has the same shape as 𝑋.  When the output of the function is also a row vector 
(i.e. for a function such as 𝑌 = 𝑓(𝑋) where 𝑌 and 𝑋 are both row vectors), the transpose of the 
derivative of 𝑌 with respect to 𝑋 is the Jacobian.  For simplicity we will (taking liberties with 
terminology), refer to both gradients and Jacobians generically as gradients. 
All the equations below are in terms of gradients, rather than regular derivatives. All equations 
remain consistent.  We will represent the gradient of a variable 𝑌 with respect to variable 𝑋 as 
𝛻-𝑌. 
We can now specify the following rules: 
● The gradient of the loss (which is a scalar) with respect to a 1	 × 𝑁 row vector is a 1	 × 𝑁 

row vector.   
 

 
Figure 3.1a:  Illustration of variable dimensions for 𝐿	 = 	𝑓(𝑋) with scalar 𝐿 and row vector 𝑋 

The i-th component of 𝛻-𝐿 is the partial derivative ./
.-$

. 
● The gradient of the loss with respect to an 𝑀	 × 𝑁 matrix will also be an 𝑀	 × 𝑁 matrix. 

 



 
Figure 3.1b:  Illustration of variable dimensions for 𝐿	 = 	𝑓(𝑋) with scalar 𝐿 and 𝑀	 × 𝑁 matrix 𝑋 

 
The (𝑖, 𝑗)th element of 𝛻-𝐿 is the partial derivative ./

.-$,&
.  

 
● The Jacobian of a 1	 × 𝑁	row vector with respect to a 1	 × 𝑀 row vector will be an 𝑁	 × 𝑀 

matrix. 
 

 
Figure 3.1c:  Illustration of variable dimensions for 𝑍	 = 	𝑓(𝑋), where 𝑍 is an 1 × 𝑁 vector and 𝑋, is 1	 × 𝑀 

 

The (𝑖, 𝑗)th element of 𝛻-𝑍 is the partial derivative .0$
.-&

.   Note the indices: The numerator 

index in the partial derivative corresponds to the first (row) index in the Jacobian matrix 𝛻-𝑍, 
and the denominator index corresponds to the second (column) index. 
 

● In any application of the chain rule, the dimensions must match up. So, for instance, if we 
have  
𝐿	 = 	𝑓(𝑍)	 where 𝑍	 = 	ℎ(𝑋),  where 𝐿 is a scalar (e.g. a loss),  𝑍 is an 1	 × 𝑀  row vector 
and 𝑋 is an 1	 × 𝑁 row vector,  then, by the rules given just above 
o 𝛻-𝐿, the gradient of 𝐿 w.r.t. 𝑋 must be a 1	 × 𝑁 row vector. 
o 𝛻0𝐿, the gradient of 𝐿 w.r.t. 𝑍 must be a 1	 × 𝑀 row vector 
o 𝛻-𝑍, the Jacobian of 𝑍 w.r.t. 𝑋 must be an 𝑀	 × 𝑁 matrix 
o The chain rule for the derivatives now is given by: 

𝛻-𝐿 = 𝛻0𝐿	𝛻-𝑍	 
 
 
The following figure illustrates the chain rule relation. 



 

 
 
                
 
 
 
 
 
 
 

 
 

 
Figure 3.1d:  Illustration of how sizes must match up when we use the chain rule. The relation used is 𝐿	 =
	𝑓(𝑍) where 𝑍 = 𝐺(𝑋).   L is a scalar, Z is a 1 ×𝑀 vector, and 𝑋 is a 1	 × 𝑁 vector. The objective is to 

compute 𝛻'𝐿, the gradient of 𝐿 w.r.t. 𝑋. 
 

The consequence of the above rules is that the shape of the derivative of the loss with respect to 
any network parameter or intermediate variable in the network will be the transpose of the shape 
of the parameter or variable. 
 
Additional rules: 
We will additionally use the following simple rules in computing derivatives: 

a. For any computation of the kind   [𝑎, 𝑏, 𝑐] 	= 	𝐹(𝑑, 𝑒, 𝑓),  where the operation takes in 
variables 𝑑, 𝑒 and 𝑓,  and computes values 𝑎, 𝑏 and 𝑐,  the derivative computation will be 
backward:     

𝜕𝑑,  𝜕𝑒,  𝜕𝑓 = 𝐵(𝜕𝑎, 𝜕𝑏, 𝜕𝑐) 
where 𝜕𝑎, 𝜕𝑏, 𝜕𝑐, 𝜕𝑑, 𝜕𝑒 and 𝜕𝑓  are the derivatives of the loss with respect to 𝑎, 𝑏, 𝑐, 𝑑, 
𝑒 and 𝑓 respectively and B() is the function that computes the derivative for F(). 
 
Note the reverse in the order of variables:  while computing derivatives, the derivatives 
w.r.t. 𝜕𝑎, 𝜕𝑏, 𝜕𝑐, the output variables 𝑎, 𝑏, 𝑐 of the “forward” function 𝐹() are input to the 
“backward” function 𝐵(). The output  of the backward function 𝐵() are 𝜕𝑑, 𝜕𝑒, 𝜕𝑓, the 
derivatives w.r.t 𝑑, 𝑒 and 𝑓,  which are the inputs to 𝐹(). 
 



b. In order to compute the derivatives 𝜕𝑑, 𝜕𝑒 and 𝜕𝑓,  you first need 𝜕𝑎, 𝜕𝑏 and	𝜕𝑐.  So, if 
we have a sequence of operations: 

[𝑎, 𝑏, 𝑐] 	= 	𝐹(𝑑, 𝑒, 𝑓) 
[𝑢, 𝑣, 𝑤] 	= 	𝐺(𝑎, 𝑏, 𝑐) 

then we must first compute derivatives for 𝜕𝑎, 𝜕𝑏, 𝜕𝑐 from 𝜕𝑢, 𝜕𝑣, 𝜕𝑤,and then use those 
to compute 𝜕𝑑, 𝜕𝑒, 𝜕𝑓.  So to compute the derivatives with respect to the earliest 
variables in the sequence of operations, we must compute them in reverse order, starting 
with the last operation, and then working our way backwards.  

Now we are set to go. 
 
3.2 The gradient of the loss 
 

The loss is always a scalar.  It is a function of the output of the network and has the form: 
𝐿	 = 	𝑙𝑜𝑠𝑠(𝑌, 𝐷) 

Where 𝑌 is the output of the network (in response to some training input), and 𝐷 is the desired 
output in response to the same input. 
As a first step of backpropagation, we require 𝛻1𝐿,  the derivative of the loss with respect to the 
network output 𝑌.  For a simple binary classifier that outputs a single probability value between 
0 and 1, or for a simple regression where the network predicts a scalar value, this derivative is 
just 2/

21
.  Please check the lectures for the formulae for this derivative for different losses for 

scalar outputs. 
For multi-class classification or vector regression, the output 𝑌 will be a vector. In our notation, 
it will be a 1	 × 𝑁 row vector, where 𝑁	is the number of classes (for multi-class classification), 
or the dimensionality of the output prediction (for vector regression). In this case, the gradient 
𝛻1𝐿 will be a 1	 × 𝑁 row vector, whose i-th component is the partial derivative ./

.1$
.  Please refer 

to the lectures to see how to compute these partial derivatives for various losses, including the 
softmax loss. 
 
3.2.1 A short-cut for L2 and Softmax losses 
In regression problems the network does not generally have an output activation layer and ends 
with a linear layer. In terms of our 3-layer example earlier, the network output would simply be 
Y3lin, i.e. the network output Y = Y3lin. The L2 loss will generally be used in this setting.  
In classification problems the network does generally have an output softmax layer following the 
final linear layer.  So in our 3-layer example, the final linear layer’s output is Y3lin, i.e. the 
logits, but the actual output of the network is Y3, i.e. Y = Y3.  The cross-entropy loss will be 
used in this setting. 
In both cases, the gradient of the loss (L2 for the regression problem, cross-entropy for the 
classification problem) with respect to the final linear layer outputs (which would be the network 
output for the regression problem, and the logits for the classification problem) is simply the 
error between actual and desired outputs. 

𝛻134$%𝐿 = 𝑌–𝐷 
where Y is the network output and D is the desired output.  For regression problems D is the 
actual target output.  For classification problems D is the one-hot vector representation of the 
target output. Note the order, this is important: the gradient is Y – D and not D – Y.  The logic is 
obvious: if 𝑌$ is less than 𝐷$, the derivative is negative, and the gradient-descent rule will 



increase 𝑌$, which makes sense. If 𝑌$ is greater than 𝐷$, the derivative is positive, and the 
gradient-descent rule will decrease 𝑌$. 
For proof of this simple relation, refer to the appendix.  The fact that the gradient is simply the 
error is often why gradient back-propagation is also called error backpropagation. 
 
3.2.2 Implementing the gradient of the loss functions: 
You are now required to implement gradients for the loss functions in mytorch.  We will make 
two distinctions: 

a) For the L2 loss, we will return the loss with respect to the final network output. Here the 
loss will have the form 

𝑔𝑟𝑎𝑑𝑌	 = 	𝐿2. 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒() 
and simply return 𝑠𝑒𝑙𝑓. 𝑌 − 𝑠𝑒𝑙𝑓. 𝐷 (you need to store these variables when calling the 
forward function). 
 

b) For the cross-entropy loss it is more convenient to return the gradient with respect to the 
logits entering the softmax, rather than the output of the softmax itself.  The loss function 
will take in the actual network output (not the logits) and the desired target output and 
return the loss value and will have the form 

𝑔𝑟𝑎𝑑𝑍	 = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦. 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒() 
and this too will simply return 𝑠𝑒𝑙𝑓. 𝑌	– 	𝑠𝑒𝑙𝑓. 𝐷.  (The variable is called gradZ in the code 
above to emphasize that it is the loss w.r.t. the input to the softmax) 
𝐷 may be a one-hot vector, or any other target distribution.  Note that although the gradient is 
with respect to the logits, the logits themselves are not required for the computation; we only 
need the output of the softmax. 

 
Testing the loss gradient 
We will now test your implementations of loss gradients. 
Testing your L2 loss gradient implementation 

i) Sanity check: 
a. Set Y = [1, 2, 3]  and D = [2, 3, 4].   
b. Compute the gradient of L2 loss.  Verify that the L2 loss computed is [-1, -1, 

-1]. 
 

ii) Network check: 
a. Run the network and inputs of 2.2.3, and consider the output Y3lin to be the 

final output of the network (i.e. if the network was a regression network with no 
final softmax).  

b. Set D = [240,  4] and compute the gradient of the L2 loss.  Verify that the 
gradient computed is [1304, 901]. 
 

Testing your implementation cross-entropy loss gradient at the logits 
i) Sanity check: 

a. Set Y = [0.2, 0.3, 0.5]  and D to be a one-hot vector with target class id 
c = 2.   

b. Compute the gradient of cross-entropy loss  
L = softmaxCrossEntropy.derivative() 



Verify that the gradient computed is [0.2, -0.7, 0.5]. 
c. Repeat the above with c = 1 and c = 3 and verify that answers are [-0.8, 

0.3, 0.5] and [0.2, 0.3, -0.5] respectively 
 

ii) Network check: 
a. Run the network and inputs of 2.2.3, to obtain the final softmax output Y3.  
b. Set c = 1 and verify that the gradient of the loss with respect to the logits is 

[0, 0]. 
 

3.3 The gradient of the activation layers 
 
The typical activation layer has the form 𝑌	 = 	𝑓(𝑍), where 𝑍 is the output of the linear layer 
leading into the activation, and 𝑌 is the output of the activation.   In principle, given  𝛻1𝐿 (the 
gradient of the loss w.r.t. the layer output), 𝛻0𝐿, the gradient w.r.t the input, can be computed 
using the chain rule as 𝛻0𝐿 = 𝛻1𝐿	𝛻0𝑌, where 𝛻0𝑌 is the Jacobian of 𝑌 w.r.t. 𝑍.  
However, computing 𝛻0𝐿 in this manner requires the Jacobian 𝛻0𝑌, which will generally be a 
large diagonal matrix for scalar component-wise activations. Explicitly computing and storing it 
and subsequently performing the matrix multiplication required by the explicit implementation 
of the chain rule can be memory-intensive and consequently inefficient. 
Instead, we will usually directly compute 𝛻0𝐿 from 𝛻1𝐿 without explicit computation of the 
Jacobian. 
In particular, for “scalar” activations that are applied individually to the components of 𝑍 to get 
the corresponding component of 𝑌 (e.g. sigmoid, ReLU, tanh), the gradient is easily computed 
through component-wise application of the chain rule: 

𝜕𝐿
𝜕𝑍$

=
𝜕𝐿
𝜕𝑌$

𝑓 ’(𝑍$) 

𝛻0𝐿 = _
𝜕𝐿
𝜕𝑍'

,
𝜕𝐿
𝜕𝑍'

, ⋯ a 

  
where 𝑓 ’(𝑍$) is the derivative (or subderivative/subgradient) of the activation function computed 
at 𝑍$. For the formulae of the derivatives of specific activation functions, please refer to the 
lectures. 
 
Implementing the gradient for activation layers: 
You are now required to implement gradients for the activations in mytorch. You need to write 
functions of the kind: 

gradZ = relu.derivative(gradY) 
The routine takes in the loss gradient for the output of the layer and returns the loss gradient for 
the input vector. You must implement this for ReLu, Sigmoid and Tanh activations.  
 
Testing the gradient of the sigmoid activation on a single input: 

a. Sanity check:  Set Z = [1, 2, 3] and gradY = [1,-1,1].  Assume a sigmoid 
activation. Compute gradZ using sigmoid.derivative(). 

● Verify that gradZ = [0.197, -0.105, 0.045] 
b. From part 2.1.2, set Z = Y1.  Set gradY = [1, -1, 1].   



● Verify that gradZ = [1.3e-14,  2.8e-10, 4.5e-5] 
 

Testing the gradient of the ReLu activation on a single input: 
a. Sanity check:  Set Z = [1, 2, 3] and gradY = [1,-1,1].  Assume a ReLu 

activation. Compute gradZ using relu.derivative(). 
● Verify that gradZ = [1, -1, 1] 

b. From part 2.1.2, set Z = Y1.  Set gradY = [1, -1, 1].   
● Verify that gradZ = [1, -1, 1] 

 
Testing the gradient of the Tanh activation on a single input: 

a. Sanity check:  Set Z = [1, 2, 3] and gradY = [1,-1,1].  Assume a Tanh 
activation. Compute gradZ using tanh.derivative(). 

● Verify that gradZ = [0.420, -0.071, 0.010] 
b. From part 2.1.2, set Z = Y1.  Set gradY = [1, -1, 1].   

● Verify that gradZ = [0, 0,  8.2e-9]] 
 

3.4 The gradient of a linear layer 
 
A linear layer is the primary component of a network that has parameters – namely the weights 
matrix and the bias.  Recall that it implements the operation 𝑌	 = 	𝑍𝑊	 + 	𝐵.  Thus, when we 
compute gradients for a linear layer, we not only compute derivatives with respect to the layer 
input Z, but also the parameters W (the weights) and B (the bias). 
The relations are: 

𝛻0𝐿 = 𝛻1𝐿𝑊6 
𝛻7𝐿 = 𝑍6𝛻1𝐿 
𝛻8𝐿 = 𝛻1𝐿 

Note that some of the terms in these equations are transposed with respect to the equations 
because we are now speaking of gradients rather than derivatives, and because we employ a row-
vector notation for the vectors. 
 
3.4.1 Implementing the gradient for a linear layer 
You are now required to implement gradients for the linear layer in mytorch. You need to write 
functions of the kind: 

gradZ = linear.backward(gradY) 
The routine takes in the loss gradient for the output of the layer and returns the loss gradient for 
the input vector. Also, it will update the gradients of the parameters, i.e. weight and bias.  
 
Testing the gradient of the linear layer on a single input: 

a. Sanity check:  Set Z = [1, 2], W = [[4, 2, -2], [5, 4, 5]], B = 
[1,1,1] and gradY = [1,-1,1].  Compute gradZ, gradW and gradB using 
linear.backward(). 

● Verify that gradZ = [0, 6],  
gradW = [[1, -1, 1], [2, -2, 2]], 
gradB = [1, -1, 1] 

 



b. From part 2.1.1, set Z = X.  Set gradY = [1, -1, 1].  Compute the gradients for 
the weights and biases of the first linear layer (i.e for W1 and B1). 

● Verify that gradZ = [0, 6],  
gradW = [[ 4, -4,  4], [ 3, -3, 3]],  
gradB = [1, -1, 1] 

 
3.5 Implementing the backward pass for a complete MLP: 
 
We will now implement the backward pass for a complete MLP.  
Specifically we will test it for the network from 2.1.3. The parameters of the network are the 
weights and biases W1, W2, W3, B1, B2 and B3 have been loaded. 
 
Using your implementation of the loss, loss gradient, and the gradients of the various layers we 
will now 

(a) compute the loss for the input, and 
(b) perform a backward pass through this network. 

We assume you have already loaded the input X (from X.py) and computed the forward pass 
through the network for 2.1.3.  The desired target output D must also have been loaded along 
with X. 
 
Your backward pass code will look like the following: 
 
Loss = softmaxCrossEntropy(Y3, D) 
# First compute the gradient for the input to the final softmax 
layer 
gradY3lin = softmaxCrossEntropy.derivative() 
# Compute the gradients past the preceding linear layer. 
gradY2 = linear3.backward(gradY3lin) 
# The previous ReLu layer took in Y2lin and returned Y2. So… 
gradY2lin = relu3.derivative()* gradY2 
# The preceding linear layer took in Y1 and output Y2lin 
gradY1 = linear2.backward(gradY2lin) 
# The preceding ReLU layer took in Y1lin and output Y1 
gradY1lin = relu2.derivative()* gradY1 
# The preceding linear layer took in X and output Y1lin 
gradX = linear1.backward(gradY1lin) 
 
As in the case of the forward pass, there are other ways to write the above, e.g. as a loop.  The 
loop version would look like this.  Note that it exactly reverses the order of operations of the 
forward loop. 
 
# First compute gradients for the final linear layer logits & 
params 
gradYlin = softmaxCrossEntropy.derivative() 
gradY2 = linear3.backward(gradYlin) 
 



# We now wind down from the last-but-one layer down to the input 
for layer = num_hidden_layers-1 downto 1 
    gradYlin = ActivationLayers[layer].derivative()* gradY 
    gradY = LinearLayers[layer].backward(gradYlin) 
End 
 
Again, there are other even smarter ways of writing this. We won’t get into it here. 
 
Testing your complete MLP backward code: 
 

 
Figure 3.5a:  Illustration of the MLP structure. 

 
a. Make sure you have correctly loaded the inputs, weight and bias as part 2.1.3. 
b. Verify that the gradient of the third layer are 

gradY3lin = [[-239, -4]] 
     gradB3 = [[-239, -4]] 
        gradW3 = [[-21032, -352], 
                  [-29397, -492], 
                 [-35133, 588]] 
c. Verify that the gradient of the output of the second layer after activation is 

             gradY2 = [[-1215, -713, -1211]] 
d. Verify that the gradient of the third layer are 

            gradY2in = [[-1215, -713, -1211]] 
              gradB2 = [[-1215, -713, -1211]] 
               gradW2 = [[-37665, -22103, -37541], 
                        [-24300, -14260, -24220], 
                        [-8505, -4991, -8477]] 

e. Verify that the gradient of the output of the first layer after activation is 
               gradY1 = [[-13261, 3342, -4055]] 

f. Verify that the gradient of the third layer are 
           gradY1in = [[-13261, 3342, -4055]] 
               gradB1 = [[-13261, 3342, -4055]] 
               gradW1 = [[-53044, 13368, -16220], 
                      [-39783, 10026, -12165]] 

g. Verify that the gradient of the input is 



           gradX = [[-38250, -73212]] 
 

3.6 Implementing the backward pass for a complete MLP with a batch of inputs 
 
As discussed in the lecture, we average the gradient of all parameters of the network in a batch 
before conducting gradient descent. To obtain the gradient of B (batch size) inputs, the simplest 
and stupidest way is just repeating the backward operation B times using a loop function then 
saving and averaging all required gradients. However, to make the computation more efficient, 
matrix multiplication is always involved. 
Now, let us consider a simple perceptron example. We have L=G(Y) and Y=ZW+B, where G() is 
the loss function. Here, we define Z as a 𝐵𝑆	 × 𝑁matrix where each row represents one input 
vector and Y the 𝐵𝑆	 × 𝑀matrix where each row represents the output of the corresponding input 
vector. Similarly, the desired output D is also represented as a matrix with the same shape of Y. 
Like what we did when batchsize=1 (Y and Z are row vectors), 𝛻1𝐿 for L2 and 
SoftmaxCrossEntorpyAtLogits still can be computed by 

𝛻1𝐿 = 𝑌 − 𝐷 
And the averaged gradient of 𝛻7𝐿 and 𝛻8𝐿 can be obtained by 

𝛻7𝐿 = 𝑍6𝛻1𝐿/BS 
𝛻8𝐿 = 𝐼𝛻1𝐿/BS 

where I is a 1 × 𝐵𝑆 row vector which all values equal to one and BS is the batch size. Verify 
what happened in the matrix multiplication by yourself. 
 

 
Figure 3.6a:  Illustration of how sizes must match up when we use the chain rule in a batch of gradients. The 
left one is under the special case of BS = 1 and the right one BS=3. The relation used is 𝐿	 = 	𝐺(𝑌) where 𝑌 =
𝑍𝑊 + 𝐵. L is a scalar, Y is a 𝐵𝑆 ×𝑀 matrix, and 𝑍 is a 𝐵𝑆	 × 𝑁 matrix. The objective is to compute 𝛻(𝐿, the 

gradient of 𝐿 w.r.t. 𝑍. 
 
To compute the gradient of 𝛻0𝐿, let us first get back to the simplest setting, batchsize=1. As 
shown in Figure 3.6a, we use the chain row to compute the gradient w.r.t. Z (𝛻0𝐿 = 𝛻1𝐿	𝛻0𝑌 =
𝛻1𝐿𝑊6). In this equation, we found 𝛻0𝑌 is irrelevant to Z and always equals to 𝑊6. This way, to 
compute a batch of gradients 𝛻0𝐿 using matrix multiplication, we can simply utilize the same 
equation as batchsize=1 whilst in a matrix version 

 𝛻0𝐿 = 𝛻1𝐿	𝛻0𝑌 = 𝛻1𝐿𝑊6 
See Figure to verify what happened in matrix multiplication. Note that 𝛻0𝑌is not averaged in a 
batch.  
Hints: The matrix multiplication is just leveraged for computational efficiency and the results 
should have no difference with those using loops. So feel free to use the loop function if you find 
the matrix multiplication is hard to understand at this moment. 



 
 
 
 
 
 
Testing your complete MLP backward code with a batch of inputs: 
 

 
Figure 3.6b:  Illustration of the MLP structure. 

 
a. Make sure you have correctly loaded the inputs, weight and bias as part 2.2.3. 

  D = [240, 4] 
b. Verify that the gradient of the third layer are 

gradY3lin = [[-239, -4], 
                   [-319, -1], 
                  [-68, -4]]            
          gradB3 = [[-208.7,  -3.7]] 
          gradW3 = [[-24610.7, -496] 
                  [-40979, -826] 
                    [-47033,  -948]] 

c. Verify that the gradient of the output of the second layer after activation is 
             gradY2 = [[-1215, -713, -1211], 
                       [-1605, -955, -1603],  
                     [-365, -199, -36]] 

d. Verify that the gradient of the third layer are 
           gradY2in = [[-1215, -713, -1211], 
                       [-1605, -955, -1603],  
                     [-365, -199, -36]]        
               gradB2 = [[-1061.7,  -622.3,  -950]] 
               gradW2 = [[-47578.3, -27795, -47390.3] 
                         [-31886.7, -18628, -31760.7] 
                         [-16698.3,  -9755, -16632.3]] 

e. Verify that the gradient of the output of the first layer after activation is 
             gradY1 = [[-13261, 3342, -4055], 
                       [-17603, 4464, -5419],  



                       [-17603, 4464, -5419]] 
f. Verify that the gradient of the third layer are 

           gradY1in = [[-13261, 3342, -4055],  
                       [-17603, 4464, -5419],  
                       [-17603, 4464, -5419]] 
           gradB1 = [[-16155.7,  4090, -4964.3]] 
               gradW1 = [[-56084.7, 14105.7, -17112.3] 
                       [-58827, 14795.3, -17949]] 

g. Verify that the gradient of the input is 
          gradX = [[-38250, -73212], 
                      [-50646, -97254], 
                        [-11354, -21367]] 
3.7 Gradient Descent 
 
To train the MLP to produce desired outputs, we optimize the parameters of the network using 
gradient descent. As discussed in the lecture, gradient descent is just updating the parameters 
along with the opposite direction of their corresponding gradients in a fixed step size, a.k.a. 
learning rate. For the stochastic gradient descent, the parameters can be updated as 

𝑊 = 𝑊 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝑊 
𝐵 = 𝐵 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝐵 

where 𝑙𝑟is the learning rate. 
Since the gradients calculated from single inputs are always noisy, for most of the time, we 
conduct gradient descent in a mini-batch. As we discussed in 3.6, the gradients are averaged in a 
batch before being adopted to update parameters. 
 
Testing gradient descent on MLP with a single instance input:  
We will use a learning rate of .1 
a. Make sure you have correctly loaded the inputs, weight and bias as part 2.2.1.  
b. Ensure that you computed all the gradients correctly (answers in 3.5) 
c. Verify that the updated weights and bias matrices between the input and the first hidden layer 
are:  

W1 = [[5308.4, -1334.8,  1620 ],  
                [3983.3,  -998.6,  1221.5]] 
       B1 = [[1326.1, -334.2,  405.5]] 

d. Verify that the updated weights and bias matrices between the first hidden layer and second 
hidden layer are: 

      W2 = [[3768.5, 2215.3, 3760.1],  
           [2432,  1423,  2419 ],  
           [848.5  503.1  850.7]] 

        B2 = [[121.5,  71.3, 121.1]] 
e. Verify that the updated weights and bias matrices between the second hidden layer and output 
layer are: 

W3 = [[2108.2, 40.2], 
      [2942.7, 48.2], 
      [3518.3, -54.8]] 
B3 = [[23.9, 0.4]] 

 



Testing gradient descent on MLP with a batch of inputs: 
We will use a learning rate of .1 
a. Make sure you have correctly loaded the inputs, weight and bias as part 2.2.3.  
b. Ensure that you computed all the gradients correctly (answers in 3.6) 
c. Verify that the updated weights and bias matrices between the input and the first hidden layer 
are:  

          W1 = [[5612.47, -1408.57, 1709.23],  
              [5887.7, -1475.53, 1799.9 ]] 

    B1 = [[1615.57, -409, 496.43]] 
d. Verify that the updated weights and bias matrices between the first hidden layer and second 
hidden layer are: 
           W2 = [[4759.83, 2784.5, 4745.03],  
                 [3190.67, 1859.8, 3173.07], 
                [1667.83, 979.5, 1666.23]] 
      B2 = [[106.17, 62.23, 95]] 
e. Verify that the updated weights and bias matrices between the second hidden layer and output 
layer are: 

W3 = [[2466.07, 54.6 ], 
          [4100.9, 81.6 ],  
          [4708.3, 98.8 ]] 

B3 = [[20.87, 0.37]] 
  



4 Batch Normalization  
 
Properly leveraging batch normalization is essential for NN training. As discussed in the lecture, 
batch normalization can speed up the training process, alleviating overfitting and mitigating 
gradient explosion and gradient vanishing. In this section, we will implement a batch 
normalization layer step by step.  
 
4.1 Batch Normalization Training Forward 
 
Recall that the batch normalization has two phases in forward operation: training and evaluation. 
We will first study the training phase.  
 
In the training phases, batch normalization layer first norms the inputs across the batch then 
apply the affine transformation on the normalized data. It can be described as 
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where we use the annotations in the lecture. 
As mentioned in the previous section, in mytorch framework, a batch of input can be denoted as 
a 𝐵𝑆	 × 𝑀matrix X where 𝑀is the feature dimension of inputs. In this way, to implement the BN 
layer in mytorch, your code should be like the following. 
 
# First compute the mean of the input, mean is a 1xM row vector. 
mean = np.mean(X, axis=0) 
# Then compute the variance of the input, var is a 1xM row vector. 
var = np.var(X, axis=0) 
# Norm the input X using the mean and variance computed from above. Remember to add 
a small constant to avoid zero division. 
norm = (X - mean)/sqrt(var + eps) 
# Do the affine transformation, gamma and beta are 1xM row vectors. 
Y = norm * gamma + beta 
# Update the running_mean and running_var, alpha is a scaler to control the updating 
speed. 
running_mean = alpha * running_mean + (1 - alpha) * mean 
running_var = alpha * running_var + (1 - alpha) * var 
 



Hints: You may find that dimensions of the above code are not matched. Try this in numpy to 
see what will happen. If you want to learn more about that, you can search numpy broadcasting 
on google. 
 
Testing your complete batch norm forward code with a batch of inputs in training phase: 
We will include batch norm at each of the hidden layers, updating our MLP as such (include new 
diagram): 
 

 
Figure 4.1b:  Illustration of the MLP structure with batch normalization layer. 

 
We will use the same weights, biases, and inputs as in 2.2.3:   
 

X = [[4,3],[5,6],[7,8]] 
W1 = [[4, 2, -2],  
      [ 5, 4, 5]] 

B1 = [[ 0, 0, 0]] 

W2 = [[ 2, 5, 6],  
      [ 2, -3, -3], 
      [-2, 4, 3]]  

B2 = [[ 0, 0, 0]] 

W3 = [[ 5, 5],  
      [ 3, -1],  
      [ 5, 4]]  

B3 = [[ 0, 0]] 

 
Also, consider the following parameters:  

eps = .001    alpha = .9 
Consider M to denote the input feature size at a hidden layer. The gamma and running_var at 
each hidden layer will be an array of 1s of size 1*M. On the other hand, the beta and 
running_mean at each hidden layer will be an array of 0s of size 1*M.  
a. Verify the following initial output for the first hidden layer, before batch norm:  

Y1lin = [[31, 20, 7], 
         [50, 34, 20], 
         [68, 46, 26]] 

 



b. Verify the following values for the first hidden layer, during batch norm:  
       mean1 = [49.67, 33.33, 17.66] 

 
       var1 = [228.22, 112.89, 62.89] 
 
       norm1 = [[-1.23562548, -1.25490605, -1.34504963], 
                   [0.02206474, 0.0627453, 0.29422961], 
                   [1.21356074, 1.19216075, 1.05082002]] 
 
       Y1bn = [[-1.23562548, -1.25490605, -1.34504963], 
               [0.02206474, 0.0627453,  0.29422961], 
               [1.21356074, 1.19216075, 1.05082002]] 
 
     running_mean1 = [4.96666667, 3.33333333, 1.76666667] 
 
      running_var1 = [23.72222222, 12.18888889, 7.18888889] 
 
c. Verify the final output for the first hidden layer after batch norm and RELU:  
  Y1 = [[0, 0, 0], 
              [0.02206474, 0.0627453, 0.29422961], 
              [1.21356074, 1.19216075, 1.05082002]] 
 
d. Verify the following initial output for the second hidden layer, before batch norm:  
 Y2lin = [[0, 0, 0], 
                 [-0.41883913, 1.09900622, 0.82684136], 
                 [2.70980293, 6.69460155, 6.85734227]] 
 
e. Verify the following values for the second hidden layer, during batch norm:  
        mean2 = [0.7636546, 2.59786926, 2.56139454] 
 

   var2 = [1.92298436, 8.59291019, 9.34152788] 
 
  norm2 = [[-0.55054929, -0.88617988, -0.8380005 ], 
                 [-0.85250724, -0.51128911, -0.56748635], 
                 [ 1.40305653,  1.39746899,  1.40548685]] 
 
        Y2bn = [[-0.55054929, -0.88617988, -0.8380005 ], 
                [-0.85250724, -0.51128911, -0.56748635], 
                [ 1.40305653,  1.39746899,  1.40548685]] 
 
    running_mean2 = [0.07636546, 0.25978693, 0.25613945] 
 
       running_var2 = [1.09229844, 1.75929102, 1.83415279] 
 
f. Verify the final output for the second hidden layer after batch norm and RELU: 
        Y2 = [[0, 0, 0], 
              [0, 0, 0], 



              [1.40305653, 1.39746899, 1.40548685]] 
 
g.  Verify the following outputs for the final layer (no batchnorm):  
  Y3lin = [[0, 0], 
                 [0, 0], 
                 [18.23512387, 11.23976106]] 
 

 Y3/Softmax = [[5.00000000e-01, 5.00000000e-01], 
                     [5.00000000e-01, 5.00000000e-01], 
                     [9.99085084e-01, 9.14916212e-04]] 
 
 
4.2 Batch Normalization Backward 
 
In this section, you will implement the batchnorm backward function. As discussed in the 
lecture, we calculate the gradients of batchnorm layer as such:  
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You might currently be looking at these egyptian hieroglyphs looking calculations like: 
 



 
 
But do not fret, we are here to help! We HIGHLY recommend that you first read through 
Appendix C in the HW1P1 writeup. We will shallowly go over the implementation here, but the 
writeup goes much more in depth.  
 
There’s a lot of calculation going on in the backward pass. Thus, we suggest breaking up the 
terms in your calculations. We don’t want to give you all the answers, so some parts of the code 
will include the symbol “?” to signal that you should fill that part out yourself. Your code should 
look something like this:  
 
#get batch size  

b = batch_size 
 
#we’ll be using this term a lot – better make a constant!  
sqrt_var_eps = np.sqrt(self.var + self.eps) 
 
#Find the derivative of gamma and beta for gradient descent.  
gradGamma = np.sum(norm * gradL, axis = ???, keepdims =???) 
gradBeta = np.sum(gradL, axis = 0, keepdims = ???)) 
 
#Find the derivative of norm 

   gradNorm = gamma * gradL 
 

#Find the derivative of variance (this looks complicated but 
isn’t too bad!) 

gradVar = -.5*(np.sum((gradNorm * (x-mean))/ sqrt_var_eps 
**3), axis = ???))) 

 
#Find the derivative of the mean. Again, looks harder than it 

actually is J  
first_term_dmu = -(np.sum(gradNorm/sqrt_var_eps, axis 

= ???))) 
second_term_dmu = - (2/b)*(gradVar)*(np.sum(x-mean, axis 

= ???))) 
gradMu =  first_term_dmu + second_term_dmu 

 



#use all the derivative we have found to get our final 
result!  

first_term_dx = gradNorm/sqrt_var_eps 
second_term_dx = gradVar * (2/b) * (x-mean) 
third_term_dx = gradMu * (1/b) 

 
return first_term_dx + second_term_dx + third_term_dx 
 
Testing your complete batch norm backward code with a batch of inputs: 
Let’s use the same model and values in section 4.1. Assume we just ran the forward pass of the 
batch data in 4.1.1. Now, we want to backpropagate with batch norm in the two hidden layers. 
Let’s take it step by step. Assume the correct labels for our data was [[5, 13], [5,13], [5,13]].  
 
a. Verify you got the following cross-entropy loss and loss gradient:  

Cross-entropy Loss: [12.47664925, 12.47664925, 90.96139156] 
 

b. Verify the gradients of the output layer:  
     gradY3lin = [[-4.5, -12.5], 
                  [-4.5, -12.5],  
                  [-4.00091492, -12.99908508]] 

 
c. Verify the gradients of the weights and bias matrices between the second hidden layer and the 
output layer:  

gradB3 = [[-4.33363831, -12.66636169]] 
 

     gradW3 = [[-1.87165613, -6.0810634 ], 
[-1.86382646, -6.05562458], 
[-1.87451132, -6.09034001]] 

 
d. Verify the gradients of the second hidden layer:  
     gradY2 = [[-85, -1, -72.5], 
               [-85, -1, -72.5], 

[-85, 0.99634034, -72.00091492]] 
 
     graddgamma2 = [[-119.2907929, 1.39243562, -101.20175003]] 
 
     graddbeta2 = [[-85, 0.99634034, -72.00091492]] 
 
     gradY2bn = [[0, 0, 0], 
                 [0, 0, 0], 

[-85, 0.99634034, -72.00091492]] 
 
     gradY2lin = [[4.64108825, 0.02702718, -1.39715456], 
                  [-4.01976864, -0.03233549,  1.5887192 ], 
                  [-0.62131961,  0.00530831, -0.19156464]] 
 



c. Verify the gradients of the weights and bias matrices between the first and second hidden 
layer: 
    graddW2 = [[-0.28090203, 0.0019095, -0.06580703], 
               [-0.33097962, 0.00143316, -0.04289725], 
               [-0.61188154, -0.001312, 0.08871679]] 

 
graddB2 = [[-2.96059473e-15, 1.85037171e-17, -2.96059473e-
16]] 

 
d. Verify the gradients of the first hidden layer:  
     gradY1 = [[1.03438506, 13.39255864, -13.36553146], 
               [1.33110046, -12.70868841, 12.67635292], 
               [-2.36548552, -0.68387024, 0.68917855]] 
 
     graddgamma1 = [[-2.8412962, -1.6127009, 4.45399636]] 
 
     graddbeta1 = [[-1.03438506, -13.39255864, 13.36553146]] 
 
     
     gradY1bn = [[ 0,           0,          -0,        ] 
    [  1.33110046, -12.70868841,  12.67635292] 
    [ -2.36548552,  -0.68387024,   0.68917855]] 
 
     gradY1lin = [[-0.05464126, 0.35666977, -0.30997914], 

         [0.11231814, -0.77278451, 0.98160062], 
                 [-0.05767688, 0.41611473, -0.67162147]] 
 
e. Verify the gradients of the weights and bias matrices between the input and first hidden layer:  
     graddW1 = [[-0.0202375, 0.1585199, -0.34442127], 
                [0.01619,-0.07925995, -0.13776851]] 

 
graddB1 = [[-4.62592927e-18, -1.85037171e-17, 0]] 

 
Gradient descent is similar to what we did in 3.7, except at each layer with batch norm, we also 
update the gamma and beta as such:  
 

𝑔𝑎𝑚𝑚𝑎 = 𝑔𝑎𝑚𝑚𝑎 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝐺𝑎𝑚𝑚𝑎 
𝑏𝑒𝑡𝑎 = 𝑏𝑒𝑡𝑎 − 𝑙𝑟 × 𝑔𝑟𝑎𝑑𝐵𝑒𝑡𝑎 

 
4.3 Batch Normalization Inference Forward 
 
In the evaluation phase, batch normalization layer does not adopt statistics computed from the 
given inputs, instead, it uses the stored statistics. Let’s assume gradient descent was not 
performed from our backwards step, but we will still use the running mean and running var 
calculated.  
 
Your code should be like the following. 



 
# Norm the input X using the running_mean and running_var computed from the training 
process. 

norm = (X - running_mean)/sqrt(running_var + eps) 
# Do the affine transformation, gamma and beta are 1xM row vectors. 

Y = norm * gamma + beta 
 
Testing your complete batch norm forward code with a batch of inputs in evaluation 
phase: 
Consider the following input: X = [[10,14]] 
a. Verify the following initial output for the first hidden layer, before batch norm:  

Y1lin = [[110, 76, 50]] 
 
b. Verify the following values for the first hidden layer, during batch norm: 

norm1 = [[21.56500005, 20.81388639, 17.98938806]] 
 

     Y1bn = [[21.56500005, 20.81388639, 17.98938806]] 
 
c. Verify the final output for the first hidden layer after batch norm and RELU:  
     Y1 = [[21.56500005, 20.81388639, 17.98938806]] 
 
d. Verify the following initial output for the second hidden layer, before batch norm:  
     Y2lin = [[48.77899674, 117.34089332, 120.91650531]] 
 
e. Verify the following values for the second hidden layer, during batch norm:  
     norm2 = [[46.59955049, 88.27079464, 89.09351895]] 
 
     Y2bn = [[46.59955049 88.27079464 89.09351895]] 
 
f. Verify the final output for the second hidden layer after batch norm and RELU: 
      Y2 = [[46.59955049 88.27079464 89.09351895]] 
 
g.  Verify the following outputs for the final layer (no batchnorm):  
      Y3lin = [[943.27773115, 501.10103365]] 
 
      Y3/Softmax = [[1.00000000e+000, 9.22784414e-193]] 
 


