
Homework 2 Part 2
Face Classification & Verification using Convolutional Neural Networks

11-785: Introduction to Deep Learning (Spring 2021)

DUE: 11:59PM (EST), March 21th, 2021

1 Introduction

Even though face recognition may sound quite trivial to us humans, it remained a challenging computer vision
problem in the past decades. Thanks to deep learning methods, computers now can leverage huge dataset
of faces to learn rich and compact representations of human faces, allowing models to even outperform the
face recognition capabilities of humans.

Face recognition mainly consists of two parts. The task of classifying the ID of the face is known as face
classification, which is a closed-set problem. The task of determining whether two face images are of the
same person is known as face verification, which is an open-set problem1.

In this assignment, you will use Convolutional Neural Networks (CNNs) to design an end-to-end system for
both tasks (well, other techniques are required if you want to get an A.) For the classification task, your
system will be given an image of a face as input and should output the ID of the face. For the verification
task, your system will be given two images as inputs and should output a score that quantifies the similarity
between the faces in the given images. A higher score means that the faces from the two images are more
likely to be from a same person.

You will train your model on a dataset with a few thousand images of labelled IDs (i.e., a set of images, each
labeled by an ID that uniquely identifies the person.) You will learn more about embeddings2, several loss
functions, and, of course, convolutional layers as effective shift-invariant feature extractors. You will also
develop skills necessary for processing and training neural networks with big data, which is often the scale at
which deep neural networks demonstrate excellent performance in practice.

Please NOTICE: this assignment comes with two Kaggle competitions. In this way, you can understand
how classification and verification resembles and differs from each other.

• Face classification

– Goal: Given a person’s face, return the ID of the face

– Kaggle: http://www.kaggle.com/c/11785-spring2021-hw2p2s1-face-classification

• Face verification

– Goal: Given two faces, return whether they are from the same person

– Kaggle: http://www.kaggle.com/c/11785-spring2021-hw2p2s2-face-verification

2 Face Classification

2.1 Face Embedding

Before we dive into implementation, let’s ask ourselves a question: how do we differentiate faces? Yes,
your answers may contain skin tone, eye shapes, etc. Well, these are called facial features. Intuitively,
facial features vary extensively across people (and make you different from others). Your main task in this

1For close-set task, all testing identities are predefined in training set. For open-set task, testing identities typically do not
appear in training set.

2In this case, embeddings for face information.
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assignment is to train a CNN model to extract and represent such important features from a person. These
extracted features will be represented in a fixed-length vector of features, known as a face embedding.

Once your model can encode sufficient discriminative facial features into face embeddings, you can pass the
face embedding to a fully-connected(FC) layer to generate corresponding ID of the given face.

Now comes our second question: how should we train your CNN to produce high-quality face embeddings?

2.2 Multi-class Classification

It may sound fancy, but conducting face classification is just doing a multi-class classification: the input to
your system is a face image and your model needs to predict the ID of the face.

Suppose the labeled dataset contains a total of M images that belong to N different people (where M > N).
Your goal is to train your model on this dataset so that it can produce “good” face embeddings. You can do
this by optimizing these embeddings for predicting the face IDs from the images. The resulting embeddings
will encode a lot of discriminative facial features, just as desired. This suggests an N-class classification task.

A typical multi-class classifier conforms to the following architecture:

Classic multi-class classifier = feature extractor(CNN) + classifier(FC)

Figure 1: A typical face classification architecture

More concretely, your network consists of several (convolutional) layers for feature extraction. The input
will be (possibly a part3 of) the image of the face. The output of the last such feature extraction layer is
the face embedding. You will pass this face embedding through a linear layer whose dimension is embedding
dim × num of faceids, followed by Softmax, to classify the image among the N (i.e., num of faceids) people.
You can then use cross-entropy loss to optimize your network to predict the correct person for every training
image.

The ground truth will be provided in the training data (making it supervised learning). You are also given
a validation set for fine-tuning your model. Please refer to the Dataset section where you can find more
details about what dataset you are given and how it is organized. To understand how we (and you) evaluate
your system, please refer to the System Evaluation section.

That’s pretty much everything you need to know for your first Kaggle competition. Go for it!

3 Face Verification

Let’s switch gear to face verification. Now, the input to your system will be a trial, i.e., a pair of face images
that may or may not belong to the same person. Given a trial, your goal is to output a numeric score that
quantifies how similar the faces in the two images are. A higher score indicates higher confidence that the
faces in the two images are of the same person.

3It depends on whether you pre-process your input images
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In the following sections, we will introduce you to a few approaches. But do not let us constrain your
imagination. There are a lot of other ways to achieve great performance.

FAIR WARNING: We do not guarantee that all the methods listed below can help you pass the A cut-off.
You need to experiment with your own judgement.

3.1 Building upon the multi-class classification

I hope you have not deleted your classification model. If your model yields high accuracy in face classification,
you might already have a good Feature Extractor for free. That being said, if you remove the fully-
connected/linear layer, this leaves you with a CNN that ”can” (probably can should be more accurate here)
generate discriminative face embeddings given arbitrary face images.

3.1.1 Feature extractor + distance calculator

We shall all agree that the face embeddings of a same person should be similar (the distance is short)
even if they are extracted from different images. Assume our CNN is competent to generate accurate face
embeddings, we only need to find a proper distance metric to evaluate how close given face embeddings
are. If two face embeddings are close4 in distance, they are more likely to be from a same person5.

Here, we propose two prevalent distance metrics, but you have to experiment yourself from there. (Hint:
check Appendix A)

• Cosine Similarity

• Euclidean Distance

If you follow this design, your system should look like this. Please notice that the Feature Extractor in Fig
2 is the same one even though it is drawn twice.

Figure 2: face verification architecture

3.1.2 Take a step further

We have heard a rumor that a good job in classification is only guaranteed to help you reach the B-cutoff in
validation. Hence, you are encouraged to try other advanced loss functions such as Center-loss [1], LM [2],
L-GM [3], and other architectures such as SphereFace [4], CosFace [5], ArcFace [6] and UniformFace [7] to
go beyond this.

Alternatively, you can remove the layer entirely and optimize the net using comparator-losses that optimize
the network for the verification task, e.g. triplet-loss[8], pair wise loss [9].

You are also encouraged to explore the interconnection between classification accuracy and verification
performance.

4How close is close?
5Now, do you understand why we use fixed-length vector as face embeddings?
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3.2 Metric Learning

The multi-class classification method has a flaw here: in the real world, we can not make our model to
recognize every person on Earth. What if a new person is added to the dataset? Do you want to re-train
the whole network whenever a new person is added?

The second approach is actually called deep metric learning(DML): instead of modeling the classes, you are
directly modeling the similarity between two images. The general goal is to make the minimum distance
between negative pairs larger than the maximum distance between positive pairs6.

A potential approach is to build a Siamese Neural Network [10] and apply a Contrastive loss function as
follows:

L =
1

N
ΣN

i=1[y ∗ d(Pi) + (1− y) ∗ (m− d(Pi))] (1)

Where d denotes Euclidean distance, and y = 1/0 indicates the pair Pi is positive/negative respectively. m
is a margin. N denotes total number of training objectives.

There are two popular approaches to make pairs for your verification system. One is offline selection: pairs
are generated before passed through the neural network. Another is online selection: pairs are generated
in the mini-batch during training. For offline selection, please pay attention to the ratio of #negative pairs to
#positive pairs. You are advised to set this ratio as 5:5, 6:4, 7:3. For online selection, one straightforward

method is to select all B(B−1)
2 pairs within a mini-batch of size B. You can also just select hard7 pairs within

the mini-batch, which is also referred to as Hard Sample Mining [11, 12].

Instead of measuring the similarity between pairs, you can also apply Triplet loss [13] or Quadruplet loss
[14] to model the similarities among triplets or quadruplets.

If you’re wondering if there exists a Quintuplets, Sextuplets, Septuplets or even Octuplets loss, you can refer
to the N-pair Loss [15], Lifted-Structure Loss [16], Softtriplet Loss [17] papers.

It may also be possible for other advanced loss functions such as Pair-Wise Loss [18], Multi-Similarity(MS)
[19], Mask Proxy(MP) [20] to give SOTA verification performance.

4 Dataset

The data for the assignment can be downloaded from the Kaggle competition link. 89. The dataset contains
images of size 64× 64 for all xyz channels. In this competition, we are dealing with faces from 4000 people
(That being said, we have 4000 classes.) 10

This assignment contains 2 parts.

• For classification, you will be given a human face image. What you need to do is to learn to classify
this image into correct people IDs.

• For verification, you will be given two images, and you need to calculate the similarity score for those
images using the embeddings generated by your classification network. Notice that for verification, the
test identities are disjoint from the training identities, i.e. your network should be able to tell whether
two images belong to the same person or not, even if it has never seen those people before. This is
known as open-set protocol.

4.1 File Structure

The structure of the dataset folder is as follows:
6Two instances in the positive pair should be from the same identity. Two instances in the negative pair should be from

different identities.
7Large similarity for negative pairs and small similarity for positive pairs.
8Classification: http://www.kaggle.com/c/11785-spring2021-hw2p2s1-face-classification/data
9Verification: http://www.kaggle.com/c/11785-spring2021-hw2p2s2-face-verification/data

10If you are using Kaggle API and the file hierarchy is not as desired, try upgrade your Kaggle API by running
!pip install --upgrade --force-reinstall --no-deps kaggle
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4.1.1 Kaggle Classification

• classification data: Each sub-folder in train data, val data and test data contains images of
one person, and the name of that sub-folder represents their ID.

– train data: You are supposed to use the train data set to train your model both for the
classification task and verification task.

– val data: You are supposed to use val data to validate the classification accuracy.

– test data: You are supposed to assign IDs for images in test data and submit your result.

• classification test.txt: This file contains the trials for Classification Test. The first column
is the images path. Your task is to assign ID to each image and generate submission file based on the
order given here.

• classification sample submission.csv: This is a sample submission file for face classification com-
petition.

4.1.2 Kaggle Verification

• verification data: This is the directory that contains the images for both the Verification

Validation and Verification Test.

• verification pairs val.txt: This file contains the trials for Verification Validation. The first
two column are the images path of the trial. The third column contains the true label for the pair.
You are supposed to use the data in this file to validate your AUC score.

• verification pairs test.txt: This file contains the trials for Verification Test. The first two
column are the images path of the trial. You task is to compute the similarity between each two trials
and to generate submission file based on this.

• verification sample submission.csv: This is a sample submission file for face verification compe-
tition.

4.2 Loading Training Data - ImageFolder

To load the images, we recommend that you look into the ImageFolder dataset class of PyTorch at https:

//pytorch.org/docs/stable/torchvision/datasets.html#imagefolder. The images in subfolders of
classification data are arranged in a way that is compatible with this dataset class. Note that ImageFolder
is helpful for both Multi-class classification, and Metric Learning tasks.

Again, If you are using Kaggle API and the file hierarchy is not as desired, try upgrade your Kaggle API by
running !pip install –upgrade –force-reinstall –no-deps kaggle

5 System Evaluation

5.1 Kaggle 1: Face Classification

This is quite straightforward,

accuracy =
# correctly classified images

# total images

5.2 Kaggle 2: Face Verification

Here, we briefly describes how the “quality” of your similarity scores will be evaluated. Given similarity
scores for many trials, some threshold score is needed to actually accept or reject pairs as same-person
pairs (i.e., when the similarity score is above the threshold) or different-person pairs (i.e., when the score is
below the threshold), respectively. For any given threshold, there are four conditions on the results: some
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percentage of the different-person pairs will be accepted (known as the false positive rate), some percentage
of the same-person pairs will be rejected (known as the false rejection rate), some percentage of the different-
person pairs will be rejected (known as the true negative rate), and some percentage of the same-person pairs
will be accepted (known as the true positive rate).

The Receiver Operating Characteristic (ROC) curve is created by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various threshold settings 11. The Area Under the Curve (AUC) for
the ROC curve is equal to the probability that a classifier will rank a randomly chosen similar pair (images
of same people) higher than a randomly chosen dissimilar one (images from two different people) (assuming
’similar’ ranks higher than ’dissimilar’ in terms of similarity scores).

This is the metric which will be used to evaluate the performance of your model for the face verification
task.

To track your progress, after an epoch of training, you can compute a similarity score for every trial in the
validation set, write them to another file. One suggested approach to compute AUC is to use the function
provided in sklearn library12:

• sklearn.metrics.roc auc score(true label, similarity scores). This function is useful for Ver-
ification Validation. It loads the true label array and the generated similarity scores array and prints
out the average AUC score. Please also pay attention to the difference between cosine similarity score
and Euclidean distance score.

6 Submission

Following are the deliverables for this assignment:

• Kaggle submission for Face Classification.

• Kaggle submission for Face Verification.

• A one page write up describing your model architecture, loss function, hyper parameters, any other
interesting detail led to your best result for the above two competitions. Please limit the write up to
one page. The link for submitting the writeup will be posted later on piazza/Autolab.

7 Conclusion

Nicely done! Here is the end of HW2P2, and the beginning of a new world. As always, feel free to ask on
Piazza if you have any questions. We are always here to help.

Good luck and enjoy the challenge!

11https://en.wikipedia.org/wiki/Receiver_operating_characteristic
12https://scikit-learn.org/stable/
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Appendix A

Appendix A1: Cosine Similarity VS Euclidean Distance

You may struggle with selecting a proper distance metric for the verification task. The most two popular
distance metrics used in verification are cosine similarity and Euclidean distance. We would tell you in that
both two metrics are able to reach SOTA score, but at least you should get an intuition on how to choose
one of them.

The metric should be training-objective-specific, where training objective refers to the loss function. Let us
start with revisiting Softmax cross entropy:

Loss = − 1

N
ΣN

i=1log
eW

T
Yi

Xi

ΣN
j=1e

WT
Yj

Xi
(2)

Where Yi is the label of Xi. If you take a thorough look at this formula, you will find that the objective is to
make the vector(embedding) Xi be closer to the vector WYi and be far away from other vectors WYj . Under
this rule, the WYi is actually the center of i− th class. Because you are performing dot product between the
class center and the embedding, then each embedding would be similar to its center in the Angular Space,
which could be illustrated in the following Figure. 3. So during verification, you are strongly suggested to
apply cosine similarity rather than Euclidean distance to compute the similarity score.

Figure 3: Angular Space [4]

Furthermore, if we design our own loss function e.g. in Eq. 3, you are suggested to apply Euclidean distance
metric to compute similarity. (Is this RBF?)

Loss = − 1

N
ΣN

i=1log
e||WYi

−Xi||2

ΣN
j=1e

||WYj
−Xi||2

(3)

Question left to you, what metric is probably better if you start with metric learning and apply the loss
function in Eq. 1?

However, the aforementioned conclusions are not definitely true. We would tell you that sometimes Euclidean
distance is also good when you apply softmax XE in Eq. 2 and cosine similarity is also good when you apply
Eq. 3 as loss function. We would just give you the following hint and let you explore it.

||U − V ||22 = ||U ||22 + ||V ||22 − 2UTV (4)
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Appendix B

Appendix B1: B-way Classification

In this appendix, we are going to introduce you to a metric learning strategy called B-way classification,
in which B refers to batch size. The following figure gives an intuition of this manner:

Figure 4: B-way classification for metric learning

Note that everything happens only within a mini-batch and batch size is 5 in this figure. For the notation,
in Xij and Eij , i is the label information(1 ≤ i ≤ BatchSize) and j is the index of samples for each class.
Here we set number of samples in each class as 2. To claim again, if the batchsize is B, then you will get
2×B embeddings and 2 for each class. Your task is just to classify these B classes:

L = −
B−1∑
i=0

log
exp(ET

i1Ei2)∑B−1
j=0 exp(ET

i1Ej2)

This is actually called Prototypical loss, which is one of the SOTA metric learning losses currently and which
is likely to give you a better AUC score than classification methods(Even better than margin-based Softmax
loss functions like CosFace/ArcFace). To apply this loss function, you may care about the following points:

1. There is only one CNN backbone within a mini-batch though we present 5 in the example. (You can
also apply Siamese Network)

2. Label information is ignored when computing the loss objective. Labels are just 0,1,...B-1. Labels are
only useful when building your dataset.

3. You need to build a powerful dataset/dataloader to pass these B × 2 data points into the network,
which is the most pivotal part in the whole work.

4. ET
i1Ei2 could be replaced by a ·ET

i1Ei2 + b, in which a and b are learnable parameters. It would usually
be better to normalize embeddings.

5. There is no supervision signal in the loss objective unlike multi-class classification. (Is this unsupervised
learning?)

Just feel free to go through this method!
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