
11-785 Recitation 10
Attention, MT, LAS
Clay Yoo

Sequence to sequence

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

• Sequence goes in, sequence comes out

• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple” 🡪 “Ich habe einen apfel gegessen”

v

– Or even seem related to the input
• E.g. “My screen is blank” 🡪 “Please check if your computer is plugged in.”

2

Generating Language: The model

• Input: symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary”

• Projected down to lower-dimensional “embeddings”

• The hidden units are (one or more layers of) LSTM units

• Output at each time: A probability distribution for the next word in the sequence

• All parameters are trained via backpropagation from a lot of text

1 2 3 4 5 6 7 8 9

5 6 7 8 9 102 3 4

3

15

A note on beginnings and ends

• A sequence of words by itself does not indicate if it is

a complete sentence or not

… four score and eight …
– Unclear if this is the start of a sentence, the end of a

sentence, or both (i.e. a complete sentence)

• To make it explicit, we will add two additional symbols

(in addition to the words) to the base vocabulary

– <sos> : Indicates start of a sentence

– <eos> : Indicates end of a sentence

A note on beginnings and ends

16

• Some examples:

four score and eight
– This is clearly the middle of sentence

<sos> four score and eight
– This is a fragment from the start of a sentence

four score and eight <eos>
– This is the end of a sentence

<sos> four score and eight <eos>
– This is a full sentence

• In situations where the start of sequence is obvious, the <sos> may not be needed,
but <eos> is required to terminate sequences

• Sometimes we will use a single symbol to represent both start and end of
sentence, e.g just <eos> , or even a separate symbol, e.g. <s>

Returning our problem

goes in

• Problem:

– A sequence

– A different sequence comes out

• No expected synchrony between input and

output

Seq2seqI ate an apple Ich habe einen apfel gegessen

18

Modelling the problem

• Delayed sequence to sequence

19

Modelling the problem

• Delayed sequence to sequence

First process the input
and generate a hidden
representation for it

20

Modelling the problem

• Delayed sequence to sequence

Then use it to generate
an output

22

First process the input
and generate a hidden
representation for it

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the
sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
–
–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
30

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an

• We will illustrate with a single hidden layer, but the
discussion generalizes to more layers

I ate an apple <eos> <sos>

Ich

Ich habe einen apfel gegessen <eos>

Ich habe einen

habe einen apfel

apfel gegessen

gegessen <eos>

I ate an

32

apple <eos> <sos> Ich habeeinen apfel gegessen

The “simple” translation model

• The recurrent structure that extracts the hidden
representation from the input sequence is the
encoder

• The recurrent structure that utilizes this
representation to produce the output sequence is the
decoder

ENCODER

DECODER

Ich habe einen apfel gegessen <eos>

Ich habe einen apfelgegessenI ate an apple <eos> <sos>

34

Generating an output from the net

• At each time the network produces a probability distribution over words, given the entire input and
entire output sequence so far

• At each time a word is drawn from the output distribution

• The drawn word is provided as input to the next time

𝑦iih
0

𝑦apfel
0

𝑦bier
0

…

𝑦<eos>
0

𝑦iih
1

𝑦apfel
1

𝑦bier
1

…

𝑦<eos>
1

𝑦iih
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos>
2

𝑦iih
3

𝑦apfel
3

𝑦bier
3

…

𝑦<eos>
3

𝑦iih
4

𝑦apfel
4

𝑦bier
4

…

𝑦<eos>
4

𝑦iih
5

𝑦apfel
5

𝑦bier
5

…

𝑦<eos
5

Ich habeeinen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an

• The process continues until an <eos> is generated
38

apple <eos><sos>

Training : Forward pass

• Forward pass: Input the source and target sequences,
sequentially

– Output will be a probability distribution over target symbol
set (vocabulary)

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

0 1 2 3 4 5

59

– Randomly select training instance: (input, output)

– Forward pass

– Randomly select a single output y(t) and corresponding desired output d(t) for backprop 61

0 1 2 3 4 5

Training : Backward pass
Ich habe einen apfel gegessen <eos>

Div Div Div Div Div Div

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

• In practice, if we apply SGD, we may randomly sample words from the
output to actually use for the backprop and update

– Typical usage: Randomly select one word from each input training instance
(comprising an input-output pair)

• For each iteration

Machine Translation Example

• Hidden state clusters by meaning!

– From “Sequence-to-sequence learning with neural

networks”,

Sutskever, Vinyals and Le

66

A problem with this
framework Ich habe einen apfel gegessen <eos>

0 1 2 3 4 5

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

• All the information about the input sequence

is embedded into a single vector

– The “hidden” node layer at the end of the input sequence

– This one node is “overloaded” with information

• Particularly if the input is long
+ Source and target words can be far apart

- Reversing the encoder
- Bidirectional encoder

78

Using all input hidden states
Ich habe einen apfel gegessen <eos>

• Problem: The average applies the same weight to every input

• It supplies the same average to every output word

• In practice, different outputs may be related to different inputs

– E.g. “Ich” is most related to “I”, and “habe” and “gegessen” are
both most related to “ate”

Ich habe einen apfel gegessen

I ate an apple <eos>

<sos>

1

Average = N i
N
i

80

• Typical options for …
– Variables in red are to be learned 85

I ate an apple
<eos>

0 1 2 3 4

0 1 2 3 4 5

Ich habe einen

Attention models
Ich habe einen

<sos>

Converting an input (forward pass)

• Pass the input through the encoder to

produce hidden representations
86

I ate an apple <eos>

0 1 2 3 4-1

• Initialize decoder hidden state

87

I ate an apple <eos>

0 1 2 3 4-1

-1

Converting an input (forward pass)

What is this?
Multiple options

“Alignments” example: Bahdanau et al.

98i

t

Plot of 𝒊
Color shows value (white
is larger)

Note how most important
input words for any output
word get automatically
highlighted

The general trend is
somewhat linear because
word order is roughly
similar in both languages

LAS: Listener - Pyramidal LSTM

Concerns:
1. Reducing Length
2. Odd/Even Length Input

Design:
- 1 bottom BLSTM
- 3 pBLSTMs on top
- Reducing input length

by factor of 8

LAS: Attend and Spell - Decoder

Design:
- Dot-product attention
- 2 RNN layers
- MLP + Softmax for

CharacterDistribution
- Beam Search for

decoding

