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Goal: 

Provide some aspects of solutions to improve the performance of neural networks. Will be useful in homework part 
2 – Kaggle competition and further project.

Outlines

• Data

• Models

• Models Tuning

• Ensembles



Data
Data is the KEY to machine learning and deep learning. What machine learning or deep learning do is to 

analyze the features of data and make predictions based on it. There are thousands of dataset right 

now, for every kind of supervised learning tasks. No matter computer vision tasks or natural language 

processing, data is always the key.

Cifar 10 MNIST Sound Data

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/


Data

Architecture of data

• Training data

-- Training Features

-- Training labels

• Validation data

-- Validation Features

-- Validation labels

• Testing data

-- Testing Features

Build up the models

Evaluate Predict Testing labels

Input them to trained model



Data

1. Get more data
The number of data will determine the performance of your algorithm. Especially for deep learning. 

However, in our dataset, the size of the training dataset is fixed.

ATTENTION: you can never use validation or test data for training. It is cheat. And cannot use 

other datasets



Data

2.   Invent more data
As we mentioned before, the size of the training dataset is of great importance, and we have to get more 

data. That’s why we do data augmentation.

Refer to: https://pytorch.org/vision/stable/transforms.html

https://pytorch.org/vision/stable/transforms.html


Data

3. Resize data
A traditional rule of thumb when working with neural networks is:

Rescale your data to the bounds of your activation functions.
Why: i) scales between features may well be different; ii) speed up 

convergence of gradient descent

Normalization: a rescaling of the data from the original range so 

that all values are within the range of 0 and 1.

Standardization: rescaling the distribution of values so that the 

mean of observed values is 0 and the standard deviation is 1. It is 

sometimes referred to as “whitening.”



Models
1. Choose a better model for your task

• It means you can ‘steal’ ideas from published research, which is 

highly optimized. 

• You can also check piazza, papers, books, posts and every 

source permitted.

Like for image classification, VGG, Alex net, Resnet, Google Net are 

all great models

For seq2seq task, LAS is one of the best models. You can also 

search for other architectures.

HINT: Try to search for some variants of ResNet and use them in 

your homework! CNN can also be used in NLP question.



Models
2.   Build a stronger model

Deeper and Wider layers tend to have a better performance, 

because they have more parameters. However, it may cause 

“overfitting” problem and computation time will be much longer.

Most tricks we will talk about aim at solving overfitting problem.

From memes thread in spring2021



Models Tuning



Models Tuning
2.   Weight Initialization

Why is initialization important?

• Resolves the issue of exploding/vanishing 

gradients/activations(to some extent)

• Faster convergence

• Helps reach better minima

Why cannot we initialize them to zero or constant?

Gradient descent will backpropagate same value to 

weights so that model can hardly converge. 

It doesn’t suit the case of RNN. Zero or constant 

initialization are important for recurrent neural 

network.
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Models Tuning
3.   Optimizer

It used to be stochastic gradient descent (aka SGD), but now 

there are a ton of optimizers.

NAG, Adagrad, Rmsprop, Adam, etc. Considering more 

parameters, like momentum, to make optimizer strong.

HINT: SGD tends to have better performance if we can find 

the best parameters of SGD. But Adam is the efficient 

enough to achieve good performance without searching for 

parameters.

Adam converges fast and fine-tuned SGD can have a better 

performance. How about firstly use Adam and switch to 

SGD?

Refer to this paper: https://arxiv.org/abs/1712.07628

https://arxiv.org/abs/1712.07628


Models Tuning
4.   Regularization

Overfitting is a modeling error that occurs when a fusion is too closely fit to a limited set of data points.



Models Tuning
• L1/L2 Regularization

It involves adding an extra element to the loss function, which punishes our model for being too complex or, in simple 

words, for using too high values in the weight matrix (usually, lambda is 1e-4 or 1e-5)



Models Tuning
• Dropout



Models Tuning
• Dropout

Two problems resolved:

• Overfitting: disable some outputs so that the layers cannot overfit the data. Or we can see dropout is like 

generating many models, have different “overfitting” effect but some of them are opposite. We average them and 

can prevent overfitting in general

• Generalization: let model abandon some specific features with probability and decrease co-adaptation between 

the neurons



Models Tuning
• Batch-Norm

Wildly successful and simple technique for accelerating training and learning better neural network representations

Motivation: The general motivation of BatchNorm is the non-stationary of unit activity during training that requires 

downstream units to adapt to a non-stationary input distribution. This co-adaptation problem, which the paper 

authors refer to as ICS (internal covariate shift), significantly slows learning.

ICS:  In neural networks, the output of the first layer feeds into the second layer, the output of the second layer feeds 

into the third, and so on. When the parameters of a layer change, so does the distribution of inputs to subsequent 

layers.

These shifts in input distributions can be problematic for neural networks, especially deep neural networks that could 

have a large number of layers.



Models Tuning



Models Tuning
• Batch-Norm



Models Tuning
• Early Stop

Literally, just stop the training when you see the 

validation score decreases, where overfitting begins

• Gradient Clipping

Once the gradient is over the threshold, clip and keep 

them to the threshold value. It is important for RNN.



Efficient Training
• Mixed Precision Training (Pytorch > 1.6.0)
• combine FP32 and FP16 during training while achieving same

accuracy as FP32 training

• Why?
• faster training (2-3x)
• less memory usage
• larger batch size, larger model, larger input

• How? …and loss of information?
• FP32 master copy of weights

• loss scaling

• Speak in Pytorch….

loss scaler

autocast fp32 to fp16

scale loss

skip nans and infs

• Ref
• [1] Mixed Precision Paper
• [2] Pytorch Mixed Precision Tutorial

https://arxiv.org/abs/1710.03740
https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html


Efficient Training
• Want to train the model even faster? with more than 1 gpu :)

• DataParallel

• single-process multi-thread parallelism
• split batch data on each card
• replicate forward pass on each card
• but…GPU memory is imbalanced across cards

• DistributedDataParallel
• multi-process parallelism
• broadcast happens at DDP construction rather than each forward

• Ref
• [1] Pytorch Parallel Tutorial

https://pytorch.org/tutorials/beginner/dist_overview.html


Ensemble

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve the same problem. In 

contrast to ordinary machine learning approaches which try to learn one hypothesis from training data, ensemble 

methods try to construct a set of hypotheses and combine them to use.

Bagging: considers homogeneous weak learners, 

learns them independently from each other in parallel 

and combines them following some kind of 

deterministic averaging process. Decrease variance.

Boosting: considers homogeneous weak learners, 

learns them sequentially in a very adaptative way 

(a base model depends on the previous ones) and 

combines them following a deterministic strategy. 

Decrease bias.



Ensembles

Refer to paper. Author 

Develop of ensembles

https://dl.acm.org/doi/pdf/10.1145/2939672.2939785


Ensembles
• Bagging: Voting-based algorithm. Train different models in isolation and use average voting or weighted voting 

method to get result.

Model1

Model2

Model3



Ensembles
• XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions 

Refer to paper. Author Tianqi Chen joined CMU in 2020! 

XGBoost as a boosting method is a category of ensemble methods. Rather than training all of the models 

in isolation of one another, boosting trains models in succession, with each new model being trained to 
correct the errors made by the previous ones. Models are added sequentially until no further 

improvements can be made, that’s why it is called additive model.

https://dl.acm.org/doi/pdf/10.1145/2939672.2939785


Ensembles
• XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions 

Refer to paper. Author Tianqi Chen joined CMU in 2020! 

https://dl.acm.org/doi/pdf/10.1145/2939672.2939785


More Hints for your Homework
• Always keep this in mind: “Practice make perfect!” Besides the theory behind different algorithms and different 

tricks, Deep Learning is kind like an experimental topic. If you wonder what tricks can achieve best results or 

which parameters suit the model well, just give it try! 

• Remember to shuffle the data set: if not, your performance will be pretty bad.

• Choose learning rate wisely: too large LR will not converge while too small can hardly get rid of local optima

• Choose batch size: according to the property of SGD, smaller batch size leads to better convergence rate. But 

smaller batch size would deteriorate the performance of BN layer and running speed. In general, different batch 

size wouldn’t cause too much difference. Larger batch size tends to have better performance but will occupy 

more memory in GPU. (if you have cuda out of memory error, try smaller bs)

• Try self-ensemble: average the parameters of your model at different training epochs.

• Tricky things come when using BatchNorm and Dropout together. (Paper)

• Normalization may be unnecessary if you are using BatchNorm.

• Don’t forget optimize.zero_grad()

• Put LR_scheduler in batch loop, instead of training epochs.

• Try to use torch.cuda.empty_cache() and del to release all unoccupied cached memory

https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf


More and More Hints for your Homework
• DataLoader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory = True  (colab will 

gradually restrict the num_workers from 8 to 4 to 2 and then only 1)   :-(  

• Try to use torch.backends.cudnn.benchmark = True to autotune cudnn kernel choice  （this code can be put at the beginning)
• Max out the batch size for each GPU to amortize compute.

• Do not forget bias = False in weight layers before BatchNorms, it is a noop that bloats model.
• Try to use for p in model.parameters(): p.grad = None instead of model.zero_grad()

• Try every tricks or models that you can find in the papers or post!

• Always Remember to save your model state after each iterations!!!!!!!!!!!!!!!!

(Use model.state_dict())

Thanks to Jacob Li (TA in 20Fall) for some hints!



Good Luck! 

There are so many tricks or 

architectures waiting for 
you to explore and use 
them in your Kaggle 

Competitions. Just try your 
best and reach to the top!


