Recitation 2



Goal:

Provide some aspects of solutions to improve the performance of neural networks. Will be useful in homework part
2 — Kaggle competition and further project.
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Data

Data is the KEY to machine learning and deep learning. What machine learning or deep learning do is to
analyze the features of data and make predictions based on it. There are thousands of dataset right
now, for every kind of supervised learning tasks. No matter computer vision tasks or natural language

processing, data is always the key.
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http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/

Data

Architecture of data
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Data

1. Get more data
The number of data will determine the performance of your algorithm. Especially for deep learning.

However, in our dataset, the size of the training dataset is fixed.

ATTENTION: you can never use validation or test data for training. It is cheat. And cannot use

other datasets

Why deep learning

Deep learning
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Amount of data

How do data science techniques scale with amount of data?



Data

2. Invent more data
As we mentioned before, the size of the training dataset is of great importance, and we have to get more

data. That's why we do data augmentation.

Refer to: https://pytorch.org/vision/stable/transforms.html
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https://pytorch.org/vision/stable/transforms.html

Data

3. Resize data

A traditional rule of thumb when working with neural networks is:
Rescale your data to the bounds of your activation functions.
Why: i) scales between features may well be different; ii) speed up

convergence of gradient descent

Normalization: a rescaling of the data from the original range so
that all values are within the range of 0 and 1.

Standardization: rescaling the distribution of values so that the
mean of observed values is 0 and the standard deviation is 1. It is

sometimes referred to as “whitening.”
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Feature Scaling
Idea: Make sure features are on a similar scale.
Make sure features are on a similar scale.
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Models

1. Choose a better model for your task

« It means you can ‘steal’ ideas from published research, which is
highly optimized.

* You can also check piazza, papers, books, posts and every
source permitted.

Like for image classification, VGG, Alex net, Resnet, Google Net are

all great models

For seq2seq task, LAS is one of the best models. You can also

search for other architectures.

HINT: Try to search for some variants of ResNet and use them in

your homework! CNN can also be used in NLP question.
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Figure 2. Residual learning: a building block.

method

top-J err. (test)

VGG 40] (ILSVRC'14) 1.32
GoogLeNet [43] (ILSVRC'14) 6.66
VGG [40] (v5) 6.8
PReLU-net [12] 4,94
BN-inception [16] 482
ResNet (ILSVRC’15) 357

Table 3. Error rates (%) of ensembles. The top-3 error is on the
test set of ImageNet and reported by the test server,



Models

2. Build a stronger model
Deeper and Wider layers tend to have a better performance,

because they have more parameters. However, it may cause

“overfitting” problem and computation time will be much longer.

Most tricks we will talk about aim at solving overfitting problem.

oo Overfitting
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Knowledge Experience

X
Underfitting Just right! overfitting

If I've learned anything from my
studies of Deep Learning, it's that
one can solve most problems by
just adding more layers

From memes thread in spring2021



Models Tuning

1. Learning rate and its scheduler

Among all the hyperparameters in NN, learning rate is one of the most important ones that affect your
performance. So you can:

« Experiment with different learning rates. (give a good initial LR)

« Anneal the learning rate over epochs. (LR scheduler)

BSnew
BSol1d

Learning rate is coupled with the number of training epochs, batch size (LR,,.,,= LR,;; * ) and

optimization methods.
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Models Tuning Initialize
First Layer W; = Wan | a2 W43] = [0 e

2. Weight Initialization Ws; Wsp Ws3 000

Second Layer W, = =[0 0
Why is initialization important? econd Layer W, = [Weq Wes] = [0 0]

Input X = [x; x, Xx3]
* Resolves the issue of exploding/vanishing

. A Forward
gradients/activations(to some extent)

First Layer Output Z = [z, zs]
* Faster convergence Zy = Waq ¥ X + Wyp ¥ Xy + Wy3 ¥x3 =0
o Zs = Wgq ¥ X1 + Wgp ¥ Xy + Ws3 X3 = 0
* Helps reach better minima
Second Layer Output
(g = Weq * Qg + Wes * As

Why cannot we initialize them to zero or constant? where a, = f(a,), as = f(as)

Gradient descent will backpropagate same value to Loss — l(y —ay)?
2

weights so that model can hardly converge. Backward

It doesn’t suit the case of RNN. Zero or constant

5w will be the same. Cannot update weights
initialization are important for recurrent neural

network.

\

Only one neuron works



Models Tuning

3. Optimizer

It used to be stochastic gradient descent (aka SGD), but now
there are a ton of optimizers.

NAG, Adagrad, Rmsprop, Adam, etc. Considering more
parameters, like momentum, to make optimizer strong.
HINT: SGD tends to have better performance if we can find
the best parameters of SGD. But Adam is the efficient
enough to achieve good performance without searching for
parameters.

Adam converges fast and fine-tuned SGD can have a better
performance. How about firstly use Adam and switch to
SGD?

Refer to this paper: https://arxiv.org/abs/1712.07628

SGD -
Momentum
NAG -
Adagrad
Adadelta
Rmsprop |



https://arxiv.org/abs/1712.07628

Models Tuning

4. Regularization

Overfitting is a modeling error that occurs when a fusion is too closely fit to a limited set of data points.
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Models Tuning

* L1/L2 Regularization

It involves adding an extra element to the loss function, which punishes our model for being too complex or, in simple

words, for using too high values in the weight matrix (usually, lambda is 1e-4 or 1e-5)

LO Norm Loss = Error(y,9) + AY N, ||w;||, stands for # of zero
L1 Norm Loss = Error(y,9) + AYXN ; |w;]
L2 Norm Loss = Error(y,9) + AY X, wf

A =0.001 A =0.01

Data term only:
all 6, non-zero

Regularized estimate:
some ¢, may be zero

91—)

.



Models Tuning

* Dropout

For each training batch, you turn off some neurons with a probability.

Motivation: With unlimited computation, the best way to “regularize” a fixed-sized model to average the predictions of
all possible settings of the parameters. Practically, it’s computationally prohibitive. So dropout provides a method to
use O(n) neural network to approximate O(2") different architectures with shared O(n?) parameters.

Implementation:
* Train Time: Mask some neuron outputs as 0 with a probability

* Test Time: No parameters masked at test time but need to multiply with the dropout probability to approximate the

expected output

* Hyper-parameter: dropout rate, usually from 0.1 to 0.5

PW
Present with Always
probability p present

(a) At training time (b) At test time



Models Tuning

* Dropout

Two problems resolved:

* Overfitting: disable some outputs so that the layers cannot overfit the data. Or we can see dropout is like
generating many models, have different “overfitting” effect but some of them are opposite. We average them and
can prevent overfitting in general

* Generalization: let model abandon some specific features with probability and decrease co-adaptation between

the neurons
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Models Tuning

e Batch-Norm

Wildly successful and simple technique for accelerating training and learning better neural network representations

Motivation: The general motivation of BatchNorm is the non-stationary of unit activity during training that requires
downstream units to adapt to a non-stationary input distribution. This co-adaptation problem, which the paper

authors refer to as ICS (internal covariate shift), significantly slows learning.

ICS: In neural networks, the output of the first layer feeds into the second layer, the output of the second layer feeds
into the third, and so on. When the parameters of a layer change, so does the distribution of inputs to subsequent
layers.

These shifts in input distributions can be problematic for neural networks, especially deep neural networks that could

have a large number of layers.



Models Tuning
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Models Tuning

* Batch-Norm

Benefits:

a) BN enables higher training rate: Normally, large learning rates may increase the scale of layer parameters, which
then amplify the gradient during back propagation and lead to the model explosion. However, with Batch
Normalization, BP through a layer is unaffected by the scale of its parameters

dBN((aW)u) 9BN(Wu)

BN(Wu) = BN((aW)u) o ~

a) Faster Convergence.
b) BN regularizes the models: a training example is seen in conjunction with other examples in the mini-batch, and
the training network no longer producing deterministic values for a given training example. In our experiments, we

found this effect to be advantageous to the generalization of the network.



Models Tuning

e Early Stop

Literally, just stop the training when you see the

validation score decreases, where overfitting begins
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* Gradient Clipping

Once the gradient is over the threshold, clip and keep

them to the threshold value. It is important for RNN.

Without clipping With clipping

J(w,b)
J(w,b)

N N



Efficient Training

Mixed Precision Training (Pytorch > 1.6.0)

combine FP32 and FP16 during training while achieving same

accuracy as FP32 training

Why?

faster training (2-3x)
less memory usage
larger batch size, larger model, larger input

How? ...and loss of information?
FP32 master copy of weights

loss scaling

float2half

Weights —F18,

Activations ——>

F16

Activation Grad K18 BWD-Actv | 16
. F16
Weight Grad  F16 BWD-Weight | 116

F16 FWD F16 5 Activations

Weights
Activation Grad

Activations
Activation Grad

Master-Weights (F32) B2 Weight Update =2 Updated Master-Weights

Figure 1: Mixed precision training iteration for a layer.
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Speak in Pytorch....

# Creates model and optimizer in default precision
model = Net().cuda()
optimizer = optim.SGD(model.parameters(), ...)

Createcs a2 Gradscaler once at the beginning of training.
scaler = GradScaler()
loss scaler

for epoch in epochs:
for input, target in data:
optimizer.zero_grad()

# Runs the forward pass with autocasting.
[with autocast: | autocast fp32 to fpl6
output = model(input)
loss = loss_fn(output, target)

# Scales loss. Calls backward() on scaled loss to create scaled gradients.

# Backward passes under autocast are not recommended.

# Backward ops run in the same dtype autocast chose for corresponding forward ops.
scaler.scale(loss) .backward() | scale |loss

# scaler.step() first unscale§ the gradients of the optimizer's assigned params.
# If these gradients do not cgntain infs or NaNs, optimizer.step() is then called,
# otherwise, optimizer.step()|is skipped.

scaler.step(optimizer) skip nans and infs

# Updates the scale for next Jteration.
scaler.update()

* Ref
* [1] Mixed Precision Paper
e [2] Pytorch Mixed Precision Tutorial



https://arxiv.org/abs/1710.03740
https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html

Efficient Training

Want to train the model even faster? with more than 1 gpu :)

DataParallel

model = nn.DataParallel(model)

single-process multi-thread parallelism

split batch data on each card

replicate forward pass on each card
but...GPU memory is imbalanced across cards

DistributedDataParallel
multi-process parallelism

broadcast happens at DDP construction rather than each forward

def setup(rank, world_size):
os.environ[ 'MASTER_ADDR'] = 'localhost'
os.environ[ 'MASTER_PORT'] = '12355'

# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)

def cleanup():
dist.destroy_process_group()

def demo_basic(rank, world_size):

print(£"Running basic DDP example on rank {rank}.")
setup(rank, world_size)

# create model and move it to GPU with id rank
model = ToyModel() .to(rank)
ddp_model = DDP(model, device_ids=[rank])

loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), 1lr=0.001)

optimizer.zero_grad()

outputs = ddp_model (toxch.randn(20, 10))
labels = torxch.randn(20, 5).to(xrank)
loss_fn(outputs, labels).backward()
optimizer.step()

cleanup()

def run_demo(demo_£fn, world_size):

mp.spawn (demo_=£n,
args=(world_size,),
nprocs=world_size,
join=True)

Ref
[1] Pytorch Parallel Tutorial



https://pytorch.org/tutorials/beginner/dist_overview.html

Ensemble

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve the same problem. In
contrast to ordinary machine learning approaches which try to learn one hypothesis from training data, ensemble

methods try to construct a set of hypotheses and combine them to use.

Bagging: considers homogeneous weak learners,

Boosting | |
learns them independently from each other in parallel
i and combines them following some kind of
[ ~ deterministic averaging process. Decrease variance.
@ @ %_’ 5 ’ . Boosting: considers homogeneous weak learners,
; , : learns them sequentially in a very adaptative way
.

(a base model depends on the previous ones) and
Parallel Qequenﬁal combines them following a deterministic strategy.

Decrease bias.



Ensembles

Bootstrap aggregating or
g% ng is a ensemble
meta-algorithm combining
predictions from multnﬁle-
decision trees through a
majority voting mechanism

Models are built sequentially
by minimizing the errors from
previous models while
increasing (or boosting)
influence o §h performing

els

Decision

A graphical
representation of
possible solutions to
a decision based on
certain conditions

Refer to paper. Author
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Ba ging-based algorithm
ere only a subset of
features are selected at
random to build a forest
or collection of decision
trees

Develop of ensembles

Optimized Gradient Boosting
algorithm through parallel
processing, tree-pruning,
handling missing values and
regularization to avoid
overfitting/bias

oost

Gradlent Boostm
employs gradien
descent algorithm to
minimizeerrors in
sequential models


https://dl.acm.org/doi/pdf/10.1145/2939672.2939785

Ensembles

e Bagging: Voting-based algorithm. Train different models in isolation and use average voting or weighted voting

method to get result.
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Ensembles

XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions

XGBoost as a boosting method is a category of ensemble methods. Rather than training all of the models
in isolation of one another, boosting trains models in succession, with each new model being trained to
correct the errors made by the previous ones. Models are added sequentially until no further

improvements can be made, that's why it is called additive model.

Original Train Dataset

Updated Weights in dataset

Updated Weights in dataset

+

XGBoost Classifier 1

XGBoost Classifier 2

Final Classifier

XGBoost Classifier 3

+

Refer to paper. Author Tiangi Chen joined CMU in 2020!



https://dl.acm.org/doi/pdf/10.1145/2939672.2939785

Ensembles

* XGBoost: One of most powerful weapons in Kaggle. Many deep learner use it reached top in many competitions

Pseudocode:
Algorithm 2: Exact Greedy Algorithm for Split Finding

@ |n|t|a||ze fO (X), Imput: 7, instance setof currentnode

@ F orm = 1 t o M: Inp‘ut: d, feature dimension
Gain=0

a. Compute the 15t derivative and 2 G= Y19 H= Zierhy
. _ _ For k = 1 tom do:
derivative of loss function over each sample; G, =0, H =0

For j in sorted(I, by x) do:

b. Recursively use “Greedy Algorithm for Split Go= G +g, Hi= H+h

Finding” to generate the base learner; Gp=G—G,, Hp=H—H,
- 6 , G _ G
c. Add the base learner to models. score = max(score, 3 vs ¥ Hnss  weo

End

End

Output: Split with max score

Refer to paper. Author Tiangi Chen joined CMU in 2020!


https://dl.acm.org/doi/pdf/10.1145/2939672.2939785

More Hints for your Homework

* Always keep this in mind: “Practice make perfect!” Besides the theory behind different algorithms and different
tricks, Deep Learning is kind like an experimental topic. If you wonder what tricks can achieve best results or
which parameters suit the model well, just give it try!

« Remember to shuffle the data set: if not, your performance will be pretty bad.

* Choose learning rate wisely: too large LR will not converge while too small can hardly get rid of local optima

* Choose batch size: according to the property of SGD, smaller batch size leads to better convergence rate. But
smaller batch size would deteriorate the performance of BN layer and running speed. In general, different batch
size wouldn’t cause too much difference. Larger batch size tends to have better performance but will occupy
more memory in GPU. (if you have cuda out of memory error, try smaller bs)

* Try self-ensemble: average the parameters of your model at different training epochs.

e Tricky things come when using BatchNorm and Dropout together. (Paper)

 Normalization may be unnecessary if you are using BatchNorm.

 Don’t forget optimize.zero_grad()

e Put LR_scheduler in batch loop, instead of training epochs.

* Tryto use torch.cuda.empty cache() and del to release all unoccupied cached memory


https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf

More and More Hints for your Homework

DatalLoader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory = True (colab will

gradually restrict the num_workers from 8 to 4 to 2 and then only 1) :~(

Try to use torch.backends.cudnn.benchmark = True to autotune cudnn kernel choice ( this code can be put at the beginning)

Max out the batch size for each GPU to amortize compute.

Do not forget bias = False in weight layers before BatchNorms, it is a noop that bloats model.

Try to use for p in model.parameters(): p.grad = None instead of model.zero_grad()

Try every tricks or models that you can find in the papers or post!

(Use model.state_dict())

’ il
o
NP
o 4
Before DDL,_ get an Forget to save model
extremely g}ood result and Colab collapses

‘\§:\/, \/c,
I will reach the fop in leaderboard!
I am unbeatable!!!!

Let me die

Thanks to Jacob Li (TA in 20Fall) for some hints!



Other course students: Wow, you are taking 11785! You
must be good at Deep Learning!
Me

Good Luck!

There are so many tricks or
architectures waiting for
you to explore and use
them in your Kaggle
Competitions. Just try your

best and reach to the top!



