
CNN BackPropagation
Fall 2021

Delivered by: Rukayat Sadiq

Introduction to Deep
Learning



Backpropagation in CNNs

• In the backward pass, we get the loss gradient with respect to the next layer 

• In CNNs the loss gradient is computed w.r.t the input and also w.r.t the filter.



Convolution 
Backprop with 
single Stride
• To understand the 
computation of loss 
gradient w.r.t input, let 
us use the following 
example:

• Horizontal and 
vertical stride = 1



Convolution 
Forward Pass
• Convolution between 
Input X and Filter F, 
gives us an output O. 
This can be represented 
as:
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Loss gradient

• We want to calculate 
the gradients wrt to 
input ‘X’ and filter ‘F’



Loss gradient 
w.r.t the filter
We can use the chain rule to 
obtain the gradient wrt the 
filter as shown in the 
equation.



Loss gradient 
w.r.t the filter
We can expand the chain
rule summation as:



Loss gradient 
w.r.t the filter
• Replacing the local
gradients of the filter i.e, !"!

!#!
, 

we get this:



Loss gradient 
w.r.t the filter
• If you closely look at it, 
this represents an operation 
we are quite familiar with. 
We can represent it as 
a convolution operation 
between input X and loss 
gradient ∂L/∂O as shown 
below:



Loss gradient 
w.r.t the input
• If you closely look at it, 
this represents an 
operation we are quite 
familiar with. We can 
represent it as 
a convolution operation 
between input X and loss 
gradient ∂L/∂O as shown 
below:



Loss gradient 
w.r.t the input

• Similarly, we can 
expand the chain rule 
summation for the 
gradient with respect to 
the input. After 
substituting the local 
gradients i.e !"!!#!

, we 
have:



Loss gradient 
w.r.t the input
• First, let us rotate the 
Filter F by 180 degrees. 
This is done by flipping it 
first vertically and then 
horizontally.



Loss gradient 
w.r.t the input
• We see that the loss 
gradient wrt the input 

!$
!#

is given as a full 
convolution between the 
filter and Loss gradient 
!$
!".



Takeaway

• Both the Forward pass 
and the 
Backpropagation of a 
Convolutional layer are 
Convolutions



Loss gradient 
w.r.t the input

• To understand the 
computation of loss 
gradient w.r.t input, let 
us use the following 
example:

• > Horizontal and 
vertical stride = 2



Recap: Forward 
pass

• This is how the 
forward pass looks like 
for the example:



Backward Pass:

• Assumption: we have 
the loss gradient w.r.t 
the output pixels.

• Requirement: 
calculate the loss 
gradient w.r.t the input 
activations

Loss gradients w.r.t
output

Loss gradients w.r.t
input



Backward pass:

• Each input contributes to one 
or more outputs. The total 
gradient of the loss wrt to each 
input pixel is computed using the 
formula shown

• The gradient computation is 
done using chain rule and partial 
differentiation

• i and j represent the position of 
a single output pixel



Backward Pass 
example:

• Consider input x00 in 
the input shown. It 
contributed to the 
output y00



Backward Pass 
example:

• Input x01 also 
contributed to the 
output y00 so the loss 
gradient w.r.t x01 is 
computed as shown:



Backward Pass 
example:

• Input x02  contributed 
to the output y00  and 
y01 so the loss 
gradient w.r.t x02 is 
computed as shown:



Backward Pass 
example:

• Input x22  contributed 
to the output y00  , 
y01 , y10, and y11 so 
the loss gradient 
w.r.t x22 is computed 
as shown:



Backward Pass 
example:
• To visualize the pattern more 

clearly, we pad the gradient 
tensor with zeros at the top and 
bottom as well as to the left and 
right. 

• The number of zeros padded on 
either side is equal to the stride 
(horizontal and vertical)

• We also dilate the output 
gradient pixels with the stride –
vertically and horizontally



Backward Pass 
example:

• We also rotate the 
filter vertically and 
horizontally as 
shown:



Backward Pass 
example:

• After these 
modifications, we 
can now see the 
calculation of the 
gradient tensor as 
follows:



Takeaway:

• Convolving with a stride greater than 1 is the 
same as convolving with stride 1 and “dropping” 
out of every rows, and of every columns 
• Padding the gradient of the output !$!% after 
dilation helps recover the size of the input feature 
map



Loss gradient 
w.r.t the Filter

• To understand the 
computation of loss 
gradient w.r.t filter, we 
will use the same 
example:

• > Horizontal and 
vertical stride = 2



Backward 
Pass:
Assumption: we have 
the loss gradient w.r.t
the output pixels.

Requirement: calculate 
the loss gradient w.r.t
the filter

Loss gradients w.r.t
output

Loss gradients w.r.t
filter



Backward 
pass:

• Unlike the inputs which contribute to some outputs, each 
filter contributes to all outputs

• The gradient computation is done using chain rule and partial 
differentiation

• i and j represent the position of a single output pixel



Backward Pass 
example:

• Considering the filter 
f00 , the loss gradient 
is computed as 
shown:

• Notice the inputs 
involved in the 
computation



Backward Pass 
example:

• Considering the filter 
f22 , the loss gradient 
is computed as 
shown:

• Notice the inputs 
involved in the 
computation



Backward Pass 
example:

• To visualize the 
underlying pattern, 
we will modify the 
output gradient 
tensor by dilating the 
pixels with the stride 
vertically and 
horizontally:



Backward Pass 
example:

• After these 
modifications, we 
can now see the 
calculation of the 
filter gradient tensor 
as follows :



Takeaway: • The CNN Backpropagation operation with 
stride>1 is identical to a stride = 1 
Convolution operation of the input gradient 
tensor with a dilated version of the output 
gradient tensor!
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