
CNN BackPropagation
Fall 2021

Delivered by: Rukayat Sadiq

Introduction to Deep
Learning

Backpropagation in CNNs

• In the backward pass, we get the loss gradient with respect to the next layer

• In CNNs the loss gradient is computed w.r.t the input and also w.r.t the filter.

Convolution
Backprop with
single Stride
• To understand the
computation of loss
gradient w.r.t input, let
us use the following
example:

• Horizontal and
vertical stride = 1

Convolution
Forward Pass
• Convolution between
Input X and Filter F,
gives us an output O.
This can be represented
as:

Convolution
Forward Pass

• Convolution between
Input X and Filter F,
gives us an output O.
This can be represented
as:

Convolution
Forward Pass

• Convolution between
Input X and Filter F,
gives us an output O.
This can be represented
as:

Loss gradient

• We want to calculate
the gradients wrt to
input ‘X’ and filter ‘F’

Loss gradient
w.r.t the filter
We can use the chain rule to
obtain the gradient wrt the
filter as shown in the
equation.

Loss gradient
w.r.t the filter
We can expand the chain
rule summation as:

Loss gradient
w.r.t the filter
• Replacing the local
gradients of the filter i.e, !"!

!#!
,

we get this:

Loss gradient
w.r.t the filter
• If you closely look at it,
this represents an operation
we are quite familiar with.
We can represent it as
a convolution operation
between input X and loss
gradient ∂L/∂O as shown
below:

Loss gradient
w.r.t the input
• If you closely look at it,
this represents an
operation we are quite
familiar with. We can
represent it as
a convolution operation
between input X and loss
gradient ∂L/∂O as shown
below:

Loss gradient
w.r.t the input

• Similarly, we can
expand the chain rule
summation for the
gradient with respect to
the input. After
substituting the local
gradients i.e !"!!#!

, we
have:

Loss gradient
w.r.t the input
• First, let us rotate the
Filter F by 180 degrees.
This is done by flipping it
first vertically and then
horizontally.

Loss gradient
w.r.t the input
• We see that the loss
gradient wrt the input

!$
!#

is given as a full
convolution between the
filter and Loss gradient
!$
!".

Takeaway

• Both the Forward pass
and the
Backpropagation of a
Convolutional layer are
Convolutions

Loss gradient
w.r.t the input

• To understand the
computation of loss
gradient w.r.t input, let
us use the following
example:

• > Horizontal and
vertical stride = 2

Recap: Forward
pass

• This is how the
forward pass looks like
for the example:

Backward Pass:

• Assumption: we have
the loss gradient w.r.t
the output pixels.

• Requirement:
calculate the loss
gradient w.r.t the input
activations

Loss gradients w.r.t
output

Loss gradients w.r.t
input

Backward pass:

• Each input contributes to one
or more outputs. The total
gradient of the loss wrt to each
input pixel is computed using the
formula shown

• The gradient computation is
done using chain rule and partial
differentiation

• i and j represent the position of
a single output pixel

Backward Pass
example:

• Consider input x00 in
the input shown. It
contributed to the
output y00

Backward Pass
example:

• Input x01 also
contributed to the
output y00 so the loss
gradient w.r.t x01 is
computed as shown:

Backward Pass
example:

• Input x02 contributed
to the output y00 and
y01 so the loss
gradient w.r.t x02 is
computed as shown:

Backward Pass
example:

• Input x22 contributed
to the output y00 ,
y01 , y10, and y11 so
the loss gradient
w.r.t x22 is computed
as shown:

Backward Pass
example:
• To visualize the pattern more

clearly, we pad the gradient
tensor with zeros at the top and
bottom as well as to the left and
right.

• The number of zeros padded on
either side is equal to the stride
(horizontal and vertical)

• We also dilate the output
gradient pixels with the stride –
vertically and horizontally

Backward Pass
example:

• We also rotate the
filter vertically and
horizontally as
shown:

Backward Pass
example:

• After these
modifications, we
can now see the
calculation of the
gradient tensor as
follows:

Takeaway:

• Convolving with a stride greater than 1 is the
same as convolving with stride 1 and “dropping”
out of every rows, and of every columns
• Padding the gradient of the output !$!% after
dilation helps recover the size of the input feature
map

Loss gradient
w.r.t the Filter

• To understand the
computation of loss
gradient w.r.t filter, we
will use the same
example:

• > Horizontal and
vertical stride = 2

Backward
Pass:
Assumption: we have
the loss gradient w.r.t
the output pixels.

Requirement: calculate
the loss gradient w.r.t
the filter

Loss gradients w.r.t
output

Loss gradients w.r.t
filter

Backward
pass:

• Unlike the inputs which contribute to some outputs, each
filter contributes to all outputs

• The gradient computation is done using chain rule and partial
differentiation

• i and j represent the position of a single output pixel

Backward Pass
example:

• Considering the filter
f00 , the loss gradient
is computed as
shown:

• Notice the inputs
involved in the
computation

Backward Pass
example:

• Considering the filter
f22 , the loss gradient
is computed as
shown:

• Notice the inputs
involved in the
computation

Backward Pass
example:

• To visualize the
underlying pattern,
we will modify the
output gradient
tensor by dilating the
pixels with the stride
vertically and
horizontally:

Backward Pass
example:

• After these
modifications, we
can now see the
calculation of the
filter gradient tensor
as follows :

Takeaway: • The CNN Backpropagation operation with
stride>1 is identical to a stride = 1
Convolution operation of the input gradient
tensor with a dilated version of the output
gradient tensor!

References:
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-
8137e4fc2710

https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-
fb2f2efc4faa

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

https://towardsdatascience.com/backpropagation-in-a-convolutional-layer-24c8d64d8509

https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-fb2f2efc4faa
https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c
https://towardsdatascience.com/backpropagation-in-a-convolutional-layer-24c8d64d8509

