
Deep Learning
Recurrent Networks:

Stability analysis and LSTMs

1

Story so far

• Iterated structures are good for analyzing time series
data with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series
data with long-term dependence on the past
– These are recurrent neural networks

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

2

Story so far

• Iterated structures are good for analyzing time series data
with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series
data with long-term dependence on the past
– These are recurrent neural networks

Time

X(t)

Y(t)

t=0

h-1

3

Recurrent structures can do what
static structures cannot

• The addition problem: Add two N-bit numbers to produce a N+1-
bit number
– Input is binary
– Will require large number of training instances

• Output must be specified for every pair of inputs
• Weights that generalize will make errors

– Network trained for N-bit numbers will not work for N+1 bit numbers

1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0

MLP

1 0 1 0 1 0 1 1 1 1 0

4

MLPs vs RNNs

• The addition problem: Add two N-bit numbers to
produce a N+1-bit number

• RNN solution: Very simple, can add two numbers
of any size

• Needs very little training data

1 0

1

RNN unitPrevious
carry

Carry
out

5

MLP: The parity problem

• Is the number of “ones” even or odd
• Network must be complex to capture all patterns

– XOR network, quite complex
– Fixed input size

• Needs a large amount of training data

1 0 0 0 1 1 0 0 1 0

MLP

1

6

RNN: The parity problem

• Trivial solution
– Requires little training data

• Generalizes to input of any size

1

0

1

RNN unit

Previous
output

7

Poll 1

8

Poll 1

9

Some prediction and classification problems that require very large MLPs and a large amount of
training data can be solved using small recurrent nets that only require small amounts of training data

 True
 False

Some problems that require large, complicated convolutional neural nets and large amounts of training
data could also be solved using much smaller RNNs that only require small amounts of training data

 True
 False

Story so far

• Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs
– Through gradient descent and backpropagation

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

10

Recap: Types of recursion

• Nothing special about a one step recursion

X(t)

Y(t)

h-1

X(t)

Y(t)

h-1

h-2

h-3

h-2

11

The behavior of recurrence..

• Returning to an old model..

• When will the output “blow up”?

X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)

12

“BIBO” Stability

• Time-delay structures have bounded output if
– The function has bounded output for bounded input

• Which is true of almost every activation function

– is bounded

• “Bounded Input Bounded Output” stability
– This is a highly desirable characteristic

X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)

13

Is this BIBO?

• Will this necessarily be BIBO?

Time

X(t)

Y(t)

t=0

h-1

14

Is this BIBO?

• Will this necessarily be BIBO?
– Guaranteed if output and hidden activations are bounded

• But will it saturate (and where)

– What if the activations are linear?

Time

X(t)

Y(t)

t=0

h-1

15

Analyzing recurrence

• Sufficient to analyze the behavior of the hidden
layer since it carries the relevant information
– Will assume only a single hidden layer for simplicity

Time

X(t)

Y(t)

t=0

h-1

16

Analyzing Recursion

17

Streetlight effect

• Easier to analyze linear systems
– Will attempt to extrapolate to non-linear systems

subsequently

• All activations are identity functions
–

Time

X(t)

Y(t)

t=0

h-1

18

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

19

Using index “k” for time

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

20

Using index “k” for time

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

21

Using index “k” for time

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

22

Response to an input x0 at time 0, when there are no other inputs
and zero initial condition

Using index “k” for time

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

23

Using index “k” for time

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

24

Using index “k” for time

Linear systems

• ௞ ௛ ௞ିଵ ௫ ௞

– ௞ିଵ ௛ ௞ିଶ ௫ ௞ିଵ

• ௞ ௛
ଶ

௞ିଶ ௛ ௫ ௞ିଵ ௫ ௞

• ௞ ௛
௞ାଵ

ିଵ ௛
௞

௫ ଴ ௛
௞ିଵ

௫ ଵ ௛
௞ିଶ

௫ ଶ

• ௞ ௞ ିଵ ௞ ଴ ௞ ଵ ௞ ଶ

– ିଵ ௞ ିଵ ଴ ௞ ଴ ଵ ௞ ଵ ଶ ௞ ଶ

• Where ௞ ௧ is the hidden response at time k when the input is
(where the 1 occurs in the t-th position) with 0 initial

condition
– The initial condition may be viewed as an input of ିଵ at

25

For vector systems:

Using index “k” for time

Streetlight effect

• Sufficient to analyze the response to a single input
at
– Principle of superposition in linear systems:

Time

X(t)

Y(t)

t=0

h-1

26

Linear recursions
• Consider simple, scalar, linear recursion (note

change of notation)
–

–
• Response to a single input at 0

27

Linear recursions: Vector version
• Vector linear recursion (note change of notation)

–

– ଴
௧

• Length of response vector to a single input at 0 is ଴

• We can write
– ௜ ௜ ௜

– For any vector ᇱ we can write
• ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଵ ଵ ଶ ଶ ଶ ௡ ௡ ௡

• ௧
ଵ ଵ

௧
ଵ ଶ ଶ

௧
ଶ ௡ ௡

௧
௡

–
௧→ஶ

௧
௠ ௠

௧
௠ where

௝
௝

28

Linear recursions: Vector version
• Vector linear recursion (note change of notation)

–

– ଴
௧

• Length of response vector to a single input at 0 is ଴

• We can write
– ௜ ௜ ௜

– For any vector ᇱ we can write
• ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଵ ଵ ଶ ଶ ଶ ௡ ௡ ௡

• ௧
ଵ ଵ

௧
ଵ ଶ ଶ

௧
ଶ ௡ ௡

௧
௡

–
௧→ஶ

௧
௠ ௠

௧
௠ where

௝
௝

29

For any input, for large the length of the hidden vector
will expand or contract according to the th power of the
largest eigen value of the recurrent weight matrix

Linear recursions: Vector version
• Vector linear recursion (note change of notation)

–

– ଴
௧

• Length of response vector to a single input at 0 is ଴

• We can write
– ௜ ௜ ௜

– For any vector ᇱ we can write
• ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଵ ଵ ଶ ଶ ଶ ௡ ௡ ௡

• ௧
ଵ ଵ

௧
ଵ ଶ ଶ

௧
ଶ ௡ ௡

௧
௡

–
௧→ஶ

௧
௠ ௠

௧
௠ where

௝
௝

30

For any input, for large the length of the hidden vector
will expand or contract according to the th power of the
largest eigen value of the recurrent weight matrix

Unless it has no component along the eigen vector corresponding to the
largest eigen value. In that case it will grow according to the second
largest Eigen value..

And so on..

Linear recursions: Vector version
• Vector linear recursion (note change of notation)

–

– ଴
௧

• Length of response vector to a single input at 0 is ଴

• We can write
– ௜ ௜ ௜

– For any vector ᇱ we can write
• ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଵ ଵ ଶ ଶ ଶ ௡ ௡ ௡

• ௧
ଵ ଵ

௧
ଵ ଶ ଶ

௧
ଶ ௡ ௡

௧
௡

–
௧→ஶ

௧
௠ ௠

௧
௠ where

௝
௝

31

For any input, for large the length of the hidden vector
will expand or contract according to the th power of the
largest eigen value of the recurrent weight matrix

Unless it has no component along the eigen vector corresponding to the
largest eigen value. In that case it will grow according to the second
largest Eigen value..

And so on..

If it will blow up, otherwise it will contract
and shrink to 0 rapidly

Linear recursions: Vector version
• Vector linear recursion (note change of notation)

–

– ଴
௧

• Length of response vector to a single input at 0 is ଴

• We can write
– ௜ ௜ ௜

– For any vector ᇱ we can write
• ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଵ ଵ ଶ ଶ ଶ ௡ ௡ ௡

• ௧
ଵ ଵ

௧
ଵ ଶ ଶ

௧
ଶ ௡ ௡

௧
௡

–
௧→ஶ

௧
௠ ௠

௧
௠ where

௝
௝

32

For any input, for large the length of the hidden vector
will expand or contract according to the th power of the
largest eigen value of the recurrent weight matrix

Unless it has no component along the eigen vector corresponding to the
largest eigen value. In that case it will grow according to the second
largest Eigen value..

And so on..

If it will blow up, otherwise it will contract
and shrink to 0 rapidly

What about at middling values of ? It will depend on the
other eigen values

Linear recursions: Vector version
• Vector linear recursion (note change of notation)

–

– ଴
௧

• Length of response vector to a single input at 0 is ଴

• We can write
– ௜ ௜ ௜

– For any vector ᇱ we can write
• ଵ ଵ ଶ ଶ ௡ ௡

• ଵ ଵ ଵ ଶ ଶ ଶ ௡ ௡ ௡

• ௧
ଵ ଵ

௧
ଵ ଶ ଶ

௧
ଶ ௡ ௡

௧
௡

–
௧→ஶ

௧
௠ ௠

௧
௠ where

௝
௝

33

For any input, for large the length of the hidden vector
will expand or contract according to the th power of the
largest eigen value of the recurrent weight matrix

If it will blow up, otherwise it will contract
and shrink to 0 rapidly

Linear recursions

• Vector linear recursion
–

–
• Response to a single input [1 1 1 1] at 0

௠௔௫

௠௔௫

௠௔௫

௠௔௫

௠௔௫

34

Linear recursions

• Vector linear recursion
–

–
• Response to a single input [1 1 1 1] at 0

௠௔௫

௠௔௫

௠௔௫

௠௔௫

௠௔௫

Complex Eigenvalues

ଶ௡ௗ

ଶ௡ௗ

35

Lesson…

• In linear systems, long-term behavior depends entirely
on the eigenvalues of the recurrent weights matrix
– If the largest Eigen value is greater than 1, the system will

“blow up”

– If it is lesser than 1, the response will “vanish” very quickly

– Complex Eigen values cause oscillatory response but with
the same overall trends

• Magnitudes greater than 1 will cause the system to blow up

• The rate of blow up or vanishing depends only on the
Eigen values and not on the input

36

With non-linear activations: Sigmoid

• Scalar recurrence with sigmoid activation
• Final value depends only on , not on or 37

Scalar recurrence

With non-linear activations: Tanh

• Final value depends only on and , but not on
• “Remembers” value much longer than sigmoid 38

Scalar recurrence

With non-linear activations: RELU

• Relu blows up if , for , and “dies” for
– Unstable or useless 39Scalar recurrence

Vector Process: Max eigenvalue 1.1

• Initial x(0): Top: , Bottom:

40

Vector Process: Max eigenvalue 0.9

• Initial x(0): Top: , Bottom:

41

Stability Analysis
• Formal stability analysis considers convergence of “Lyapunov”

functions
– Alternately, Routh’s criterion and/or pole-zero analysis
– Positive definite functions evaluated at
– Conclusions are similar: only the activation gives us any

reasonable behavior
• And still has very short “memory”

• Lessons:
– Bipolar activations (e.g. tanh) have the best memory behavior
– Still sensitive to Eigenvalues of and the bias
– Best case memory is short
– Exponential memory behavior

• “Forgets” in exponential manner

42

How about deeper recursion
• Consider simple, scalar, linear recursion

– Adding more “taps” adds more “modes” to
memory in somewhat non-obvious ways

43

Stability Analysis

• Similar analysis of vector functions with non-
linear activations is relatively straightforward
– Linear systems: Routh’s criterion

• And pole-zero analysis (involves tensors)
– On board?

– Non-linear systems: Lyapunov functions

• Conclusions do not change

44

Poll 2

45

Poll 2

46

Select all that are true about how long (how many time steps) an RNN can retain some memory of an
input pattern

 It depends on the weights of the recurrent layers
 It depends on the bias of the recurrent layers
 It depends on the activation function used in the recurrent layers
 It depends on the actual input being “remembered”

Select all that are true about what an RNN remembers about an input pattern

 It depends on the weights of the recurrent layers
 It depends on the bias of the recurrent layers
 It depends on the activation function used in the recurrent layers
 It depends on the actual input being “remembered”

Story so far
• Recurrent networks retain information from the infinite past in principle

• In practice, they tend to blow up or forget
– If the largest Eigen value of the recurrent weights matrix is greater than 1, the

network response may blow up
– If it’s less than one, the response dies down very quickly

• The “memory” of the network also depends on the parameters (and
activation) of the hidden units
– Sigmoid activations saturate and the network becomes unable to retain new

information
– RELU activations blow up or vanish rapidly
– Tanh activations are the slightly more effective at storing memory

• But still, for not very long

47

RNNs..

• Excellent models for time-series analysis tasks
– Time-series prediction
– Time-series classification
– Sequence generation..
– They can even simplify problems that are difficult

for MLPs

• But the memory isn’t all that great..
– Also..

48

The vanishing gradient problem for
deep networks

• A particular problem with training deep
networks..
– (Any deep network, not just recurrent nets)
– The gradient of the error with respect to weights

is unstable..

49

Some useful preliminary math: The
problem with training deep networks

• A multilayer perceptron is a nested function

ே ே ேିଵ ேିଵ ேିଶ ଵ

• ௞ is the weights matrix at the kth layer
• The error for can be written as

ே ே ேିଵ ேିଵ ேିଶ ଵ

W1 W2 W3

50

Training deep networks

• Vector derivative chain rule: for any :

• Where
– is the jacobian matrix of w.r.t

• Using the notation ௓ instead of ௙ for consistency

Poor notation

51

Training deep networks
• For

ே ே ேିଵ ேିଵ ேିଶ ଵ

• We get:

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• Where
– ௙ೖ

is the gradient of the error w.r.t the output of the kth layer
of the network

• Needed to compute the gradient of the error w.r.t 𝑊௞ିଵ

– ௡ is jacobian of ே w.r.t. to its current input
– All blue terms are matrices
– All function derivatives are w.r.t. the (entire, affine) argument of the

function

52

Training deep networks

• For

ே ேିଵ ேିଵ ேିଶ ேିଶ ଴

• We get:

ೖ

• Where
– ௙ೖ

is the gradient of the error w.r.t the output of the
kth layer of the network

• Needed to compute the gradient of the error w.r.t ௞

– ௡ is jacobian of ே w.r.t. to its current input
– All blue terms are matrices

53

Lets consider these Jacobians for an RNN
(or more generally for any network)

The Jacobian of the hidden layers
for an RNN

• ௧ is the derivative of the output of the (layer of) hidden recurrent neurons
with respect to their input

• For recurrent layers with scalar activations, this will be a diagonal matrix
– The diagonals are the derivatives of the activation funcition

• There is a limit on how much multiplying a vector by the Jacobian will scale it
– Bounded by the maximum value that the derivative will take

௜
ଵ

ଵ ௜
ଵ

ଵ
௧ ௜

௧,ଵ
ᇱ

ଵ

௧,ଶ
ᇱ

ଶ

௧,ே
ᇱ

ே

54

The derivative of the hidden state
activation

• Most common activation functions, such as sigmoid, tanh() and RELU
have derivatives that are always less than 1

• The most common activation for the hidden units in an RNN is the tanh()
– The derivative of is never greater than 1 (and mostly less than 1)

• Multiplication by the Jacobian is always a shrinking operation

௧ ௜

௧,ଵ
ᇱ

ଵ

௧,ଶ
ᇱ

ଶ

௧,ே
ᇱ

ே

55

Training deep networks

• As we go back in layers, the Jacobians of the
activations constantly shrink the derivative
– After a few layers the derivative of the divergence at

any time is totally “forgotten”

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

56

What about the weights

ೖ

• In a single-layer RNN, the weight matrices are identical
– The conclusion below holds for any deep network, though

• The chain product for
ೖ

will
– Expand along directions in which the singular values of

the weight matrices are greater than 1

– Shrink in directions where the singular values are less
than 1

– Repeated multiplication by the weights matrix will result in
Exploding or vanishing gradients

57

Exploding/Vanishing gradients

ೖ

• Every blue term is a matrix

• is proportional to the actual error
– Particularly for L2 and KL divergence

• The chain product for will
– Expand in directions where each stage has singular

values greater than 1

– Shrink in directions where each stage has singular
values less than 1

58

Gradient problems in deep networks

• The gradients in the lower/earlier layers can explode or
vanish
– Resulting in insignificant or unstable gradient descent updates
– Problem gets worse as network depth increases

59

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

Vanishing gradient examples..

• 19 layer MNIST model
– Different activations: Exponential linear units, RELU, sigmoid, tanh
– Each layer is 1024 units wide
– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻ௐ೙೐ೠೝ೚೙
𝐷𝑖𝑣 where 𝑊௡௘௨௥௢௡ is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

ELU activation, Batch gradients

Output layer

Input layer

60

D
ire

ct
io

n
of

ba

ck
pr

op
ag

at
io

n

Vanishing gradient examples..

• 19 layer MNIST model
– Different activations: Exponential linear units, RELU, sigmoid, tanh
– Each layer is 1024 units wide
– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻ௐ೙೐ೠೝ೚೙
𝐷𝑖𝑣 where 𝑊௡௘௨௥௢௡ is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

RELU activation, Batch gradients

61

Output layer

Input layer

D
ire

ct
io

n
of

ba

ck
pr

op
ag

at
io

n

Vanishing gradient examples..

• 19 layer MNIST model
– Different activations: Exponential linear units, RELU, sigmoid, tanh
– Each layer is 1024 units wide
– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻ௐ೙೐ೠೝ೚೙
𝐷𝑖𝑣 where 𝑊௡௘௨௥௢௡ is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Sigmoid activation, Batch gradients

62

Output layer

Input layer

D
ire

ct
io

n
of

ba

ck
pr

op
ag

at
io

n

Vanishing gradient examples..

• 19 layer MNIST model
– Different activations: Exponential linear units, RELU, sigmoid, tanh
– Each layer is 1024 units wide
– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻ௐ೙೐ೠೝ೚೙
𝐷𝑖𝑣 where 𝑊௡௘௨௥௢௡ is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Tanh activation, Batch gradients

63

Output layer

Input layer

D
ire

ct
io

n
of

ba

ck
pr

op
ag

at
io

n

Vanishing gradient examples..

• 19 layer MNIST model
– Different activations: Exponential linear units, RELU, sigmoid, tanh
– Each layer is 1024 units wide
– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻ௐ೙೐ೠೝ೚೙
𝐷𝑖𝑣 where 𝑊௡௘௨௥௢௡ is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

ELU activation, Individual instances

64

Vanishing gradients

• ELU activations maintain gradients longest
• But in all cases gradients effectively vanish

after about 10 layers!
– Your results may vary

• Both batch gradients and gradients for
individual instances disappear
– In reality a tiny number will actually blow up.

65

Story so far

• Recurrent networks retain information from the infinite past in
principle

• In practice, they are poor at memorization
– The hidden outputs can blow up, or shrink to zero depending on the

Eigen values of the recurrent weights matrix
– The memory is also a function of the activation of the hidden units

• Tanh activations are the most effective at retaining memory, but even they
don’t hold it very long

• Deep networks also suffer from a “vanishing or exploding gradient”
problem
– The gradient of the error at the output gets concentrated into a small

number of parameters in the earlier layers, and goes to zero for others
66

Recurrent nets are very deep nets

ೖ

• The relation between and is one of a very deep
network
– Gradients from errors at will vanish by the time they’re

propagated to

X(0)

hf(-1)

Y(T)

67

Recall: Vanishing stuff..

• Stuff gets forgotten in the forward pass too
– Each weights matrix and activation can shrink components of the input

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

68

Poll 3

69

Poll 3

70

Select all that are true

 The derivatives for most parameters will become vanishingly small as we backpropagate the
loss gradient through deep networks

 The derivatives for a small number of parameters will blow up and become large and unstable
as we propagate the los gradient through deep networks

 The derivatives would be more stable if the recurrent weight matrices had singular values
equal to 1

 The derivatives would be more stable if the recurrent activations were identity transforms
(with identity Jacobian matrices)

Select all that are true of recurrent networks

 The memory of the recurrent layer is limited because the recurrent weight matrices are not
unitary (with all eigen values equal to 1)

 The memory is also limited by nonlinear activation functions
 The memory would be more stable if the recurrent weight matrix were an identity matrix (i.e.

a diagonal matrix with diagonal values equal to “1”)
 The memory would be more stable if the recurrent activations were identity transforms

(which are linear and do not scale up or shrink the output)

The long-term dependency problem

• Any other pattern of any length can happen between pattern 1 and
pattern 2
– RNN will “forget” pattern 1 if intermediate stuff is too long
– “Jane”  the next pronoun referring to her will be “she”

• Must know to “remember” for extended periods of time and “recall”
when necessary
– Can be performed with a multi-tap recursion, but how many taps?
– Need an alternate way to “remember” stuff

PATTERN1 […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..

71

And now we enter the domain of..

72

Exploding/Vanishing gradients
ே ே ேିଵ ேିଶ ேିଵ ଵ

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• The memory retention of the network depends on the
behavior of the underlined terms
– Which in turn depends on the parameters rather than what

it is trying to “remember”

• Can we have a network that just “remembers” arbitrarily
long, to be recalled on demand?
– Not be directly dependent on vagaries of network parameters,

but rather on input-based determination of whether it must be
remembered

73

Exploding/Vanishing gradients
ே ே ேିଵ ேିଶ ேିଵ ଵ

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• Replace this with something that doesn’t fade or blow up?

• Network that “retains” useful memory arbitrarily long, to
be recalled on demand?
– Input-based determination of whether it must be remembered
– Retain memories until a switch based on the input flags them

as ok to forget
• Or remember less

– ଴ ଵ ଵ ଶ ଶ ௞ ௞

– ௙ೖ ே
ᇱ

ேିଵ
ᇱ

௞
ᇱ

74

Enter – the constant error carousel

• History is carried through uncompressed
– No weights, no nonlinearities
– Only scaling is through the s “gating” term that captures other

triggers
– E.g. “Have I seen Pattern2”?

Time
t+1 t+2 t+3 t+4

75

Enter – the constant error carousel

• Actual non-linear work is done by other portions of the
network
– Neurons that compute the workable state from the memory

Time

76

Enter – the constant error carousel

• The gate s depends on current input, current
hidden state…

Time

77

Enter – the constant error carousel

Other
stuff

Time

78

• The gate s depends on current input, current
hidden state… and other stuff…

Enter – the constant error carousel

Other
stuff

Time

79

• The gate s depends on current input, current hidden
state… and other stuff…

• Including, obviously, what is currently in raw memory

Enter the LSTM

• Long Short-Term Memory
• Explicitly latch information to prevent decay /

blowup

• Following notes borrow liberally from
• http://colah.github.io/posts/2015-08-

Understanding-LSTMs/

80

Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as
inputs

• Processed through a tanh() activation function
– As mentioned earlier, tanh() is the generally used activation for the hidden

layer

• Current recurrent output passed to next higher layer and next time instant

81

Long Short-Term Memory

• The are multiplicative gates that decide if
something is important or not

• Remember, every line actually represents a vector
82

LSTM: Constant Error Carousel

• Key component: a remembered cell state

83

LSTM: CEC

• is the linear history carried by the constant-error
carousel

• Carries information through, only affected by a gate
– And addition of history, which too is gated..

84

LSTM: Gates

• Gates are simple sigmoidal units with outputs in
the range (0,1)

• Controls how much of the information is to be let
through

85

LSTM: Forget gate

• The first gate determines whether to carry over the history or to
forget it
– More precisely, how much of the history to carry over
– Also called the “forget” gate
– Note, we’re actually distinguishing between the cell memory and

the state that is coming over time! They’re related though
86

LSTM: Input gate

• The second input has two parts
– A perceptron layer that determines if there’s something

new and interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell

87

LSTM: Memory cell update

• The second input has two parts
– A perceptron layer that determines if there’s something

interesting in the input
– A gate that decides if its worth remembering
– If so its added to the current memory cell

88

LSTM: Output and Output gate

• The output of the cell
– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory
forward

– Controlled by an output gate
• To decide if the memory contents are worth reporting at this time

89

LSTM: The “Peephole” Connection

• The raw memory is informative by itself and can
also be input
– Note, we’re using both and

90

The complete LSTM unit

• With input, output, and forget gates and the
peephole connection..

௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧
s() s() s()tanh

tanh

91

Poll 4

92

Poll 4

93

Select all that are true about LSTMs

 LSTMs “stabilize” the memory by eliminating the problematic recurrent weights and
activations

 They update the memory based on patterns detected in the input and the current context of
what they already remember

 In the absence of external cues, they can “remember” a pattern forever
 LSTM are suited to building pattern analyzers requiring long-term memory, e.g. code parsers

that can verify if an opened brace has been properly closed

LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables

94

LSTM computation: Forward

• Forward rules:
௧

௧ିଵ ௧

௧ିଵ ௧

௧ ௧ ௧

௧

s() s() s()tanh

tanh

Gates Variables

95

LSTM Equations

96

• ௧
௜

௧ିଵ
௜

• ௧
௙

௧ିଵ
௙

• ௧
௢

௧ିଵ
௢

• ௧
௚

௧ିଵ
௚

• ௧ ௧ିଵ

• ௧ ௧

• ௧

• input gate, how much of the new
information will be let through the memory
cell.

• : forget gate, responsible for information
should be thrown away from memory cell.

• output gate, how much of the information
will be passed to expose to the next time
step.

• self-recurrent which is equal to standard
RNN

• 𝒕: internal memory of the memory cell

• 𝒕: hidden state

• : final output

LSTM Memory Cell

Notes on the pseudocode

Class LSTM_cell

• We will assume an object-oriented program

• Each LSTM unit is assumed to be an “LSTM cell”

• There’s a new copy of the LSTM cell at each time, at
each layer

• LSTM cells retain local variables that are not relevant to
the computation outside the cell
– These are static and retain their value once computed,

unless overwritten

97

LSTM cell (single unit)
Definitions

Input:
C : previous value of CEC
h : previous hidden state value (“output” of cell)
x: Current input
[W,b]: The set of all model parameters for the cell
These include all weights and biases
Output
C : Next value of CEC
h : Next value of h
In the function: sigmoid(x) = 1/(1+exp(-x))
performed component-wise

Static local variables to the cell
static local zf, zi, zc, zo, f, i, o, Ci
function [C,h] = LSTM_cell.forward(C,h,x,[W,b])

code on next slide
98

LSTM cell forward
Continuing from previous slide
Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = WccC + Wchh + Wcxx + bc
Ci = tanh(zc) # Detecting input pattern

Co = f∘C + i∘Ci # “∘” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o∘tanh(Co) # “∘” is component-wise multiply

return Co,ho 99

Assuming a peephole connection
into the tanh, which is not standard

LSTM network forward
Assuming h(-1,*) is known and C(-1,*)=0

Assuming L hidden-state layers and an output layer

Note: LSTM_cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer

Wo and bo are output layer weights and biases

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

100

Training the LSTM

• Identical to training regular RNNs with one
difference
– Commonality: Define a sequence divergence and

backpropagate its derivative through time

• Difference: Instead of backpropagating
gradients through an RNN unit, we will
backpropagate through an LSTM cell

101

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

௧ାଵ
s() s() s()tanh

tanh

೟

௧ାଵ

102

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧
௧ାଵ

s() s() s()tanh

tanh

೟ ೟

௧ାଵ

௧ାଵ

௧ାଵ

103

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧
௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧
ᇱ

஼௢

௧ାଵ

௧ାଵ

௧ାଵ

104

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧
௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ

௧ାଵ

௧ାଵ

௧ାଵ

௧ାଵ

105

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧ ஼௙

௧ାଵ

௧ାଵ

106

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௧ାଵ

௧ାଵ

107

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧

௧ାଵ

௧ାଵ

108

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

109

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

110

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

஼೟శభ ௧ାଵ ௛௜

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

111

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

஼೟శభ ௧ାଵ
ᇱ

௛௜ ௛೟శభ ௛௢

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

112

Backpropagation rules: Backward

௧

௧ିଵ
௧

௧ିଵ
௧

௧ ௧
௧

௧
s() s() s()tanh

tanh

௧

௧

௧ାଵ

௧ାଵ

s() s() s()tanh

tanh

஼೟ ௛೟ ௧ ஼௢

஼೟శభ ௧ାଵ ௧
ᇱ

஼௙ ௧ାଵ
ᇱ

஼௜

௛೟ ௭೟ ௛೟ ௧ ஼೟శభ ௧
ᇱ

௛௙ ௧ାଵ
ᇱ

௛௜

஼೟శభ ௧ାଵ
ᇱ

௛௜ ௛೟శభ ௛௢

௧ାଵ

௧ାଵ

௧ାଵ ௧ାଵ

Not explicitly deriving the derivatives w.r.t weights;
Left as an exercise

113

Notes on the backward pseudocode

Class LSTM_cell

• We first provide backward computation within a cell
• For the backward code, we will assume the static variables

computed during the forward are still available
• The following slides first show the forward code for

reference
• Subsequently we will give you the backward, and explicitly

indicate which of the forward equations each backward
equation refers to
– The backward code for a cell is long (but simple) and extends

over multiple slides

114

LSTM cell forward (for reference)
Continuing from previous slide
Note: [W,h] is a set of parameters, whose individual elements are
shown in red within the code. These are passed in

Static local variables which aren’t required outside this cell
static local zf, zi, zc, zo, f, i, o, Ci
function [Co, ho] = LSTM_cell.forward(C,h,x, [W,b])

zf = WfcC + Wfhh + Wfxx + bf
f = sigmoid(zf) # forget gate

zi = WicC + Wihh + Wixx + bi
i = sigmoid(zi) # input gate

zc = WccC + Wchh + Wcxx + bc
Ci = tanh(zc) # Detecting input pattern

Co = f∘C + i∘Ci # “∘” is component-wise multiply

zo = WocCo + Wohh + Woxx + bo
o = sigmoid(zo) # output gate

ho = o∘tanh(Co) # “∘” is component-wise multiply

return Co,ho 115

Assuming a peephole connection
into the tanh, which is not standard

LSTM cell backward
Static local variables carried over from forward
static local zf, zi, zc, zo, f, i, o, Ci
function [dC,dh,dx,d[W, b]]=LSTM_cell.backward(dCo, dho, C, h, Co, ho, x, [W,b])

First invert ho = o∘tanh(C)
do = dho ∘ tanh(Co)T

d tanhCo = dho ∘ o
dCo += dtanhCo ∘ (1-tanh2(Co))T #(1-tanh2) is the derivative of tanh

Next invert o = sigmoid(zo)
dzo = do ∘ sigmoid(zo)T ∘(1-sigmoid(zo))T # do x derivative of sigmoid(zo)

Next invert zo = WocCo + Wohh + Woxx + bo
dCo += dzoWoc # Note – this is a regular matrix multiply
dh = dzo Woh
dx = dzo Wox

dWoc = Codzo # Note – this multiplies a column vector by a row vector
dWoh = h dzo
dWox = x dzo
dbo = dzo

Next invert Co = f∘C + i∘Ci
dC = dCo ∘ f
dCi = dCo ∘ i
di = dCo ∘ Ci
df = dCo ∘ C

116

LSTM cell backward (continued)
Next invert Ci = tanh(zc)
dzc = dCi∘(1-tanh2(zc))T

Next invert zc = WccC + Wchh + Wcxx + bc
dC += dzcWcc
dh += dzc Wch
dx += dzc Wcx

dWcc = C dzc
dWch = h dzc
dWcx = x dzc
dbc = dzc

Next invert i = sigmoid(zi)
dzi = di ∘ sigmoid(zi)T ∘(1-sigmoid(zi))T

Next invert zi = WicC + Wihh + Wixx + bi
dC += dzi Wic
dh += dzi Wih
dx += dzi Wix

dWic = C dzi
dWih = h dzi
dWix = x dzi
dbi = dzi

117

LSTM cell backward (continued)
Next invert f = sigmoid(zf)

dzf = df sigmoid(zf)T (1-sigmoid(zf))T

Finally invert zf = WfcC + Wfhh + Wfxx + bf
dC += dzf Wfc
dh += dzf Wfh
dx += dzf Wfx

dWfc = C dzf
dWfh = h dzf
dWfx = x dzf
dbf = dzf

return dC, dh, dx, d[W, b]

d[W,b] is shorthand for the complete set
of weight and bias derivatives

118

LSTM network forward (for reference)

Assuming h(-1,*) is known and C(-1,*)=0

Assuming L hidden-state layers and an output layer

Note: LSTM_cell is an indexed class with functions

[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer

Wo and bo are output layer weights and biases

for t = 0:T-1 # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L # hidden layers operate at time t

[C(t,l),h(t,l)] = LSTM_cell(t,l).forward(…
…C(t-1,l),h(t-1,l),h(t,l-1)[W{l},b{l}])

zo(t) = Woh(t,L) + bo
Y(t) = softmax(zo(t))

119

Assuming h(-1,*) is known and C(-1,*)=0
Assuming L hidden-state layers and an output layer
Note: LSTM_cell is an indexed class with functions
[W{l},b{l}] are the entire set of weights and biases
for the lth hidden layer
Wo and bo are output layer weights and biases
Y is the output of the network
Assuming dWo and dbo and d[W{l} b{l}] (for all l) are
all initialized to 0 at the start of the computation

for t = T-1:0 # Including both ends of the index

dzo = dY(t) ∘ Softmax_Jacobian(zo(t))

dWo += h(t,L) dzo(t)

dh(t,L) = dzo(t)Wo
dbo += dzo(t)

for l = L-1:0

[dC(t,l),dh(t,l),dx(t,l),d[W, b]] = …
… LSTM_cell(t,l).backward(…
… dC(t+1,l), dh(t+1,l)+dx(t,l+1), C(t-1,l), h(t-1,l), …
… C(t,l), h(t,l), h(t,l-1), [W(l),b(l)])

d[W{l} b{l}] += d[W,b]
120

LSTM network backward

Gated Recurrent Units: Lets simplify
the LSTM

• Simplified LSTM which addresses some of
your concerns of why

121

Gated Recurrent Units: Lets simplify
the LSTM

• Combine forget and input gates
– In new input is to be remembered, then this means

old memory is to be forgotten
• Why compute twice?

122

Gated Recurrent Units: Lets simplify
the LSTM

• Don’t bother to separately maintain compressed and
regular memories
– Pointless computation!
– Redundant representation

123

LSTM architectures example

• Each green box is now a (layer of) LSTM or GRU cell(s)
– Keep in mind each box is an array of units

– For LSTMs the horizontal arrows carry both and

Time
X(t)

Y(t)

124

Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units.
– Or layers of LSTM units

125

t

ℎ𝑓(−1)

ℎ(𝑇 − 1) ℎ(𝑇)

𝑋(0) 𝑋(1) 𝑋(𝑇 − 1) 𝑋(𝑇)

௕

ℎ𝑓(0) ℎ𝑓(1) ℎ𝑓(𝑇 − 1) ℎ𝑓(𝑇)

ℎ𝑏(0) ℎ𝑏(1) ℎ𝑏(𝑇 − 1) ℎ𝑏(𝑇)

Story so far
• Recurrent networks are poor at memorization

– Memory can explode or vanish depending on the weights and activation

• They also suffer from the vanishing gradient problem during training
– Error at any time cannot affect parameter updates in the too-distant past
– E.g. seeing a “close bracket” cannot affect its ability to predict an “open

bracket” if it happened too long ago in the input

• LSTMs are an alternative formalism where memory is made more directly
dependent on the input, rather than network parameters/structure
– Through a “Constant Error Carousel” memory structure with no weights or

activations, but instead direct switching and “increment/decrement” from
pattern recognizers

– Do not suffer from a vanishing gradient problem but do suffer from exploding
gradient issue

126

Significant issues

• The Divergence
• How to use these nets..
• This and more in next couple of classes..

127

