
Deep Learning
Sequence to Sequence models:

Connectionist Temporal
Classification

1

Sequence-to-sequence modelling
• Problem:

– A sequence ଵ ே goes in
– A different sequence ଵ ெ comes out

• E.g.
– Speech recognition: Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes
out

– Dialog : User statement goes in, system response comes out
– Question answering : Question comes in, answer goes out

• In general
– No synchrony between and .

2

Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Can you check if your computer is plugged in?”

3

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

Case 1: Order-aligned but not time
synchronous

• The input and output sequences happen in the same
order
– Although they may not be time synchronous, they can be

“aligned” against one another
– E.g. Speech recognition

• The input speech can be aligned to the phoneme sequence output

Time

X(t)

Y(t)

t=0

h-1

4

Problems

• How do we perform inference on such a
model
– How to output time-asynchronous sequences

• How do we train such models

5

Partially addressed

Problems

• How do we perform inference on such a
model
– How to output time-asynchronous sequences

• How do we train such models

6

• Given the order-aligned output sequence with
timing

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ ଺ ଽ

7

/IY/

Div

ସ

Recap: Training with alignment

• Given the order aligned output sequence with timing
– Convert it to a time-synchronous alignment by repeating symbols

• Compute the divergence from the time-aligned sequence

௧ ௧

௧

௧

௧

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ ଺ ଽ

DivDivDivDivDivDivDiv

8

/IY/

ସ

௧ ௧

௧

௧

௧

• The gradient w.r.t the -th output vector ௧

௒೟
௧

– Zeros except at the component corresponding to the target aligned to that
time

଴ ଵ ଶ

/B/

ସ ହ ଺ ଻ ଼ ଽଷ

Div Div Div

/F/ /IY/

ଶ ଺ ଽ

DivDivDivDivDivDivDiv

9

/IY/

ସ

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

Problem: Alignment not provided

• Only the sequence of output symbols is
provided for the training data
– But no timing information

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

10

/F/

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

Solution 1: Guess the alignment

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

11

/B/ /B/ /IY/ /F/ /F/ /IY/ /IY/ /IY/ /IY/ /IY/

Decode to obtain
alignments

Train model with
given alignments

Initialize
alignments

Iterative update: Problem

• Approach heavily dependent on initial
alignment

• Prone to poor local optima

• Alternate solution: Do not commit to an
alignment during any pass..

12

Recap: Training without alignment

• We know how to train if the alignment is
provided

• Problem: Alignment is not provided

• Solution:
1. Guess the alignment
2. Consider all possible alignments

13

14

Arrange the constructed table so that from top to bottom it has the exact
sequence of symbols required

Recap: The “aligned” table
/B/ ଴

஻
ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

/F/

• We commit to the single “best” estimated alignment
– The most likely alignment

௧
௕௘௦௧௣௔௧௛

௧

– This can be way off, particularly in early iterations, or if the model is poorly initialized

• Alternate view: there is a probability distribution over alignments of the target Symbol
sequence (to the input)
– Selecting a single alignment is the same as drawing a single sample from it
– Selecting the most likely alignment is the same as deterministically always drawing the most probable

value from the distribution

15

The reason for suboptimality

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• Instead of only selecting the most likely alignment, use the
statistical expectation over all possible alignments

– Use the entire distribution of alignments
– This will mitigate the issue of suboptimal selection of alignment

16

Averaging over all alignments

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧

௧

• Using the linearity of expectation

௧

௧

– This reduces to finding the expected divergence at each input

௧ ௧

ௌ∈ௌభ…ௌ಼௧ 17

The expectation over all alignments

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧

௧

• Using the linearity of expectation

௧

௧

– This reduces to finding the expected divergence at each input

௧ ௧

ௌ∈ௌభ…ௌ಼௧ 18

The expectation over all alignments

t 0 1 2 3 4 5 6 7 8

The probability of aligning the specific symbol s at time t,
given that unaligned sequence and given the
input sequence
We need to be able to compute this

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• is the total probability of all valid paths in
the graph for target sequence that go through the symbol

(the th symbol in the sequence) at time

• We will compute this using the “forward-backward”
algorithm

19

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• ௧ ௥ can be decomposed as

௧ ௥ ଴ ௥ ௄ିଵ ௧ ௥

଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ

• Using Bayes Rule

଴ ௥ ௧ ௥ ௧ାଵ ௥ ௥ ௄ିଵ ଴ ௥ ௧ ௥

• The probability of the subgraph in the blue outline, times the conditional
probability of the red-encircled subgraph, given the blue subgraph

20

A posteriori probabilities of symbols

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Conditional independence

• Dependency graph: Input sequence ଴ ଵ ேିଵ governs hidden
variables ଴ ଵ ேିଵ

• Hidden variables govern output predictions ଴, ଵ, ேିଵ individually
• ଴, ଵ, ேିଵ are conditionally independent given

• Since is deterministically derived from , ଴, ଵ, ேିଵ are also
conditionally independent given
– This wouldn’t be true if the relation between and were not deterministic or

if is unknown, or if the s at any time went back into the net as inputs
21

଴ ଵ ேିଵ ଴ ଵ ேିଵ

଴

ଵ

ேିଵ

• We will call the first term the forward probability
• We will call the second term the backward probability

22

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

𝛼 𝑡, 𝑟 = 𝑃 𝑆଴. . 𝑆௥, 𝑠௧ = 𝑆௥|𝐗

𝛼 3, 𝐼𝑌 = 𝛼 2, 𝐵 𝑦ଷ
ூ௒ + 𝛼 2, 𝐼𝑌 𝑦ଷ

ூ௒

𝛼 𝑡, 𝑟 = ෍ 𝛼(𝑡 − 1, 𝑞) 𝑌௧
ௌ(௥)

௤:ௌ೜∈௣௥௘ௗ(ௌೝ)

23

Computing : Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
஻

ଵ
஻

ଶ
஻

ଷ
ூ௒

଴
஻

ଵ
஻

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

• Where ௥ is any symbol that is permitted to come before an ௥ and may include ௥

• is its row index, and can take values and in this example

24

Forward algorithm

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Forward algorithm

• Initialization:

• for

௧
ௌ ଴

for

௧
ௌ ௟

25

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• The probability of the entire symbol sequence is the
alpha at the bottom right node

26

The final forward probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

SIMPLE FORWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#The forward recursion
First, at t = 1
alpha(1,1) = s(1,1)
alpha(1,2:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*s(t,1)
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
alpha(t,i) *= s(t,i)

27

Can actually be done without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the network output for the ith symbol at time t
#T = length of input

#The forward recursion
First, at t = 1
alpha(1,1) = y(1,S(1))
alpha(1,2:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,S(1))
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i)
alpha(t,i) *= y(t,S(i))

28

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

• We will call the first term the forward probability
• We will call the second term the backward probability

29

A posteriori symbol probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Lets look at this

• is the probability of the exposed subgraph,
not including the orange shaded box

30

Bacward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

ହ
ி

଺
ி

଻
ி

଺
ூ௒

଻
ூ௒

଼
ூ௒

ସ
ி

ହ
ி

଺
ி

଻
ி

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Backward probability

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

33

Backward algorithm

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

34

Backward algorithm

tt 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

೜

೜ ೝ

• The is the total probability of the subgraph shown

• The terms at any time are defined recursively in
terms of the terms at the next time

Backward algorithm

• Initialization:

• for

௧ାଵ
ௌ ௄

for

• ௧ାଵ
ௌ(௟)

௧ାଵ
ௌ(௥ାଵ)

35

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

SIMPLE BACKWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N

s(1:T,i) = y(1:T, S(i))

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,1:N-1) = 0
for t = T-1 downto 1

beta(t,N) = beta(t+1,N)*s(t+1,N)
for i = N-1 downto 1

beta(t,i) = beta(t+1,i)*s(t+1,i) + beta(t+1,i+1))*s(t+1,i+1)

36

Can actually be done without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

BACKWARD ALGORITHM
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,1:N-1) = 0
for t = T-1 downto 1

beta(t,N) = beta(t+1,N)*y(t+1,S(N))
for i = N-1 downto 1

beta(t,i) = beta(t+1,i)*y(t+1,S(i)) + beta(t+1,i+1))*y(t+1,S(i+1))

37

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

• We will call the first term the forward probability
• We will call the second term the backward probability

38

The joint probability

Backward algoForward algo

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• The posterior is given by

ೝ
ᇲ

The posterior probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

• Let the posterior be represented
by

The posterior probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

COMPUTING POSTERIORS
#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma(t) = 0
for i = 1:N

gamma(t,i) = alpha(t,i) * beta(t,i)
sumgamma(t) += gamma(t,i)

end
for i=1:N

gamma(t,i) = gamma(t,i) / sumgamma(t)

41Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output Yt of the net at any time:

௒೟
௧
ଵ

௧
ଶ

௧
௅

– Components will be non-zero only for symbols that occur in the training instance
42

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
43

The expected divergence

Must compute these terms
from here

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
44

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instance
45

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

௧ ௧

௦∈ௌబ…ௌ಼షభ௧

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t the output ௧ of the net at any time:

௒೟
௧
௦బ

௧
௦భ

௧
௦ಽషభ

– Components will be non-zero only for symbols that occur in the training instancee
46

The expected divergence

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

The approximation is exact if we think of this as a maximum-likelihood estimate

௧
ௌ(௥)

௥௧

• The derivative of the divergence w.r.t any particular output of the network must sum over
all instances of that symbol in the target sequence

– E.g. the derivative w.r.t 𝑦௧
ூ௒ will sum over both rows representing /IY/ in the above figure 47

Derivative of the expected divergence

The derivatives at both these locations must be summed to get ௗ஽ூ௏

ௗ௬ర
಺ೊ

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

COMPUTING DERIVATIVES

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output
#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 # Initialize all derivatives at time t to 0
for i = 1:N

dy(t,S(i)) -= gamma(t,i) / y(t,S(i))

48Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Overall training procedure for
Seq2Seq case 1

• Problem: Given input and output sequences
without alignment, train models

49

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/F/

Overall training procedure for
Seq2Seq case 1

• Step 1: Setup the network
– Typically many-layered LSTM

• Step 2: Initialize all parameters of the network

50

Overall Training: Forward pass

51

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time

/B/ ଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/ ଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

/F/

52

Overall training: Backward pass

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time

• Step 4: Construct the graph representing the specific
symbol sequence in the instance. This may require having
multiple rows of nodes with the same symbol scores

• Foreach training instance:
– Step 5: Perform the forward backward algorithm

to compute and at each time, for
each row of nodes in the graph. Compute .

– Step 6: Compute derivative of divergence
೟

for each
53

Overall training: Backward pass

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Overall training: Backward pass

• Foreach instance
– Step 6: Compute derivative of divergence

೟
for each

೟

• Step 7: Backpropagate
೟
೗ and aggregate derivatives

over minibatch and update parameters

54

Story so far: CTC models
• Sequence-to-sequence networks which irregularly output symbols can be

“decoded” by Viterbi decoding
– Which assumes that a symbol is output at each time and merges adjacent

symbols

• They require alignment of the output to the symbol sequence for training
– This alignment is generally not given

• Training can be performed by iteratively estimating the alignment by
Viterbi-decoding and time-synchronous training

• Alternately, it can be performed by optimizing the expected error over all
possible alignments
– Posterior probabilities for the expectation can be computed using the forward

backward algorithm

55

A key decoding problem

• Consider a problem where the output symbols
are characters

• We have a decode: R R R E E E E D

• Is this the compressed symbol sequence RED
or REED?

56

We’ve seen this before

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

57

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

• /G/ /F/ /F/ /IY/ /D/ or /G/ /F/ /IY/ /D/ ?

A key decoding problem
• We have a decode: R R R E E E E E D
• Is this the symbol sequence RED or REED?

• Solution: Introduce an explicit extra symbol which serves to separate
discrete versions of a symbol
– A “blank” (represented by “-”)
– RRR---EE---DDD = RED
– RR-E--EED = REED
– RR-R---EE---D-DD = RREDD
– R-R-R---E-EDD-DDDD-D = RRREEDDD

• The next symbol at the end of a sequence of blanks is always a new character
• When a symbol repeats, there must be at least one blank between the repetitions

• The symbol set recognized by the network must now include the extra
blank symbol
– Which too must be trained

58

The modified forward output

59

• Note the extra “blank” at the output

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

The modified forward output

60

• Note the extra “blank” at the output

/B/ /IY/ /F/ /IY/

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

The modified forward output

61

• Note the extra “blank” at the output

/B/ /IY/ /F/ /IY/

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

The modified forward output

62

• Note the extra “blank” at the output

/B/ /IY/ /F/ /F/ /IY/

63

Composing the graph for training

• The original method without blanks

• Changing the example to /B/ /IY/ /IY/ /F/ from /B/ /IY/ /F/ /IY/
for illustration

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/IY/

/F/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

/IY/

/B/

/IY/

64

Composing the graph for training

• With blanks
• Note: a row of blanks between any two symbols
• Also blanks at the very beginning and the very end

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

/F/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/

/B/

/F/

/IY/

65

Composing the graph for training

• Add edges such that all paths from initial node(s) to final
node(s) unambiguously represent the target symbol sequence

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

/IY/

/B/

/F/

/IY/

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

66

Composing the graph for training

• The first and last column are allowed to also end at initial and
final blanks

/IY/

/B/

/F/

/IY/

଺
ହ

67

Composing the graph for training

• The first and last column are allowed to also end at initial and
final blanks

• Skips are permitted across a blank, but only if the symbols on
either side are different
• Because a blank is mandatory between repetitions of a symbol but not

required between distinct symbols

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output

#Compose an extended symbol sequence Sext from S, that has the blanks
#in the appropriate place
#Also keep track of whether an extended symbol Sext(j) is allowed to connect
#directly to Sext(j-2) (instead of only to Sext(j-1)) or not

function [Sext,skipconnect] = extendedsequencewithblanks(S)
j = 1
for i = 1:N

Sext(j) = ‘b’ # blank
skipconnect(j) = 0
j = j+1

Sext(j) = S(i)
if (i > 1 && S(i) != S(i-1))

skipconnect(j) = 1
else

skipconnect(j) = 0
j = j+1

end
Sext(j) = ‘b’
skipconnect(j) = 0

return Sext, skipconnect

68Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

MODIFIED VITERBI ALIGNMENT WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # length of extended sequence

Viterbi starts here
BP(1,1) = -1
Bscr(1,1) = y(1,Sext(1)) # Blank
Bscr(1,2) = y(1,Sext(2))
Bscr(1,2:N) = -infty
for t = 2:T

BP(t,1) = BP(t-1,1);
Bscr(t,1) = Bscr(t-1,1)*y(t,Sext(1))
for i = 1:N

if skipconnect(i)
BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1), Bscr(t-1,i-2)

else
BP(t,i) = argmax_i(Bscr(t-1,i), Bscr(t-1,i-1))

Bscr(t,i) = Bscr(t-1,BP(t,i))*y(t,Sext(i))

Backtrace
AlignedSymbol(T) = Bscr(T,N) > Bscr(T,N-1) ? N, N-1;
for t = T downto 1

AlignedSymbol(t-1) = BP(t,AlignedSymbol(t))

69Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Without explicit construction of output table

Example of using blanks for alignment: Viterbi alignment with blanks

Modified Forward Algorithm

• Initialization:
–

70

/IY/

/B/

/F/

/IY/

଴
ହ

଴
ହ

଴
଺

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

Modified Forward Algorithm

• Iteration t = 1:N:

௧
ௌ(௥)

• If 𝑆 𝑟 = " − " or 𝑆 𝑟 = 𝑆 𝑟 − 2

௧
ௌ(௥)

• Otherwise 71

/IY/

/B/

/F/

/IY/

଴
ହ

଴
ହ

଴
଺

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

𝛼 𝑡, 𝑟 = ෍ 𝛼(𝑡 − 1, 𝑞) 𝑌௧
ௌ(௥)

௤:ௌ೜∈௣௥௘ௗ(ௌೝ)

FORWARD ALGORITHM (with blanks)

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The forward recursion
First, at t = 1
alpha(1,1) = y(1,Sext(1)) #This is the blank
alpha(1,2) = y(1,Sext(2))
alpha(1,3:N) = 0
for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,Sext(1))
for i = 2:N

alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,i))
if (skipconnect(i))

alpha(t,i) += alpha(t-1,i-2)
alpha(t,i) *= y(t,Sext(i))

72

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Modified Backward Algorithm

• Initialization:

73

/IY/

/B/

/F/

/IY/

଼
ଶ

଼
ହ

଼
ହ

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

Modified Backward Algorithm

• Iteration:

௧ାଵ
ௌ(௥)

௧ାଵ
ௌ(௥ାଵ)

• If 𝑆 𝑟 = " − " or 𝑆 𝑟 = 𝑆 𝑟 + 2

௧ାଵ
ௌ(௥)

௧ାଵ
ௌ(௥ାଵ)

௧ାଵ
ௌ(௥ାଶ)

• Otherwise
74

/IY/

/B/

/F/

/IY/

଼
ଶ

଼
ହ

଼
ହ

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

t

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

𝛽 𝑡, 𝑟 = ෍ 𝛽 𝑡 + 1, 𝑞 𝑦௧ାଵ

ௌ೜

௤:ௌ೜∈௦௨௖௖(ௌೝ)

BACKWARD ALGORITHM WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#The backward recursion
First, at t = T
beta(T,N) = 1
beta(T,N-1) = 1
beta(T,1:N-2) = 0
for t = T-1 downto 1

beta(t,N) = beta(t+1,N)*y(t+1,Sext(N))
for i = N-1 downto 1

beta(t,i) = beta(t+1,i)*y(t+1,Sext(i)) + beta(t+1,i+1))*y(t+1,Sext(i+1))
if (i<N-2 && skipconnect(i+2))

beta(t,i) += beta(t+1,i+2)*y(t+1,Sext(i+2))

75

Without explicitly composing the output table

Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

The rest of the computation

• Posteriors and derivatives are computed
exactly as before

• But using the extended graphs with blanks

76

COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma(t) = 0
for i = 1:N

gamma(t,i) = alpha(t,i) * beta(t,i)
sumgamma(t) += gamma(t,i)

end
for i=1:N

gamma(t,i) = gamma(t,i) / sumgamma(t)

77Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 #Initialize all derivatives at time t to 0
for i = 1:N

dy(t,Sext(i)) -= gamma(t,i) / y(t,Sext(i))

78Using 1..N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Overall training procedure for
Seq2Seq with blanks

• Problem: Given input and output sequences
without alignment, train models

79

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/B/ /IY/ /IY/

? ? ? ? ? ? ? ? ? ?
଴ ଵ ଶ ସ ହ ଺ ଻ ଼ ଽଷ

/F/

Overall training procedure

• Step 1: Setup the network
– Typically many-layered LSTM

• Step 2: Initialize all parameters of the network
– Include a “blank” symbol in vocabulary

80

Overall Training: Forward pass

81

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time, including blanks

଴
௕

ଵ
௕

ଶ
௕

ଷ
௕

ସ
௕

ହ
௕

଺
௕

଻
௕

଼
௕–

82

Overall training: Backward pass

• Foreach training instance
• Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each
time

• Step 4: Construct the graph representing the specific
symbol sequence in the instance. Use appropriate
connections if blanks are included

• Foreach training instance:
– Step 5: Perform the forward backward algorithm to compute

and at each time, for each row of nodes in the
graph using the modified forward-backward equations. Compute a
posteriori probabilities from them

– Step 6: Compute derivative of divergence ௒೟
for each ௧

83

Overall training: Backward pass

Overall training: Backward pass

• Foreach instance
– Step 6: Compute derivative of divergence

೟
for each

೟

• Step 7: Backpropagate
೟
೗ and aggregate derivatives

over minibatch and update parameters

84

CTC: Connectionist Temporal
Classification

• The overall framework we saw is referred to as
CTC

• Applies to models that output order-aligned,
but time-asynchronous outputs

85

Returning to an old problem:
Decoding

• The greedy decode computes its output by finding the most likely symbol at each time and merging
repetitions in the sequence

• This is in fact a suboptimal decode that actually finds the most likely time-synchronous output
sequence
– Which is not necessarily the most likely order-synchronous sequence 86

଴ ଵ ଶ ସ ହ ଺ ଻ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

଴
஺ு

଴
஻

଴
஽

଴
ாு

଴
ூ௒

଴
ி

଴
ீ

ଵ
஺ு

ଵ
஻

ଵ
஽

ଵ
ாு

ଵ
ூ௒

ଵ
ி

ଵ
ீ

ଶ
஺ு

ଶ
஻

ଶ
஽

ଶ
ாு

ଶ
ூ௒

ଶ
ி

ଶ
ீ

ଷ
஺ு

ଷ
஻

ଷ
஽

ଷ
ாு

ଷ
ூ௒

ଷ
ி

ଷ
ீ

ସ
஺ு

ସ
஻

ସ
஽

ସ
ாு

ସ
ூ௒

ସ
ி

ସ
ீ

ହ
஺ு

ହ
஻

ହ
஽

ହ
ாு

ହ
ூ௒

ହ
ி

ହ
ீ

଺
஺ு

଺
஻

଺
஽

଺
ாு

଺
ூ௒

଺
ி

଺
ீ

଻
஺ு

଻
஻

଻
஽

଻
ாு

଻
ூ௒

଻
ி

଻
ீ

଼
஺ு

଼
஻

଼
஽

଼
ாு

଼
ூ௒

଼
ி

଼
ீ

Greedy decodes are suboptimal
• Consider the following candidate decodes

– R R – E E D (RED, 0.7)
– R R – – E D (RED, 0.68)
– R R E E E D (RED, 0.69)
– T T E E E D (TED, 0.71)
– T T – E E D (TED, 0.3)
– T T – – E D (TED, 0.29)

• A greedy decode picks the most likely output: TED
• A decode that considers the sum of all alignments of the

same final output will select RED
• Which is more reasonable?
• And yet, remarkably, greedy decoding can be surprisingly

effective, when using decoding with blanks
87

What a CTC system outputs

• Ref: Graves
• Symbol outputs peak at the ends of the sounds

– Typical output: - - R - - - E - - -D
– Model output naturally eliminates alignment ambiguities

• But this is still suboptimal.. 88

Actual objective of decoding

• Want to find most likely order-aligned symbol sequence
– R E D

– What greedy decode finds: most likely time synchronous
symbol sequence
• – /R/ /R/ – – /EH//EH//D/

• Which must be compressed

• Find the order-aligned symbol sequence ,
given an input , that is most likely

89

• The probability of the entire symbol sequence is the
alpha at the bottom right node

90

Recall: The forward probability

t 0 1 2 3 4 5 6 7 8

/IY/

/B/

/F/

/IY/

଴
஻

ଵ
஻

ଶ
஻

ଷ
஻

ସ
஻

ହ
஻

଺
஻

଻
஻

଼
஻

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

଴
ி

ଵ
ி

ଶ
ி

ଷ
ி

ସ
ி

ହ
ி

଺
ி

଻
ி

଼
ி

଴
ூ௒

ଵ
ூ௒

ଶ
ூ௒

ଷ
ூ௒

ସ
ூ௒

ହ
ூ௒

଺
ூ௒

଻
ூ௒

଼
ூ௒

Actual decoding objective

• Find the most likely (asynchronous) symbol sequence

• Unfortunately, explicit computation of this will require
evaluate of an exponential number of symbol
sequences

• Solution: Organize all possible symbol sequences as a
(semi)tree

91

Hypothesis semi-tree

• The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)
• Every symbol connects to every symbol other than itself

– It also connects to a blank, which connects to every symbol including itself
• The simple structure repeats recursively
• Each node represents a unique (partial) symbol sequence! 92

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

Highlighted boxes represent
possible symbols for first frame

The decoding graph for the tree

• The figure to the left is the tree, drawn in a vertical line
• The graph is just the tree unrolled over time

– For a vocabulary of V symbols, every node connects out to V other
nodes at the next time

• Every node in the graph represents a unique symbol sequence

93

The decoding graph for the tree

• The forward score at the final time represents the full forward
score for a unique symbol sequence (including sequences terminating in
blanks)

• Select the symbol sequence with the largest alpha
– Sequences may have two alphas, one for the sequence itself, one for the

sequence followed by a blank
– Add the alphas before selecting the most likely sequence 94

𝛼(𝑆ଶ𝑆ଶ)

𝛼(𝑆ଶ𝑆ଵ)

𝛼(𝑆ଶ−)

𝛼(𝑆ଵ𝑆ଶ)

𝛼(𝑆ଵ𝑆ଵ)

𝛼(𝑆ଵ−)

𝛼(𝑆ଶ)

𝛼(𝑆ଵ)

𝛼(−)

CTC decoding

• This is the “theoretically correct” CTC decoder
• In practice, the graph gets exponentially large very quickly
• To prevent this pruning strategies are employed to keep the graph (and

computation) manageable
– This may cause suboptimal decodes, however
– The fact that CTC scores peak at symbol terminations minimizes the damage

due to pruning 95

Beamsearch Pseudocode Notes

• Retaining separate lists of paths and pathscores for paths
terminating in blanks, and those terminating in valid symbols
– Since blanks are special
– Do not explicitly represent blanks in the partial decode strings

• Pseudocode takes liberties (particularly w.r.t null strings)
– I.e. you must be careful if you convert this to code

• Key
– PathScore : array of scores for paths ending with symbols
– BlankPathScore : array of scores for paths ending with blanks
– SymbolSet : A list of symbols not including the blank

96

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

97

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

98

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

99

x
x

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

100

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1
NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =

InitializePaths(SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T

Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune(NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank(PathsWithTerminalBlank,

PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol(PathsWithTerminalBlank,

PathsWithTerminalSymbol, SymbolSet, y[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeIdenticalPaths(NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax(FinalPathScore) # Find the path with the best score

101

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths(SymbolSet, y)

InitialBlankPathScore = [], InitialPathScore = []
First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank] # Score of blank at t=1
InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for c in SymbolSet # This is the entire symbol set, without the blank

path = c
InitialPathScore[path] = y[c] # Score of symbol c at t=1
InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

102

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank(PathsWithTerminalBlank, PathsWithTerminalSymbol, y)
UpdatedPathsWithTerminalBlank = {}
UpdatedBlankPathScore = []
First work on paths with terminal blanks
#(This represents transitions along horizontal trellis edges for blanks)
for path in PathsWithTerminalBlank:

Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:

If there is already an equivalent string in UpdatesPathsWithTerminalBlank
simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank

UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
else

UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]

end
end

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore

103

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol(PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, y)
UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:

for c in SymbolSet: # SymbolSet does not include blanks
newpath = path + c # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

end
end

Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:

Extend the path with every symbol other than blank
for c in SymbolSet: # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + c # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c]
else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = PathScore[path] * y[c]

end
end

end

return UpdatedPathsWithTerminalSymbol,
UpdatedPathScore

104

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune(PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []
PrunedPathScore = []
First gather all the relevant scores
i = 1
for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]
i++

end
for p in PathsWithTerminalSymbol

scorelist[i] = PathScore[p]
i++

end

Sort and find cutoff score that retains exactly BeamWidth paths
sort(scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank

if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += p # Set addition
PrunedBlankPathScore[p] = BlankPathScore[p]

end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol

if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += p # Set addition
PrunedPathScore[p] = PathScore[p]

end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

105

BEAM SEARCH: Merging final paths

Note : not using global variable here

function MergeIdenticalPaths(PathsWithTerminalBlank, BlankPathScore,
PathsWithTerminalSymbol, PathScore)

All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from
PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank

if p in MergedPaths
FinalPathScore[p] += BlankPathScore[p]

else
MergedPaths += p # Set addition
FinalPathScore[p] = BlankPathScore[p]

end
end

return MergedPaths, FinalPathScore

106

Story so far: CTC models
• Sequence-to-sequence networks which irregularly produce output

symbols can be trained by
– Iteratively aligning the target output to the input and time-synchronous

training
– Optimizing the expected error over all possible alignments: CTC training

• Distinct repetition of symbols can be disambiguated from repetitions
representing the extended output of a single symbol by the introduction
of blanks

• Decoding the models can be performed by
– Best-path decoding, i.e. Viterbi decoding
– Optimal CTC decoding based on the application of the forward algorithm to a

tree-structured representation of all possible output strings

107

Most common CTC applications

• Speech recognition
– Speech in, phoneme sequence out
– Speech in, character sequence (spelling out)

• Handwriting recognition

108

Speech recognition using Recurrent
Nets

• Recurrent neural networks (with LSTMs) can be
used to perform speech recognition
– Input: Sequences of audio feature vectors
– Output: Phonetic label of each vector

Time

ଵ

X(t)

t=0

ଶ ଷ ସ ହ ଺ ଻

109

Speech recognition using Recurrent
Nets

• Alternative: Directly output phoneme,
character or word sequence

Time

ଵ

X(t)

t=0

ଶ

110

Next up: Attention models

111

