Deep Learning
Sequence to Sequence models:
Connectionist Temporal
Classification

Sequence-to-sequence modelling

* Problem:
— Asequence X7 ... Xy goes in
— A different sequenceY; ... Yy, comes out
* E.g.
— Speech recognition: Speech goes in, a word sequence comes out
* Alternately output may be phoneme or character sequence

— Machine translation: Word sequence goes in, word sequence comes
out

— Dialog : User statement goes in, system response comes out
— Question answering : Question comes in, answer goes out

* Ingeneral N # M
— No synchrony between X and Y.

Sequence to sequence

I ate an apple l Ich habe einen apfel gegessen

e Sequence goes in, sequence comes out

 No notion of “time synchrony” between input and output

— May even not even maintain order of symbols
 E.g. “l ate an apple” = “Ich habe einen apfel gegessen”

— Or even seem related to the input
* E.g. “My screen is blank” = “Can you check if your computer is plugged in?”

Case 1: Order-aligned but not time
synchronous

- . .

B > > > . o —
A A A A A A A

Time

 The input and output sequences happen in the same
order

— Although they may not be time synchronous, they can be
“aligned” against one another

— E.g. Speech recognition

* The input speech can be aligned to the phoneme sequence output

4

Problems

* How do we perform inference on such a
model Partially addressed

— How to output time-asynchronous sequences

* How do we train such models

Problems

* How do we perform inference on such a
model

— How to output time-asynchronous sequences

* How do we train such models

Recap: Training with alighment

m m o@m m
Y, Y, Y, Yo
t | t 1
-] — —» - - —» | -
t 1 R S R W S |
Xo| | X1 [X | | X3l | Xa] [Xs] [Xs| [X, | Xs| | Xo
* Given the order-aligned output sequence with

timing

03 £ [BN K A EA T

6 Y, Ye Yq

a a T a A 7 N T a A T
] - —> —» - - —» — - -

t ¢+ ¢+ [t+ ¢+ t ¢t t 1

Xo| | X1| [X2| | X3| | Xa| [Xs| [Xe| |[X7| |[Xs| [Xo

* Given the order aligned output sequence with timing
— Convert it to a time-synchronous alignment by repeating symbols

 Compute the divergence from the time-aligned sequence

DIV = Z KL(Y;, symbol;) = — z log Y (t, symbol;)
t t

K/B/ /1Y/ /[F/ {/IY/

YZ Y4_ Y6 Y9

-+ + r + t+ ¢+ 1 1 1
- - —P — = = — | -

t ¢+ ¢+ 7 ¢t ¢+ ¢+ ¢t t 1

X | | x| [%] | X | x| | x| (x| [%] | x| | X6

DIV = z KL(Y;, symbol;) = — z log Y (t, symbol;)
t t

* The gradient w.r.t the t-th output vector Y;

-1
Vy. DIV =10 0 ..
Yt [Y (t,symbol,) 0 0‘

— Zeros except at the component corresponding to the target aligned to that
time

Problem: Alignment not provided
/B /Y[[F] /Y]
? 2?2 2 2?2 2 ? 2?2

Yo oy 31 [Ya Y5 | |Ye Y; Yg | |¥o
A A A A A A A A A A

Xo | 1% 1% | [x| (x| x| 1% | [X, | [Xs| | Xo

* Only the sequence of output symbols is
provided for the training data

— But no timing information

Solution 1: Guess the alignment

/B/ /B [/ [§[[F YN[NY
2 2 2 2 2 2 P 4 P 7

Yo oy 31 [Ya Y5 | |Ye Y; Yg | | Yo

Train model with Decode to obtain

given alignments alignments

Initialize
alignments

11

Iterative update: Problem

* Approach heavily dependent on initial
alignment

* Prone to poor local optima

e Alternate solution: Do not commit to an
alignment during any pass..

Recap: Training without alighment

 We know how to train if the alignment is
provided

* Problem: Alignment is not provided

e Solution:

1. Guess the alignment
< 2. Consider all possible alignments >

13

/B/
/IY/
/F/
/IY/

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

Recap: The “alighed” table

B B B B B B B B B
Yo Vi) Y3 2 Vs Yo Y7 s
1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y
Yo Y1 %) Y3 Ya Vs Yo Y7 Vs
F F F F F F F F F
Yo Vi Y2 Y3 Y4 Vs Y6 Y7 B4
1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y 1Y
Yo Y1 Y2 Y3 Ya Vs Yo Y7 Vs
Ve vt i vl vt yéH el ysH yelH
v& v v yg Vi yZ vE vP v
v vy v Vo i vy ve yP v
y&EH yi yEH yEH yiH yeH yEH yFH yEH
v&¥ vi¥ yi¥ yi¥ yvi¥ yi¥ v&¥ ya¥ yi¥
v& vi Vs vy Vi ye e vy Va5
v§ v s v§ Ve vE ve 0% 4 Vs

Arrange the constructed table so that from top to bottom it has the exact
sequence of symbols required

]

| I

[

—

| B— |

| E—

=

—

—

The reason for suboptimality

Ve Y7 yg

T B) y§

2% 8% Iy
Ve Y7 B4

!
Y
T
S

;

oo

(wy]

7R yi© V3
> N

/F) | vE yi
N/ | vl yi" ys' V3" S»

Ye Y7 | Y
z

Iy
Ya

* We commit to the single “best” estimated alignment
— The most likely alignment

DIV = — z log Y(t, symbolfeStpath)
t

— This can be way off, particularly in early iterations, or if the model is poorly initialized

e Alternate view: there is a probability distribution over alignments of the target Symbol
sequence (to the input)
— Selecting a single alignment is the same as drawing a single sample from it
— Selecting the most likely alignment is the same as deterministically always drawing the most probable
value from the distribution

15

/B/
/IY/
/F/
/IY/

Averaging over all alignments

Yo k v N Vs \ vs X Ve K’ ve | Ve vy Ve
Yo A I v Syl Syl Oy v7 Vg
v 7 Vs §y§ > Vs 3 Ve Ve §y5 L vé
Yo' yi’ ys' v’ S» v’ 3\ v’ V' y7° B« Vg
;0 1 2 3 4 5 6 7 8 .

* |nstead of only selecting the most likely alignment, use the
statistical expectation over all possible alignments

DIV = E

— z logY(t,s;)
_ t i

— Use the entire distribution of alignments

— This will mitigate the issue of suboptimal selection of alignment

16

The expectation over all alighments

/B/
/IY/
/F/
/IY/

t

Yo k R v \ ys X Ve K’ ve (| Ve v7 Ve
Yo v vy v Syl Syl Ve v7 Vg
Y6 yi el §y§ S‘ Va 3 Ve Ve §y5 L] v
Yo v v s’ S» Vs 3\ vg' Ve y7 B« Vg
0 1 2 3 4 5 6 7 8 |
DIV = E —ElogY(t, St)]
t

Using the linearity of expectation

DIV = —2 E[logY(¢,s;)]

— This reduces to finding the expected divergence at each input

DIV = _Z Z P(s; = S|S,X)logY(t,s; =S)

t

SES; .

Sk

17

The expectation over all alighments

/B/ | ¥ k R vz \ ys X Vi K’ ve | ve y7 Vs
N7 iy v Sl Syl v y7 Vg
/Fl | ¥ yi %4 §y§ > Vi 3 Vs Ve §y5 L v
/A v vy s’ S» Vs 3\ g Ye y7 S« Vs
;0 1 2 3 4 5 6 7 8 .
The probability of aligning the specific symbol s at time t,

given that unaligned sequence S = S, ... Sx_; and given the
input sequence X = X; ... Xy_1
We need to be able to compute this

DIV = — z EllogY(t,s;
t

— This reduces to finding the expected divergen

DIV = _Z Z P(s; = S|S,X)logY(t,s; =S)

t

SES;.

.Sk

each input

18

A posteriori probabilities of symbols

/B/ | & R V2 ye | ve [lye | |7 v
/1Y/ | Yo | Y\ > H 2 i o S N | [
TR AR ARE A 3 Vs Y6 §y5 (| vs 7
7 A S .§1 vs FWYe Wy 31 Ya'
0 1 2 3 4 5 6 7 8 _ |

P(s, = S,|S,X) « P(s; = S,, S|X)

 P(s; = S§,,8|X) is the total probability of all valid paths in
the graph for target sequence S that go through the symbol
S, (the " symbol in the sequence S, ...Sx_4) at time t

* We will compute this using the “forward-backward”

algorithm

19

A posteriori probabilities of symbols

/8/

B

B

L \ 3’5 3’8B
/Y \ s Ve 2 Ve
JF/ s Ve yr | 4
/1Y/ |l | vg' Ve vy N Vg

;0 1 2 3 4 5 ; 5—

* P(s; =S,,S|X) can be decomposed as
P(s; = S,,81X) = P(Sy, ..., Sy, e, Sg—1, St = S5,1X)
= P(S;...S,, s; = Sr,‘stﬂ € succ(S,), succ(S,), ...,SK_1,|X)
* Using Bayes Rule |
=P(Sy...S., st =S, |X)P(st41 € succ(S,y),succ(S;), ...,Sk—1 |1Sg --- Sy, ¢ = 5, X)

* The probability of the subgraph in the blue outline, times the conditional
probability of the red-encircled subgraph, given the blue subgraph

20

Conditional independence

Yo

V1
X — XO Xl "'XN—l

v

H — HO Hl "'HN—l

N-1

Dependency graph: Input sequence X = Xy X; ... Xy—1 governs hidden
variablesH = Hy H{ ... Hy_4

Hidden variables govern output predictions yg, V4, ... Vy—1 individually
Yo, Y1, --- Yn—1 are conditionally independent given H

Since H is deterministically derived from X, y,, V4, ... Yy—1 are also
conditionally independent given X

— This wouldn’t be true if the relation between X and H were not deterministic or

if X is unknown, or if the ys at any time went back into the net as inputs -

A posteriori symbol probability

8/ NG k 2 1l vE | R ys | v y7 Vs
| YN 7Y v o Y7 Vg
AR AR AN vh
7 A VA B2 Vi b
;0 1 2 3 4 5 6 7 X

P(St — Sr'slx)
= P(Sy ...S;, 5S¢ = Sy |X)P(S¢41 € succ(Sy), succ(S;), ..., Sk—1 |X)

* We will call the first term the forward probability a(t,r)
* We will call the second term the backward probability 5 (¢, 1)

22

Computing a(t,r): Forward algorithm

v§ ™ yi Vo i Vi

a(t,r) = P(Sy..Sy, 5 = S,1X)

a(3,1Y) = a(2,B)ylY + a(2,1Y)ylY

a(t,r) = z a(t—1,q) Yts(r)

q:SqEpred(Sy)

* Where pred(S,) is any symbol that is permitted to come before an S,- and may include S,

.. . . . 23
* g isits row index, and can take values r and v — 1 in this example

/B/
/IY/
/F/
/IY/

Forward algorithm

"| v v7 vE

Vo' yi¥ yi¥

Ve vi | | ¥8

V' y7° yi¥

: 6 7 8

a(t —1,7) a(t,r)

a(t,r) = (a(t —1L,7) +alt—1,r—1))y,"

24

/B/
/IY/

/F/
/IY/

Forward algorithm

o

v

Yo k V1 \ y: | Ve K’ ys K| ve Y7 Vs
Yo A I R /A t ve Ve v7 Vg
¥$ vy va ys Vi ¥ yi Ve vi || vh
vo' yi© | yat V3" Vi 3\ ye' Ve yy¥ vg'
0 1 2 3 4 5 6 7 8
Initialization:
S(0
a(0,0) = 3’0(), a(0,r) =0, r>0
fort = 1..T—1

a(t,0) = a(t —1,0)y,®

forl =1..K—-1
a(t,l) = (a(t—1,0)+at—1,1-1)y Y

25

The final forward probability a (¢,)

/B/
/IY/
/F/
/IY/

t

Yo ‘K 2 K vs S Ve K’ ve K| Ve vy Ve
v | Mol D v Y S Syl P N [V] Y
v 7 Vs §y§ 3 Vs 3 Ve Ve §y5 Ll vé
ol yi¥ v | Nyl 3 yi¥ S\ v Pyl ™
0 1 2 3 4 5 6 7 8 |

af(T — 1,K — 1) — P(So..SK_]_lX)

* The probability of the entire symbol sequence is the
alpha at the bottom right node

26

SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output

#S (i) is the ith symbol in target output

#y(t,1i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For 1 = 1:N
s(l:T,1i) = y(1:T, S(1i))

#The forward recursion
First, at t =1
alpha(l,1) = s(1,1)
alpha(l,2:N) 0
for t = 2:T
alpha(t,1) = alpha(t-1,1)*s(t,1)
for 1 = 2:N
alpha(t,i) = alpha(t-1,i-1) + alpha(t-1,1)
alpha(t,i) *= s(t,1i)

IO

Can actually be done without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output

#S(i) is the ith symbol in target output

#y(t,i) is the network output for the ith symbol at time t
#T = length of input

#The forward recursion
First, at t =1
alpha(l,1) = y(
alpha(l,2:N) =
for t = 2:T
alpha(t,1) = alpha(t-1,1)*y(t,S (1))
for 1 = 2:N
alpha(t,i1) = alpha(t-1,i-1) + alpha(t-1,1)
alpha(t,1) *= y(t,S(1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

A posteriori symbol probability

/B N\ t R ve ys K| vs vs KL Ve y7 Vs

RELA\REAER B 3’ 5 Vg

F \ A E F F

JF/ Yo Y1 T 72 Vs

| v y1* o y3' S V" .
;0 1 2 3 4 5 6 7 -

Pes. = 5,50 = o) RS

* We will call the first term the forward probability a(t,)

—r—
Lets look at this 29

Bacward probability

/B/

/1Y/ i P\

[F/ Vi \3 Vs Ve §y5 |

/IY/ Ny Pyl Pyl 31 &
;0 1 2 3 4 5 6 7 8 |

B(t,r) = P(S;4q € succ(S,),succ(S;,), ..., Sk—1 |X)

* B(t,r) is the probability of the exposed subgraph,
not including the orange shaded box

30

/B/
/IY/
/F/
/IY/

£(3,1) —

Backward probability

Vi' i N\
Vi 12 Vs R Vs %ﬁ <

Ny PYyd Py 31 Vs
4 5 6 7 8

inP (Ckyy
|
i P (&

o 1Y

> Vo
Ve § vy
Vo' yy¥

L Vg

Ve

> V7

N

0%
Ve

Y
Y7

S Ve

/B/
/IY/
/F/
/IY/

Backward probability

1Y

1Y

y4IY J_’ Vs > Ve \ 77
Vi 12 Vs R Vs §y5 <
Noi” Py v
4 5 6 7 8

Backward algorithm

/B/

1Y/ o\

/F/ s e §y5 |
1Y/ ‘) e v S‘

6 7

e

Bt) =y DBt +1,7) + y 0 VR + 1,7 + 1)

/B/
/IY/
/F/
/IY/

Backward algorithm

N\
Ve yr
Ve y7 Vs
1 2 6 7 8
S
pen =) p+Layd,

q:Sqesucc(Sy)

* The [(t,r) is the total probability of the subgraph shown

* The [(t,r) terms at any time t are defined recursively in
terms of the S (t + 1, g) terms at the next time

34

Backward algorithm

o

/B/ | ¥ yr v, [l ys K| e K’ ve | ve V7
N7 iy v Sl Syl v vy
/Fl | ¥ yi %4 Vel Vi 3 Vs Ve §y5
| vY v v s’ Vs 3\ g Ye vy

;0 1 2 3 4 5 6 7

e |nitialization:
BT-1L,K—-1=1 B(T—-1,1r)=0r<K-—1<{=
e fort =T —2downto0
B(tK) =Bt + 1K)y
forr =K—-2..0

« Bt =y DB+ 1,1) + yITVB(E+ L, + 1)

35

SIMPLE BACKWARD ALGORITHM

#N is the number of symbols in the target output

#S (i) is the ith symbol in target output

#y(t,1i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For 1 = 1:N
s(l:T,1i) = y(1:T, S(1i))

#The backward recursion
First, at t =T

beta (T,N) =1
beta(T,1:N-1) = 0
for t = T-1 downto 1
beta(t,N) = beta(t+1l,N)*s (t+1,N)
for i = N-1 downto 1
beta(t,1i) = beta(t+1l,1)*s(t+1,1) + beta(t+l,i+1))*s(t+1,1i+1)

Can actually be done without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

BACKWARD ALGORITHM

#N is the number of symbols in the target output

#S (i) is the ith symbol in target output

#y(t,1i) is the output of the network for the ith symbol at time t
#T = length of input

#The backward recursion
First, at t =T

beta(T,N) =1
beta(T,1:N-1) = 0
for t = T-1 downto 1
beta(t,N) = beta(t+1,N)*y(t+1l,S(N))
for 1 = N-1 downto 1
beta(t,1) = beta(t+l,1)*y(t+1,S(1)) + beta(t+l,i+1))*y(t+1,S(i+1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

The joint probability

/8/ %?“yf (TR =R E W ERQEARE
1Y/ yéy\x v v ys 5 Ve
/F | Y6 i | Y < Vs Ve
/| v " y2 | N3 3 Vi

;0 1 2 3 4 5 6 7 8 |

P(s; =S, S|X) = a(t, r).

rd pr. lity a(t, 1)
robability

e We will call the first term the
e We will call the second term t

B(t,r)

ackwar

Forward algo Backward algo
38

The posterior probability

/B/ | ¥ ‘K R vz 3 Vi K’ ve | ve y7 Vs
N7 oy y Sy y7 Vg
/Fl | ¥ yi %4 Vi 3 Vs Ve vi L | v
| vY v v V3 S» Vs 3\ g Ye y7 Vs
;0 1 2 3 4 5 6 7 8 .

P(s; =5,,81X) =a(t,r)B(t, 1)

* The posterior is given by
P(s¢ = Sy, S|X) a(t,r)p(t,r)

Pl =SS = G =500~ Tt IBGT)

The posterior probability

/B/ | ¥5 ‘K R v ICLys K| v K’ ye | ve y7 Vs
I\ 7B oy s iyl Syl y7 Ve
/Fl| Y6 yi %4 gyé” § Ya 3 s Ve §y5 L| v
/A " y2' | s S» Ya 3\ Y5 Ve yr 31 Vs

;0 1 2 3 4 5 6 7 8 |

* Let the posterior P(s; = S,|S, X) be represented
by y (¢, 1)
a(t,v)B(t, 1)

Y a(t,r)B(E,r)

y(t,r) =

COMPUTING POSTERIORS

#N is the number of symbols in the target output

#S (i) is the ith symbol in target output

#y(t,1i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma (t) = 0

for 1 = 1:N
gamma (t,1) = alpha(t,i) * beta(t,1i)
sumgamma (t) += gamma (t, i)

end

for i=1:N
gamma (t,1) = gamma (t,i) / sumgamma (t)

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

/B/
/IY/
/F/
/IY/

The expected divergence

Yo k v N Vs \ vs X Ve K’ ve | Ve vy Ve
Yo A I v Syl Syl Oy v7 Vg
v 7 Vs §y§ S‘ Vs 3 Ve Ve §y5 L vé
Yo' yi’ ys' v’ S» v’ 3\ v’ V' y7° Vg
0 1 2 3 4 5 6 / 8

DIV = —Z Z P(s; = 5|8, X)logY(t,s; =s)

t SESO ...SK_1

DIV = —22)/(1:,) logyts(r)
t 1

v

42

The expected divergence

/B | ¥ k IR \ Y3 X Vi K’ ys K| ve y7 Vs
\7AR i V3" >‘ vyl Wyl ya¥ vg'
K| v vy va ys Vi 3 Ve Ve vi || vh
N/ | vl yi" ys' V3" S» Vi 3\ ye' Ve yyr B« vg'
;0 1 2 3 4 5 6 7 8 .

DIV = _Z z P(s; = 5|8, X)logY(t,s; =s)

t SESO ...SK_1

DIV = —22)/(1:,) logyts(r)
t 1

* The derivative of the divergence w.r.t the output Y; of the net at any time:

))
7y, DIV = - (7

Must compute these terms
from here

— Components will be non-zero only for symbols that occur in the training instance

43

/B/
/IY/
/F/
/IY/

The derivatives at both these locations must be summed to get —

dDIV
dy}

The derivative of the divergence w.r.t the output Y; of the net at any time:

))
Vy, DIV =

t

The expected divergence

Yo k K| vz \ V3 X Vs K| Ve y7 Vs

Yo A I v f ve Ve v7 Vg

Y6 yi el ys | Ve Ve vy v

Yo v v s’ vg' Ve y7 Vg

0 1 2 3// 4 5 6 7 8 .
dDI V

-3

r:S(r)=l

V4 x

V4 x

—y(t,) log v
t

4

— Components will be non-zero only for symbols that occur in the training instance

44

/B/
/IY/
/F/
/IY/

t

The expected divergence

Yo k IR \ V3 X ys K| ve y7 Vs
vo! | Yy 1y s f ys /Y6 N |¥7 | |ve
5 % %) Vs | Vs Y6 § %] vE
Yo i y2 | s ys s y7 Vs
0 1 2 3// 5 6 7 8 .
The derivatives at both these locations must be summed to get — abry
4-
dDIV l
i — vy (t,7)logy;
Yt r:S(r)=l Yt
any time:

d y(t,r) dy(tr)
—y(t,r)logy; = —F—+
dy; Vi

l

Vt

log y;

— Components will be non-zero only for symbols that occur in the training instance

45

/B/
/IY/
/F/
/IY/

The derivatives at both these locations must be summed to get —

dDIV
dy;

t

The expected divergence

Yo k K| vz \ V3 X Vs K| Ve y7 Vs

vo! | Yy 1y s f ys /Y6 N |¥7 | |ve

Y5 % i § Vs Vs Y6 §y5 V§

vo' | |1 | |2 | Vs i e B e AR e BL

0 1 2 3// 5 6 7 8 .
dDI V

The derivative of 1

-3

V4 x

V4 x

r:S(r)=l

d
—vy(t,r)logy: ~

l

Vi
Nt /Nt / N\ /S
The approximation is exact if we think of this as a maximum-likelihood estimate

—y(t,7)log
Ve

4

)/(t, r) tetatany time:

46

Derivative of the expected divergence

/B/ | ¥ k R v ve | ve y7 Vs
N7 i©o v vs K Ve y7 Vg
/Fl | ¥ yi %4 Vs Ve i | | v
| vY v v g Ye y7 B« Vs
- 0 1 2 5 6 / 8 N
dDI V

The derivatives at both these locations must be summed to get —

DIV = —22)/(1&,) logytsm
t r

4

The derivative of the divergence w.r.t any particular output of the network must sum over

all instances of that symbol in the target sequence

DIV
dy!

— E.g. the derivative w.r.t y/¥ will sum over both rows representing /1Y/ in the above figure

47

COMPUTING DERIVATIVES

#N is the number of symbols in the target output

#S (i) is the ith symbol in target output

#y(t,1i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 # Initialize all derivatives at time t to O
for i = 1:N
dy (t,S(i)) -= gamma(t,i) / y(t,S(1))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Overall training procedure for

Seq2Seq case 1
/B/ 1Y/ [F])Y/
S S S S S A S S

ol nllnllwl Il Il vl | |G| |V

* Problem: Given input and output sequences
without alighment, train models

Overall training procedure for
Seq2Seq case 1

e Step 1: Setup the network

— Typically many-layered LSTM ,\.| >

e Step 2: Initialize all parameters of the network

50

Overall Training: Forward pass

e Foreach training instance
e Step 3: Forward pass. Pass the training instance through
the network and obtain all symbol probabilities at each

time
/AH/ | ¥§F yitt vt yit it vt yét yitH vg
/B/ vé vy vy v3 Vi y& vé vy vE
/o) | Y& vy y3 v3 vy ye ve y7 Ve
/EH/ | y§" it vy yi" yi y&H y&" yiH v
N7 yvi¥ vs© yi¥ vi© yi¥ vé¥ yi¥ va¥
/F/ vé i v vi Vi y& vé vy ve
/G | VS vi ys v§ v vs ve vy v§
t t t t 1 t t t 1
| | | | | | | | |
o] X X, X5 X, Xz X X, X

Overall training: Backward pass

/B/ | yE Vi vy ys Vi ye ye vy Vg
/|yl yi' vy V3 Vi’ V' Ve vy Ve
/Fl | vE Vi vy Wl Vs Ve v vy vE
/|yl yi' vy V3 Vi’ V' Ve vy Ve
J/AH/ | Y&H Vi v Vo Vi ye© e yaH el
P n) 5 n n r n n r]3

* Foreach training instance
e Step 3: Forward pass. Pass the training instance through
the network and obtain all symbol probabilities at each
time
e Step 4: Construct the graph representing the specific
symbol sequence in the instance. This may require having |
multiple rows of nodes with the same symbol scores |

/B/
/IY/

/F/
/IY/

Overall training: Backward pass
Yo k IR \ Y3 X Vi g ys K| ve y7 Vs
IY in IY

Yo i Vs s ve Ve ya¥ Vg
¥$ vy va ys ¥ v 3 Ve Ve §y5 L ove
vo' | | | vz | Vs S» Vi’ 3\ vs FWYe yr B« Vs

;0 1 2 3 4 5 6 7 8 |

Foreach training instance:

— Step 5: Perform the forward backward algorithm
to compute a(t,r) and S (t,r) at each time, for
each row of nodes in the graph. Compute y(¢t,r).

— Step 6: Compute derivative of divergence 'y DIV
for each Y;

53

Overall training: Backward pass

* Foreach instance
— Step 6: Compute derivative of divergence Vy DIV for each Y;

0. DIV — [dDIV dDIV dDIV]
Uy dyt T dy
dDIV Z y(t r)
dyt r:S(r)=1
dDIV L
e Step 7: Backpropagate o~ and aggregate derivatives
t

over minibatch and update parameters

Story so far: CTC models

Sequence-to-sequence networks which irregularly output symbols can be
“decoded” by Viterbi decoding

— Which assumes that a symbol is output at each time and merges adjacent
symbols

They require alignment of the output to the symbol sequence for training
— This alignment is generally not given

Training can be performed by iteratively estimating the alignment by
Viterbi-decoding and time-synchronous training

Alternately, it can be performed by optimizing the expected error over all
possible alignments

— Posterior probabilities for the expectation can be computed using the forward
backward algorithm

A key decoding problem

* Consider a problem where the output symbols
are characters

e We have adecode: RRREEEED

* |s this the compressed symbol sequence RED
or REED?

We’ve seen this before

17NV s T I Z el B V2 B I 7l O 7t O O V- I 7 O 7 I O Vo

/B/ | ¥§ yr vy y3 Vs ye ve vy Vs
/o) | ¥ yP y? y? yP y? yP y? -

Cannot distinguish between an extended symbol and |B73H yZH yEH

repetitions of the symbol vl yiY

4 vy 3

ve el Ve

| | |
X, X4 X, X, X, Xs X, X, Xq

* /G/ [}/ [F/ WY/ /D[or [G//

-/ /IY/ /D] ?

57

A key decoding problem

e Wehaveadecode: RRREEEEED
* |s this the symbol sequence RED or REED?

e Solution: Introduce an explicit extra symbol which serves to separate
discrete versions of a symbol

— A “blank” (represented by “-”)
— RRR---EE---DDD = RED
— RR-E--EED = REED
— RR-R---EE---D-DD = RREDD
— R-R-R---E-EDD-DDDD-D = RRREEDDD
* The next symbol at the end of a sequence of blanks is always a new character
* When a symbol repeats, there must be at least one blank between the repetitions

* The symbol set recognized by the network must now include the extra
blank symbol

— Which too must be trained

* Note the extra “blank” at the output

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

The modified forward output

Y6 yr V3 y3 Vi Ve Ve 7 V8
yéH yitt y3t yi it y& yét vt ygt
Yo vy vy v3 Vi yE ve vy ve
ye vy y2 v3 v y& ve vy Vg
v§ i v 1 yiH 2 y&H v yiH yg
ve¥ yvi¥ vs¥ y3¥ vi¥ v’ vé¥ y5¥ v
v§ i vy yi yi yE vE % V&
v§ i ys ys Vs y§ vé 3%d ve
| | | 1 | | | | |
i | | I | | | I |
el X4 X, X3 X2l X e X X, bl

59

* Note the extra “blank” at the output

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

The modified forward output

/B/ I/ [F[)Y/

b b b b b b b b b
Yo Y1 Y2 Y3 Yy Ys Y6 Y7 B4
y§H yitH y3H i yit y&H y&H yaH y§H
V5 vz 4 yE Ve Ve Vs
Vo yi vy v vy y2 yve vy vE
y&H yiH y5H yEH viH y&H yEH yFH y&H
| ra Bralcalcale:
V& yi Vi vi Vs
v§ vy v v§ Vi Ve Ve V7 v§
| | | | | | | | |
| | | | 1 1 | | |
e X X, X5 X X e e X, el

60

* Note the extra “blank” at the output

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

The modified forward output

/B/ I/ [F[)Y/

D b b b b b b
V1 V2 V3 m m Ve V7 Vs
y§H y{H ysH e e y&H y&H yaH y§H
Ve vE Ve Ve o y8 yB Ve
vE yi vy v vy y2 yve vy vE
y&H yiH y5H yEH viH y&H yEH yFH y&H
| ra Bralcalcale:
Vi i v vi vi vE v
v§ v{ v v§ Vi ys Ve V7 v§
t t t t t t t t 1
| | | | 1 1 | | |
el X4 X, X3 X X Xe X, v

61

The modified forward output

* Note the extra “blank” at the output

/B] I/ [F] [F] 1Y/

_ rAREAREAREAN 2 B AR ARE
/AH/ | ¥§F yitt ysH yiH it yétH yét yiH yaH
/B/ | ¥& vs v5 v yE vé %4 Vs
/D/ | V& i vs v3 /4 y& ve vy Ve
/EH/ | yo™ | | yf? ||t | pa] |yt | |yst | |vel | |yt | vs”
v [[oF M oF] | | O
/F/ v§ i vy o BV yE Vs
/G/ | Y& i ys ys Vs y§ Ve V7 ve

! ! ! ! 1 t ! t t
i | | | | | | 1 |
el X4 X, X3 X X Xe X, v

62

Composing the graph for training

/B/
/IY/
/IY/
/F/

t

Yo k R vz \ ys X Vi K’ ve | ve y7 Vs
Yo v v v Syl |yl Yo' y7 Vg
W [(NP §yé” NeaiNpaiNer %W L [
Yo yi Y Vs >» Ya 3\ e Ye y7 B« Vs
0 1 2 3 4 5 6 / 8

* The original method without blanks

* Changing the example to /B/ /I1Y/ /IY/ /F/ from /B/ /IY/ [F] /Y]

for illustration

63

/B/

/IY/

/IY/

/F/

Composing the graph for training

Yo y7 V3 y3 Vi ys e y7 Vg
Yo yr %1 %1 Vi ys Ye %4 Vg
Yo y7 Y3 y3 yi ys e y7 Y8
Yo yi© 2 | |vs Vs ys Yo' vy Ve
Yo y7 Y3 y3 yi ys ye y7 Y8
Yo v v, | |vs Vi Y5 Yo' y7 Ve
Yo y7 V3 y3 Vi Vs yé y7 Y8
Yo yi Y Vs Ya s Ye %4 Vs
Y6 i Y3 y3 Vi yE Ve Y7 Vg
* With blanks

* Note: a row of blanks between any two symbols
* Also blanks at the very beginning and the very end

v

/B/

/IY/

/IY/

/F/

Composing the graph for training

Yo k—| Vi V3 y3 Vi ys e y7 Vg
Yo yr %1 %1 Vi ys Ye %4 Vg
Yo y7 Y3 y3 yi ys e y7 Y8
Yo yi© y2 R Vs Vs ys Yo' vy Ve
Yo y7 Y3 y3 yi ys é ye N y7 Y8
Yo v 2 | Ny)|y v [\ Ve w1Y7 | Ve
Yo y7 V3 y3 Vi ve ¥l Ye Rvlyr S Y8
Yo yi Y Vs Ya s Ye y: Vs
i e el r] o 1 Yor POE PO PO

* Add edges such that all paths from initial node(s) to final

node(s) unambiguously represent the target symbol sequence

65

Composing the graph for training

V3 y3 Vi ys e y7 Vg
%4 %1 Vi ys Ye %4 Vg
Y3 y3 yi ys e y7 Y8
y2 R Vs Vs ys Yo' vy Ve
- | ¥ y7 Y3 y3 yi ys é ye N y7 Y8
/Y| ye” v 2. | Nyi' RIVa v R Ve KVT Ve
- | ¥ y7 V3 y3 Vi ve ¥l Ye Rvlyr
[Fl | ¥ i Y V3 Vi s Ye %4
- | ¥ i Y3 y3 Vi yE Ve y7

e The first and last column are allowed to also end at initial a

final blanks

66

/1Y

/F/

Composing the graph for training

Yo k—| Vi V3 y3 Vi ys e y7 Vg
/B/\ | Yo yr %1 %1 Vi ys Ye %4 Vg
—> Yo V1 Yz % Vi Vs Y8 V7 Vs
/P | ve” i vy ki i’ vs' N | %€ %l 8"
e y7 V3 V3 Vs ye é e N y7 V8
Yo v v R Y v &Y w_|V7 Vg
Yo y7 V3 y3 Vi Vs yé y7 j&yé’
Yo yi Y Vs Ya s Ye y: Vs
i e el r] o 1 Yor POE PO PO

e The first and last column are allowed to also end at initial and

final blanks

e Skips are permitted across a blank, but only if the symbols on
either side are different

Because a blank is mandatory between repetitions of a symbol but not
required between distinct symbols

Composing the graph

#N is the number of symbols in the target output
#S(i) is the ith symbol in target output

#Compose an extended symbol sequence Sext from S, that has the blanks
#in the appropriate place

#Also keep track of whether an extended symbol Sext(j) is allowed to connect
#directly to Sext(j-2) (instead of only to Sext(j-1)) or not

function [Sext,skipconnect] = extendedsequencewithblanks (S)
j =1
for i = 1:N
Sext (j) = ‘b’ # blank
skipconnect (j) = 0
J = J+1

Sext (j) = S(i)
if (14 > 1 && S(i) !'= S(i-1))
skipconnect (J)
else
skipconnect (J)
J = J+1
end
Sext (j) = ‘b’
skipconnect (j) = 0

Il
[

Il
o

return Sext, skipconnect

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Example of using blanks for alignment: Viterbi alignment with blanks

MODIFIED VITERBI ALIGNMENT WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length (Sext) # length of extended sequence
‘(’;t?)rbf s11:arts here Without explicit construction of output table
Bscr(1) = y(1,Sext (1)) # Blank
Bscr(1l,2) = y(1,Sext(2))
Bscr(l 2:N) = —-infty
for t = 2:T
BP(t,1l) = BP(t-1,1);
Bscr(t,l Bscr (t-1,1)*y(t,Sext (1))

) =
for i = 1:N
if skipconnect (1)

BP(t,1) = argmax 1(Bscr(t-1,1i), Bscr(t-1,i-1), Bscr(t-1,1-2)
else

BP(t,1) = argmax 1(Bscr(t-1,1), Bscr(t-1,1i-1))
Bscr(t,i) = Bscr(t-1,BP(t,1))*y(t,Sext(i))

Backtrace

AlignedSymbol (T) =

for t = T downto 1
AlignedSymbol (t-

Bscr (T,N) > Bscr(T,N-1) ? N, N-1;

1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Modified Forward Algorithm

V1 Y2 Y3 V4 Vs Ve Y7 3’5
yr %1 Y3 Vi ys ye %4 Vs
y7 Y3 y3 Vi ys ye y7 ys
v v,)i Vs Vs Yo' vy Vg
y7 V3 y3 i Vs é Ve N y7 Y8
v 2 | Nyit R ys R\ Ve RO1Y7 | s
y7 V3 Y3 Vi ve vl Ye RvlY7 S Y8
yi s 3 Vi ys Ve v, 1 Vs
%4 Y3 Y3 Vi Vs Ve Y7 \1 Y

e |nitialization:

—a(0,0) = y2,a(0,1) =vy2,a(0,r) =0 r>1

70

Modified Forward Algorithm

o va < e S e e N e Y v e
oy ﬁ”ln} rafirafica
> NG kmt‘ﬂim m]

[

1Y ‘ 1Y 1Y 1Y 1Y 1Y
/1Y ll k‘““
- ‘ 3’1 ‘ﬂm ‘ “

/1Y yiY yyY Al § I A
i ,, ra \\m\m
: : Vi 3’2 3’3 k‘ k‘ k‘

/F/ i i i - Ek
- .. 5 yi | |y ﬂfl L2 L2]

t

* Iterationt=1:N:
a(t,r) = (at—1,7) +at—1,7—1))y "
e fS(r)="—-"o0orS(r)=Sr—-2)
a(t,r) = (at—1,r) +alt—1,r—1)+alt—17r—-2))y "

e QOtherwise

71

FORWARD ALGORITHM (with blanks)

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#The forward recursion
First, at t =1

alpha(l,1) = y(1,Sext(1l)) #This is the blank
alpha(l,2) = y(1,Sext(2))
alpha(1,3:N) = 0

for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,Sext (1))
for 1 = 2:N
alpha(t,i1) = alpha(t-1,i-1) + alpha(t-1,1))

1f (skipconnect (i))
alpha(t,i) += alpha(t-1,i-2)
alpha(t,1i) *= y(t,Sext (1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

/BN | ¥&
—> Vo
N7

/YA | o
-)| &
F

Modified Backward Algorithm

Vo s V1 V3 y3 Vs e Ve y7
yi Y2 ys Vi ys Ve y7
y7 V3 y3 Vs ye Ve y7
vi© v s’ Vs g Ve vy

Y6 y7 V3 V3 Vs ye é ye N\ | v7
v’ v vy RV v K1 Ye ROV
y7 V3 y3 Vs e RVl ve RVl Y7

Y6 yi Y Vel Vi s Ve el

Y6 7 V3 y3 Vs Ve Ve V7

t

e |nitialization:
B(T—12K—-1)=B8(T—-12K-2) =1
B(T—-—1,r)=0 r<2K-2

73

Modlfled Backward Algorithm

- -Lk
/B/

yg Y6 3’7

\lﬂ

‘ 3’5 3’6 3’7
mmmmu\ e | [

J’Y k YéY y7
i ll } Nz N 6 |
A | FIIA N N
5 | Il n \\m‘;\in\;\ii
(L --um‘m

)

S

. t,r) = t+1, a

* |teration: B(t,r) E B(DY
q.Squucc(Sr)

B(t,r) = ,B(t+ L)y, 1 S(T) +B8(t+1,r+1) tsﬂﬂ)

e IfS(r)="="o0orS(r)=Sr+2)
Bt) =B+ 1,7y + Bt + 1,7+ Dy 0 + B+ 1,7+ 2)y 0+

e Otherwise
74

BACKWARD ALGORITHM WITH BLANKS

[Sext, skipconnect] = extendedsequencewithblanks(S)
N = length (Sext) # Length of extended sequence

#The backward recursion
First, at t = T

beta (T,N) =1
beta (T,N-1) =1
beta(T,1:N-2) = 0
for t = T-1 downto 1
beta(t,N) = beta(t+l,N)*y(t+1l,Sext (N))
for i = N-1 downto 1
beta(t,i) = beta(t+l,1)*y(t+l,Sext(i)) + beta(t+l,i+1))*y(t+l,Sext (i+1))

if (i<N-2 && skipconnect (1i+2))
beta(t,1) += beta(t+l,i+2)*y(t+l,Sext (i+2))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

The rest of the computation

* Posteriors and derivatives are computed
exactly as before

* But using the extended graphs with blanks

COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma (t) = 0

for 1 = 1:N
gamma (t,1) = alpha(t,i) * beta(t,i)
sumgamma (t) += gamma (t,1)

end

for i=1:N
gamma (t,1) = gamma (t,i) / sumgamma (t)

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

dy(t,1:L) = 0 #Initialize all derivatives at time t to O
for 1 = 1:N
dy (t,Sext (i)) -= gamma(t,i) / y(t,Sext (1))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation

Overall training procedure for

Seqg2Seq with blanks
/Bl /Y] [F] Y/
P2 P P PP P PP

ol nllnllwl Il Il vl | |G| |V

* Problem: Given input and output sequences
without alighment, train models

Overall training procedure

e Step 1: Setup the network

— Typically many-layered LSTM ,\.| >

e Step 2: Initialize all parameters of the network

— Include a “blank” symbol in vocabulary

Overall Training: Forward pass

e Foreach training instance
e Step 3: Forward pass. Pass the training instance through

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

the network and obtain all symbol probabilities at each

time, including blanks

e yr V3 3 Vs Ve Ve 7 Ve
y§H yitt ysf y3H i yaH yét yitH ygt
v§ yi v5 5 ve y& yé yZ vE
o vy vy v3 v yg ve vy Ve
y&? yit y3 vz yi' ys" y& y&H vy
v6¥ yi¥ v yi¥ v’ yi¥ vé¥ v va*
v§ yi ys vi Vi yE vé y¥ vé
V& yi v y§ Vs ys ye %4 v§
t t t t t t t t t
1 I I I | | I 1 |
X, X X, X5 X, X Xe X, X4

/B/

/1Y/

/1Y/

/F/

Overall training: Backward pass

& vy vy k| ¥¥ Vi yE e %4 &
y5 %8 vy vi v y& vé vy v&
v§ vy y3 y3 Vi v ye vy vé
v6r yi¥ v’ v3¥ vi© yi¥ vé¥ y7© ve¥
vo yi vy P vE Vi yE e N vy vE
Yo" i’ v3¥ 3" vi' vy’ ver K v7¥ { | va"
8 vy vy % § vy RVt Ve ¥ vl y? W\ |8
vé i v5 vi Vi y& vé Yy &M vé
vE vy vy vE vi ye e vy ™ 8

* Foreach training instance

Step 3: Forward pass. Pass the training instance through

the network and obtain all symbol probabilities at each

time

Step 4: Construct the graph representing the specific

symbol sequence in the instance. Use appropriate
connections if blanks are included 32

/B/

/1Y/

Y/

/F/

Overall training: Backward pass

& vy vy ¥ Vi yE e %4 &
y5 %8 s vi v y& vé vy v&
v§ vy y3 y3 Vi v ye vy vé
v6r yi¥ v’ v3¥ vi© yi¥ vé¥ y7© vs*
vo yi vy i Vi yE é‘ e N vy vE
Yo" i’ v3¥ 3" vi' vy’ ver K v7¥ { | va"
8 vy vy % § vy y& § ye vl V7 8
y§ i v5 vi vi y& vé vy v&
vE vy vy vE vi ye e 3% vE

* Foreach training instance:

— Step 5: Perform the forward backward algorithm to compute
a(t,r) and B(t,r) at each time, for each row of nodes in the
graph using the modified forward-backward equations. Compute a
posteriori probabilities y(t, r) from them

— Step 6: Compute derivative of divergence Vy DIV for each Y;

83

Overall training: Backward pass

* Foreach instance
— Step 6: Compute derivative of divergence Vy DIV for each Y;
dDIV dDIV dDIV
dy dy; dYtL_ll
ablv. v(t, 1)

l o S(r)
dyt r:S(r)=l Yt

VytDIV — [

* Step 7: Backpropagate dfﬂl and aggregate derivatives
t

over minibatch and update parameters

CTC: Connectionist Temporal
Classification

e The overall framework we saw is referred to as
CTC

* Applies to models that output order-aligned,
but time-asynchronous outputs

Returning to an old problem:
Decoding

VA sl O Z i I 7 ol O 7 O 5 7l N 75w I 157 I O e B O
/B/ Y3 yi Vs Y6 y7 Y8
/o) | ¥ P V3 V3 V7 y? Ve
JEH/ L ys™ | Lol |y [T L] e | wET | | yrt | | ws”
w]] F el
/F | ¥§ yi Y 3 Vi s Ve y; Vs
/G | ¥§ %t y: ys§ Vi s Ve %ed Vs

1 1 | | 1 1 t t |

X, X, X, X, X, X< X, X, Xq

The greedy decode computes its output by finding the most likely symbol at each time and merging
repetitions in the sequence

This is in fact a suboptimal decode that actually finds the most likely time-synchronous output
sequence
— Which is not necessarily the most likely order-synchronous sequence 36

Greedy decodes are suboptimal

Consider the following candidate decodes

— RR—-EED(RED,0.7)

— RR—-——-ED(RED, 0.68)

— RREEED(RED, 0.69)

— TTEEED(TED, 0.71)

— TT-EED(TED, 0.3)

— TT--ED(TED, 0.29)
A greedy decode picks the most likely output: TED

A decode that considers the sum of all alignments of the
same final output will select RED

Which is more reasonable?

And yet, remarkably, greedy decoding can be surprisingly
effective, when using decoding with blanks

87

W.hat a CTC system outputs

: Waveform
ol :
= . Framewise
=0 e . . :
£ P ; : ; 3o : :
o P : : : P ; 5
f-‘-l P : E' : P : :
i S e el PooRreE e P oy S EEEER S e e il I Sk ST (e S Tochee i ;
:> = /\ £ L /\ PR, U Y
i P : : & FL A A ST
0! - A : — ' : — A —
dh ax S aw n =d ix v
"the" "so“ndn I‘lofll

Figure 1. Framewise and CTC networks classifying a speech signal. The shaded lines are the output activations,
corresponding to the probabilities of observing phonemes at particular times. The CTC network predicts only the
sequence of phonemes (typically as a series of spikes, separated by ‘blanks’, or null predictions), while the framewise
network attempts to align them with the manual segmentation (vertical lines). The framewise network receives an error
for misaligning the segment boundaries, even if it predicts the correct phoneme (e.g. ‘dh’). When one phoneme always
occurs beside another (e.g. the closure ‘dcl’ with the stop ‘d’), CTC tends to predict them together in a double spike.
The choice of labelling can be read directly from the CTC outputs (follow the spikes), whereas the predictions of the

framewise network must be post-processed before use.

* Ref: Graves
* Symbol outputs peak at the ends of the sounds

— Typical output: --R---E---D
— Model output naturally eliminates alignment ambiguities

e But this is still suboptimal..

88

Actual objective of decoding

 Want to find most likely order-aligned symbol sequence
— RED

— What greedy decode finds: most likely time synchronous
symbol sequence

* —/R//R/—-/[EH//EH//D/

* Which must be compressed

* Find the order-alighed symbol sequence § = S, ..., Sx—_1,
given an input X = X,, ..., X7_4, that is most likely

= argmax P(S,, ..., Sk_1|X)
S

Recall: The forward probability a (¢,)

/B/
/IY/
/F/
/IY/

t

Yo ‘K 2 K vs S Ve K’ ve K| Ve vy Ve
v | Mol D v Y S Syl P N [V] Y
v 7 Vs §y§ 3 Vs 3 Ve Ve §y5 Ll vé
ol yi¥ v | Nyl 3 yi¥ S\ v Pyl ™
0 1 2 3 4 5 6 7 8 |

XS,.Sk—1 (r-1,K-1) = P(So--SK—1|X)

* The probability of the entire symbol sequence is the
alpha at the bottom right node

90

Actual decoding objective

* Find the most likely (asynchronous) symbol sequence

S = argmax ag(Sx_1, T — 1)
S

* Unfortunately, explicit computation of this will require
evaluate of an exponential number of symbol
seguences

* Solution: Organize all possible symbol sequences as a
(semi)tree

Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame

<Sl
S,

)

=
\5:

i

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
* Each node represents a unique (partial) symbol sequence! 92

The decoding graph for the tree

< <4
/ ry 1y, 1

7 /
/ /! A
/ "/ /1t L’: /'t
/ I'. Iy + Ly
/ / I// 14
Vi /4 i

[[
77 2

:‘ :/
Xo X1 X3 X3 X4

* The figure to the left is the tree, drawn in a vertical line

* The graph is just the tree unrolled over time

— For a vocabulary of V symbols, every node connects out to V other
nodes at the next time

* Every node in the graph represents a unique symbol sequence

93

The decoding graph for the tree

r, iy ¥
a(5251)

/ /
Il II.I, ’Itf LI.I’ lll.f
l' 7 / L L4
a(S2—)

[/ .
I 7 T iss

a(S252)

/ ’ a(Si—)
a(Sz)
: /C{(Sl)
g g ~a (=)
Xo Xy X, X3 X4

* The forward score a(r, T) at the final time represents the full forward
score for a unique symbol sequence (including sequences terminating in

blanks)
* Select the symbol sequence with the largest alpha

— Sequences may have two alphas, one for the sequence itself, one for the
sequence followed by a blank

— Add the alphas before selecting the most likely sequence

94

CTC decoding

/

a(S251)

a(S5152)
a(5151)
a($1—)

a(S1)

This is the “theoretically correct” CTC decoder

In practice, the graph gets exponentially large very quickly

To prevent this pruning strategies are employed to keep the graph (and
computation) manageable

— This may cause suboptimal decodes, however

— The fact that CTC scores peak at symbol terminations minimizes the damage
due to pruning 95

Beamsearch Pseudocode Notes

Retaining separate lists of paths and pathscores for paths
terminating in blanks, and those terminating in valid symbols

— Since blanks are special
— Do not explicitly represent blanks in the partial decode strings

Pseudocode takes liberties (particularly w.r.t null strings)
— l.e. you must be careful if you convert this to code

Key
— PathScore : array of scores for paths ending with symbols
— BlankPathScore : array of scores for paths ending with blanks
— SymbolSet : Alist of symbols not including the blank

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,01])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeIdenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

97

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,

including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
InitializePaths (SymbolSet,

NewBlankPathScore,
yl:,0])

NewPathScore

98

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore,

InitializePaths (SymbolSet, yI[:,0])

Subsequent time steps

for t = 1:T
Prune the collection down to the BeamWidth
PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore,

PathScore

NewPathScore =

Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore,

BeamWidth)

- _/T;:-:‘
SI e
— 7
S =
/V
= e ’
e
e
e

X2

Xy

99

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, yI[:,0])

Subsequent time steps
for t = 1:7T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])

<4 <

r ‘' f &y il
’f ‘y 1
7y

100

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, yI[:,0])

Subsequent time steps
for t = 1:7T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])

Next extend paths by a symbol
NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, y[:,t])

<4 a4
/ LT ry

/ ’ 4 /
’ ' /
/ L': /7 L’r r?
s " - & i

/,
Vi

J \
Xo X X, X3 %, 101

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths (SymbolSet, vVy)

InitialBlankPathScore = [], InitialPathScore = []

First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null

InitialBlankPathScore[path] = y[blank] # Score of blank at t=1

InitialPathsWithFinalBlank = {path}

Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for ¢ in SymbolSet # This is the entire symbol set, without the blank

path = ¢
InitialPathScore[path] = y[c] # Score of symbol c at t=1
InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

[
¥

¥ +
B B & &

0]
,
] (]

102

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, v)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

First work on paths with terminal blanks

(This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:
Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:
If there is already an equivalent string in UpdatesPathsWithTerminalBlank
simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank
UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]

else
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScorel[path] * y[blank]
end . }ﬂm ! fﬂ
end E/E i} ’/ /
= /.
return UpdatedPathsWithTerminalBlank, B 2 .
UpdatedBlankPathScore e~ ==

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol (PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, vy)
UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:
for ¢ in SymbolSet: # SymbolSet does not include blanks
newpath = path + ¢ # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
end
end

Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:
Extend the path with every symbol other than blank
for c in SymbolSet: # SymbolSet does not include blanks
newpath = (c == path[end]) ? path : path + ¢ # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
UpdatedPathScore[newpath] += PathScore[path] * y[c]
else # Create new path
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = PathScore[path] * yl[c]
end
end
end

return UpdatedPathsWithTerminalSymbol,
UpdatedPathScore

104

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i=1

for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScorel[p]
i++

end

for p in PathsWithTerminalSymbol
scorelist[i] = PathScore[p]
i++

end

Sort and find cutoff score that retains exactly BeamWidth paths
sort (scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += p # Set addition
PrunedBlankPathScore[p] = BlankPathScorelp]
end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScorel[p] >= cutoff
PrunedPathsWithTerminalSymbol += p # Set addition
PrunedPathScore[p] = PathScorelp]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

105

BEAM SEARCH: Merging final paths

Note : not using global variable here

function MergeIdenticalPaths (PathsWithTerminalBlank, BlankPathScore,
PathsWithTerminalSymbol, PathScore)

All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from
PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank
if p in MergedPaths
FinalPathScore[p] += BlankPathScore [p]
else
MergedPaths += p # Set addition
FinalPathScore[p] = BlankPathScore[p]
end
end

return MergedPaths, FinalPathScore

106

Story so far: CTC models

Sequence-to-sequence networks which irregularly produce output
symbols can be trained by

— Iteratively aligning the target output to the input and time-synchronous
training

— Optimizing the expected error over all possible alignments: CTC training

Distinct repetition of symbols can be disambiguated from repetitions
representing the extended output of a single symbol by the introduction
of blanks

Decoding the models can be performed by
— Best-path decoding, i.e. Viterbi decoding

— Optimal CTC decoding based on the application of the forward algorithm to a
tree-structured representation of all possible output strings

Most common CTC applications

* Speech recognition
— Speech in, phoneme sequence out
— Speech in, character sequence (spelling out)

* Handwriting recognition

Speech recognition using Recurrent
Nets

P, P, P; P, Ps Ps P,
" RN E R E

X(t)

t=0

Time
* Recurrent neural networks (with LSTMs) can be
used to perform speech recognition
— Input: Sequences of audio feature vectors
— QOutput: Phonetic label of each vector

109

Speech recognition using Recurrent
Nets

wy W,
T EEERRE
=T =T t =T =T

X(t)

t=0

Time

* Alternative: Directly output phoneme,
character or word sequence

110

Next up: Attention models

