
Neural Networks
Learning the network: Backprop

11-785, Fall 2021
Lecture 4

1

Recap: Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Divergence on the i-th instance: ௜ ௜

– Empirical average divergence on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected
divergence

ௐ

– I.e. minimize the empirical risk over the drawn samples 2

Recap: Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance: ௜ ௜

– Empirical average error on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected
error

ௐ

– I.e. minimize the empirical error over the drawn samples 3

This is an instance of
function minimization
(optimization)

A quick intro to
function optimization

with an initial discussion of
derivatives

4

A brief note on derivatives..

• A derivative of a function at any point tells us how
much a minute increment to the argument of the
function will increment the value of the function
 For any expressed as a multiplier to a tiny

increment to obtain the increments to the output

 Based on the fact that at a fine enough resolution, any
smooth, continuous function is locally linear at any point 5

derivative

• When and are scalar

 Derivative:

 Often represented (using somewhat inaccurate notation) as ௗ௬

ௗ௫

 Or alternately (and more reasonably) as
6

Scalar function of scalar argument

 Derivative is the rate of change of the function at
 How fast it increases with increasing 𝑥
 The magnitude of f’(x) gives you the steepness of the curve at x

 Larger |f’(x)|  the function is increasing or decreasing more rapidly

 It will be positive where a small increase in x results in an increase of f(x)
 Regions of positive slope

 It will be negative where a small increase in x results in a decrease of f(x)
 Regions of negative slope

 It will be 0 where the function is locally flat (neither increasing nor decreasing)
7

Scalar function of scalar argument
0

+
+

+

0

+
+

+

+

+

+

0

- - -

- ----- - -

• Giving us that is a row vector: ଵ ஽

ଵ ଵ ଶ ଶ ஽ ஽

• The partial derivative ௜ gives us how increments when only ௜ is
incremented

• Often represented as డ௬

డ௫೔

ଵ
ଵ

ଶ
ଶ

஽
஽

8

Multivariate scalar function:
Scalar function of vector argument

Note: is now also a vector

ଵ

஽

is now a vector:
ଵ

஽

• Where

o You may be more familiar with the term “gradient” which
is actually defined as the transpose of the derivative

9

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

We will be using this
symbol for vector and
matrix derivatives

Gradient of a scalar function of a vector

• The derivative ௑ of a scalar function of a multi-variate input is a
multiplicative factor that gives us the change in for tiny variations in

௑

– ௑
డ௙ ௑

డ௫భ

డ௙ ௑

డ௫మ

డ௙ ௑

డ௫೙

• The gradient is the transpose of the derivative ௑
்

– A column vector of the same dimensionality as
10

Gradient of a scalar function of a vector

• The derivative ௑ of a scalar function of a multi-variate input is a
multiplicative factor that gives us the change in for tiny variations in

௑

– ௑
డ௙ ௑

డ௫భ

డ௙ ௑

డ௫మ

డ௙ ௑

డ௫೙

• The gradient is the transpose of the derivative ௑
்

– A column vector of the same dimensionality as
11

This is a vector inner product. To understand its behavior lets
consider a well-known property of inner products

A well-known vector property

• The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned
– i.e. when

12

்

Properties of Gradient

•

• For an increment of any given length is max if
is aligned with T

– The function f(X) increases most rapidly if the input increment
is exactly in the direction of ௑

T

• The gradient is the direction of fastest increase in f(X) 13

௑

௑ vs angle of

Blue arrow
is

௑

Gradient

14

Gradient
vector ௑

𝑇

Gradient

15

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest

Gradient

16

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest
௑

𝑇

Moving in this
direction decreases

fastest

Gradient

17

Gradient here
is 0

Gradient here
is 0

Properties of Gradient: 2

• The gradient vector ௑
𝑇 is perpendicular to the level curve

18

The Hessian
• The Hessian of a function is

given by the second derivative

19




























































2

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

2
1

2

1
2

..

.....

.....

..

..

:),...,(

nnn

n

n

n

x

f

xx

f

xx

f

xx

f

x

f

xx

f
xx

f

xx

f

x

f

xxfX

Poll 1

20

Poll 1
• Select all that are true about derivatives of a scalar function f(X) of

multivariate inputs
– At any location X, there may be many directions in which we can step, such

that f(X) increases
– The direction of the gradient is the direction in which the function increases

fastest
– The gradient is the derivative of f(X) w.r.t. X

• y = f(x) is a scalar function of an Nx1 column vector variable x. What is the
shape of the derivative of y with respect to x
– Scalar
– N x 1 column vector
– 1 x N row vector
– There is insufficient information to decide

21

The problem of optimization

• General problem of
optimization: Given a function
f(x) of some variable x …

• Find the value of x where f(x)
is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

22

Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum?
23

x

f(x)

Poll 2

24

Turning Points

25

• Both maxima and minima have zero derivative

• Both are turning points

0

+
+

+

0

+
+

+

+

+

+

0

- - -

- ----- - -

Derivatives of a curve

26

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)

Derivative of the derivative of the
curve

27

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and
+ve at minima!

xf(x)

f ’(x)
f ’’(x)

Solution: Finding the minimum or
maximum of a function

• Find the value at which = 0: Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum, otherwise it is a maximum

28

x

f(x)

A note on derivatives of functions of
single variable

• All locations with zero
derivative are critical points
– These can be local maxima, local

minima, or inflection points

• The second derivative is
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for
functions of multiple variables

29

Critical points

Derivative is 0

maximum

minimum

Inflection point

A note on derivatives of functions of
single variable

• All locations with zero
derivative are critical points
– These can be local maxima, local

minima, or inflection points

• The second derivative is
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for
functions of multiple variables..

30

ଶ

ଶ

maximum

minimum

Inflection point

negative

positive

zero

What about functions of multiple
variables?

• The optimum point is still “turning” point
– Shifting in any direction will increase the value
– For smooth functions, at the minimum/maximum, the gradient

is 0
• Really tiny shifts will not change the function value

31

Finding the minimum of a scalar
function of a multivariate input

• The optimum point is a turning point – the
gradient will be 0

• Find the location where the gradient is 0
32

Unconstrained Minimization of
function (Multivariate)

1. Solve for the where the derivative (or gradient)
equals to zero

2. Compute the Hessian Matrix at the candidate
solution and verify that
– Hessian is positive definite (eigenvalues positive) -> to

identify local minima

– Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

33

0)( XfX

Unconstrained Minimization of
function (Example)

• Minimize

• Gradient

34

3
2

332
2

221
2

1321)()()1()(),,(xxxxxxxxxxxf 























12

2

12

32

321

21

xx

xxx

xx

f T
X

Unconstrained Minimization of
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns

35








































0

0

0

12

2

12

 0

32

321

21

xx

xxx

xx

fX

x 

x1

x2

x3




















1
1
1

















Unconstrained Minimization of
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian
matrix is positive definite

• The point is a minimum

36























210

121

012
2 fX

l1  3.414, l2  0.586, l3  2

x 

x1

x2

x3




















1
1
1

















Closed Form Solutions are not always
available

• Often it is not possible to simply solve
– The function to minimize/maximize may have an

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it

iteratively until the correct value is obtained
37

X

f(X)

Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal
– Update the guess towards a (hopefully) “better” value of
– Stop when no longer decreases

• Problems:
– Which direction to step in
– How big must the steps be

38

f(X)

X
x0 x1 x2 x3

x4

x5
଴

ଵ

ଶ

The Approach of Gradient Descent

• Iterative solution:
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A negative derivative moving right decreases error
– A positive derivative moving left decreases error

– Shift point in this direction
39

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• If ᇱ ௞ is positive:
𝑥௞ାଵ = 𝑥௞ − 𝑠𝑡𝑒𝑝

• Else
𝑥௞ାଵ = 𝑥௞ + 𝑠𝑡𝑒𝑝

– What must step be to ensure we actually get to the optimum?40

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• Identical to previous algorithm
41

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 Initialize

 While

• is the “step size”
42

Poll 3: Multivariate functions

43

Poll 3: Multivariate functions

• Select all that are true about derivatives of a
scalar function f(X) of multivariate inputs
– At any location X, there may be many directions

in which we can step, such that f(X) increases
– The direction of the gradient is the direction in

which the function increases fastest
– The gradient is the derivative of f(X) w.r.t. X

44

Gradients of multivariate functions

45

Gradient
vector ௑

𝑇

Moving in this
direction increases

fastest
௑

𝑇

Moving in this
direction decreases

fastest

Gradient descent/ascent (multivariate)

• The gradient descent/ascent method to find the
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the

gradient

– To find a minimum move exactly opposite the
direction of the gradient

• Many solutions to choosing step size
46

Gradient descent convergence criteria

• The gradient descent algorithm converges
when one of the following criteria is satisfied

• Or

47

f (xk1) f (xk) <e1

2)(e< k
x xf

Overall Gradient Descent Algorithm

• Initialize:




• do





• while

48

Convergence of Gradient Descent
• For appropriate step

size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

• For non-convex
functions it will find a
local minimum or an
inflection point

49

Poll 4

50

Poll 4

• y = f(x) is a scalar function of an Nx1 column vector variable
x. Starting from x = x0, in which direction must we move in
the space of x, to achieve the maximum decrease in f()?
– Exactly in the direction of the gradient of f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at x0

– Exactly opposite to the direction of the gradient of f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at
x0.

51

• Returning to our problem from our detour..

52

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

53

Gradient Descent to train a network

• Initialize:
–

–

• do
–
–

• while

11-755/18-797 54

Preliminaries

• Before we proceed: the problem setup

55

• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

56

Problem Setup: Things to define

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

57

What are these input-output pairs?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

58

What are these input-output pairs?

What is f() and
what are its
parameters W?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

59

What are these input-output pairs?

What is f() and
what are its
parameters W?

What is the
divergence div()?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

60

What is f() and
what are its
parameters W?

What is f()? Typical network

• Multi-layer perceptron

• A directed network with a set of inputs and
outputs
– No loops

61

Input
units Output

units

Hidden units

Typical network

• We assume a “layered” network for simplicity
– Each “layer” of neurons only gets inputs from the earlier layer(s)

and outputs signals only to later layer(s)
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer
– Intermediate layers are “hidden” layers 62

Input
Layer Output

Layer

Hidden Layers

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A continuous activation function applied to an affine

function of the inputs

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 63

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A continuous activation function applied to an affine

function of the inputs

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 64

We will assume this
unless otherwise
specified

Parameters are weights
௜ and bias

Activations and their derivatives

• Some popular activation functions and their
derivatives 65

ଶ

[*]

Vector Activations

• We can also have neurons that have multiple coupled
outputs

– Function operates on set of inputs to produce set of
outputs

– Modifying a single parameter in will affect all outputs 66

Input
Layer Output

Layer

Hidden Layers

Vector activation example: Softmax

• Example: Softmax vector activation

67

ଵ

ଶ

ଷ

௞

s
o
f
t
m
a
x

ଵ

ଶ

௟

ଵ

ଶ

௟

Parameters are
weights
and bias

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
68

zx y

೗೔

Parameters are
weights
and bias

Typical network

• In a layered network, each layer of
perceptrons can be viewed as a single vector
activation

69

Input
Layer Output

Layer

Hidden Layers

Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as ௜
(௞)

– Input to network: ௜
(଴)

௜

– Output of network: ௜ ௜
(ே)

• We will represent the weight of the connection between the i-th unit of
the k-1th layer and the jth unit of the k-th layer as ௜௝

(௞)

– The bias to the jth unit of the k-th layer is ௝
(௞)

70

ଵ

஽

ଵ
(ଵ)

ଵ
(ଶ)

ଵ

௅

௜௝
(ଵ)

௜௝
(ଶ)

௜௝
(ଷ)

௜௝
(ସ)

ଵ
(ଷ)

௝
(ଵ)

௝
(ଶ)

௝
(ଷ)

௝
(ସ)

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

71

What is f() and
what are its
parameters W?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

72

What are these input-output pairs?

Input, target output, and actual output:
Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

• ௡ ௡ଵ ௡ଶ ௡஽
ୃ is the nth input vector

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth desired output

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth vector of actual outputs of the network

– Function of input ௡ and network parameters

• We will sometimes drop the first subscript when referring to a specific
instance

73

ଵ

஽

ଵ

௅

Representing the input

• Vectors of numbers
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
74

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the
desired output
• d = [d1 d2 .. dL] (vector of real values)

75

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

76

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X
may occur for both classes, but with different probabilities

• Is differentiable 77

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭

Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired
output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two outputs, one representing the desired output, the other
representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

• The output explicitly becomes a 2-output softmax

78

Multi-class output: One-hot
representations

• Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat,
or a flower

• We can represent this set as the following vector, with the classes arranged in a
chosen order:

[cat dog camel hat flower]T

• For inputs of each of the five classes the desired output is:
cat: [1 0 0 0 0] T

dog: [0 1 0 0 0] T

camel: [0 0 1 0 0] T

hat: [0 0 0 1 0] T

flower: [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output with four
zeros and a single 1 at the position of that class

• This is a one hot vector

79

Multi-class networks

• For a multi-class classifier with N classes, the one-hot
representation will have N binary target outputs
– The desired output is an N-dimensional binary vector

• The neural network’s actual output too must ideally be binary (N-1
zeros and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

80

Input
Layer Output

Layer

Hidden Layers

Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class
classifier nets

௜ ௝௜
(௡)

௝
(௡ିଵ)

௝

௜
௜

௝௝

• This can be viewed as the probability ௜
81

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Inputs and outputs:
Typical Problem Statement

• We are given a number of “training” data instances

• E.g. images of digits, along with information about
which digit the image represents

• Tasks:
– Binary recognition: Is this a “2” or not

– Multi-class recognition: Which digit is this?
82

Typical Problem statement:
binary classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

83

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Input: vector of
pixel values

Output: sigmoid

Typical Problem statement:
multiclass classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

84

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Input: vector of
pixel values

Output: Class prob

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

85

What is the
divergence div()?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

86

What is the
divergence div()?
Note: For Loss(W) to be differentiable
w.r.t W, div() must be differentiable

Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
௜ ௜

ଶ

௜

– Squared Euclidean distance between true and desired output
– Note: this is differentiable

௜
௜ ௜

௒ ଵ ଵ ଶ ଶ
87

L2 Div()

d1d2 d3 d4

Div

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL)
divergence between the probability distribution and the ideal output
probability is popular

– Minimum when 𝑑 = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

88

KL Div

KL vs L2

• Both KL and L2 have a minimum when is the target value of
• KL rises much more steeply away from

– Encouraging faster convergence of gradient descent

• The derivative of KL is not equal to 0 at the minimum
– It is 0 for L2, though

89

d=0 d=1

𝐾𝐿 𝑌, 𝑑 = −𝑑𝑙𝑜𝑔𝑌 − 1 − 𝑑 log (1 − 𝑌)𝐿2 𝑌, 𝑑 = (𝑦 − 𝑑)ଶ

𝑑𝐾𝐿𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL)
divergence between the probability distribution and the ideal output
probability is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

90

KL Div

Note: when the
derivative is not 0

Even though
(minimum) when y = d

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log
𝑑௜

𝑦௜
௜

= ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = − log 𝑦௖

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0

91

KL Div()

d1d2 d3 d4

Div

The slope is negative
w.r.t. ௖

Indicates increasing ௖

will reduce divergence

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = 0 − log 𝑦௖

௜

= − log 𝑦௖

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0 92

KL Div()

d1d2 d3 d4

Div

Note: when the
derivative is not 0

Even though
(minimum) when y = d

The slope is negative
w.r.t. ௖

Indicates increasing ௖

will reduce divergence

KL divergence vs cross entropy
• KL divergence between and :

௜ ௜

௜

௜ ௜

௜

• Cross-entropy between and :

௜ ௜

௜

• The cross entropy is merely the KL - entropy of

௜ ௜

௜

• The that minimizes cross-entropy will minimize the KL divergence
– since 𝑑 is the desired output and does not depend on the network, 𝐻(𝑑) does not depend on

the net
– In fact, for one-hot 𝑑, 𝐻 𝑑 = 0 (and KL = Xent)

• We will generally minimize to the cross-entropy loss rather than the KL divergence
– The Xent is not a divergence, and although it attains its minimum when 𝑦 = 𝑑, its minimum

value is not 0
93

“Label smoothing”

• It is sometimes useful to set the target output to
with the value in the -th position (for class) and elsewhere for
some small
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

94

KL Div()

d1d2 d3 d4

Div

“Label smoothing”

• It is sometimes useful to set the target output to
with the value in the -th position (for class) and elsewhere for
some small
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

95

KL Div()

d1d2 d3 d4

Div

Negative derivatives
encourage increasing
the probabilities of
all classes, including
incorrect classes!
(Seems wrong, no?)

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

96

ALL TERMS HAVE BEEN DEFINED

Poll 5

97

Poll 5

• Select all that are correct
– The gradient of the loss will always be 0 or close

to 0 at a minimum
– The gradient of the loss may be 0 or close to 0 at

a minimum
– The gradient of the loss may have large

magnitude at a minimum
– If the gradient is not 0 at a minimum, it must be a

local minimum

98

Story so far
• Neural nets are universal approximators

• Neural networks are trained to approximate functions by adjusting their
parameters to minimize the average divergence between their actual output and
the desired output at a set of “training instances”
– Input-output samples from the function to be learned
– The average divergence is the “Loss” to be minimized

• To train them, several terms must be defined
– The network itself
– The manner in which inputs are represented as numbers
– The manner in which outputs are represented as numbers

• As numeric vectors for real predictions
• As one-hot vectors for classification functions

– The divergence function that computes the error between actual and desired outputs
• L2 divergence for real-valued predictions
• KL divergence for classifiers

99

Next Class

• Backpropagation

100

