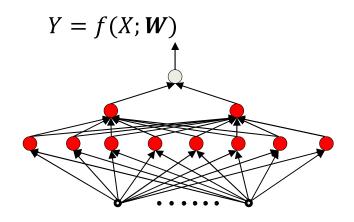
Neural Networks Learning the network: Backprop 11-785, Fall 2021

Lecture 4

Recap: Empirical Risk Minimization



- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
 - Divergence on the i-th instance: $div(f(X_i; W), d_i)$
 - Empirical average divergence on all training data:

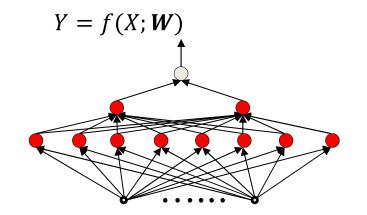
$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

• Estimate the parameters to minimize the empirical estimate of expected divergence

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \operatorname{Loss}(W)$$

- I.e. minimize the *empirical risk* over the drawn samples

Recap: Empirical Risk Minimization



This is an instance of function minimization (optimization)

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
 - Error on the i-th instance: $div(f(X_i; W), d_i)$
 - Empirical average error on all training data:

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

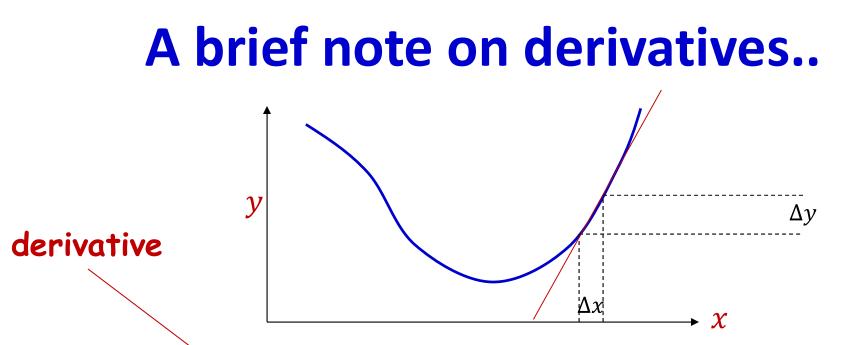
Estimate the parameters to minimize the empirical estimate of expected error

$$\widehat{W} = \underset{W}{\operatorname{argmin}} Loss(W)$$

- I.e. minimize the *empirical error* over the drawn samples

A quick intro to function optimization

with an initial discussion of derivatives



- A derivative of a function at any point tells us how much a minute increment to the *argument* of the function will increment the *value* of the function
 - For any y = f(x), expressed as a multiplier α to a tiny increment Δx to obtain the increments Δy to the output $\Delta y = \alpha \Delta x$
 - Based on the fact that at a fine enough resolution, any smooth, continuous function is locally linear at any point

Scalar function of scalar argument y Δy Δy

• When x and y are scalar

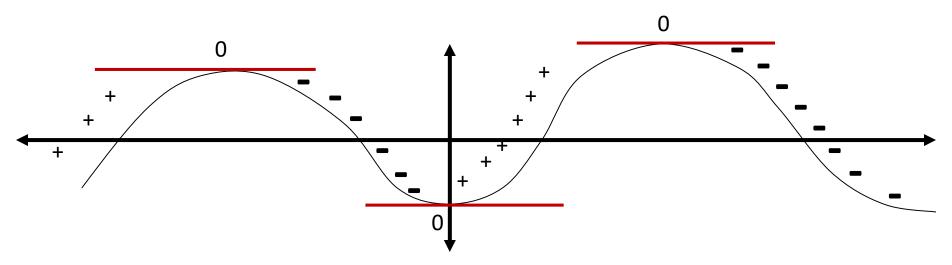
$$y = f(x)$$

Derivative:

$$\Delta y = \alpha \Delta x$$

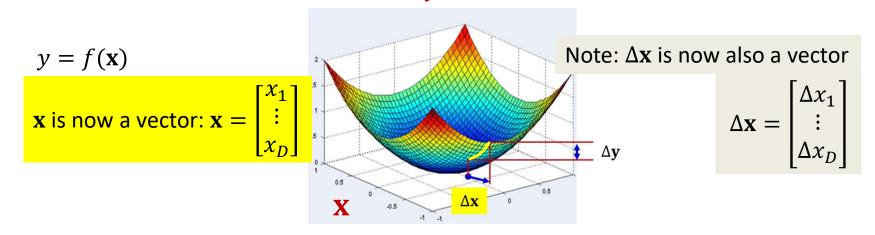
- Often represented (using somewhat inaccurate notation) as $\frac{dy}{dx}$
- Or alternately (and more reasonably) as f'(x)

Scalar function of scalar argument



- Derivative f'(x) is the *rate of change* of the function at x
 - How fast it increases with increasing *x*
 - The magnitude of f'(x) gives you the steepness of the curve at x
 - Larger $|f'(x)| \rightarrow$ the function is increasing or decreasing more rapidly
- It will be positive where a small increase in x results in an *increase* of f(x)
 - Regions of positive slope
- It will be negative where a small increase in x results in a *decrease* of f(x)
 - Regions of negative slope
- It will be 0 where the function is locally flat (neither increasing nor decreasing)

Multivariate scalar function: Scalar function of vector argument



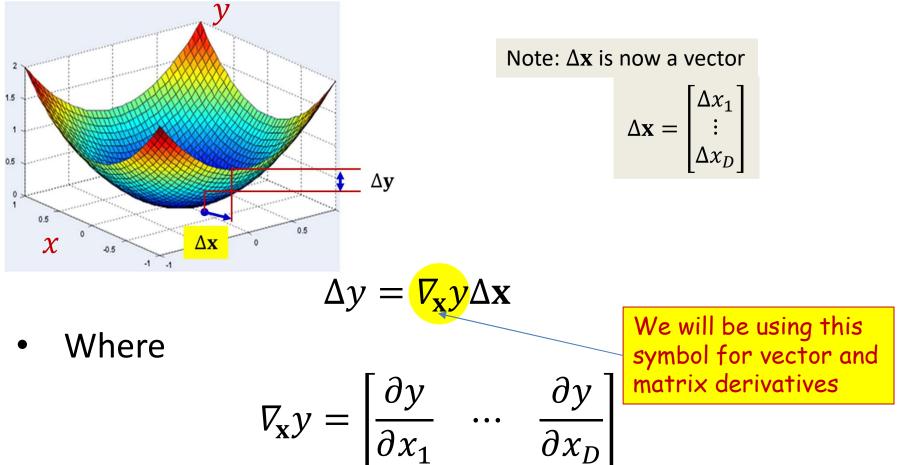
$$\Delta y = \alpha \Delta \mathbf{x}$$

• Giving us that α is a row vector: $\alpha = [\alpha_1 \quad \cdots \quad \alpha_D]$

$$\Delta y = \alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \dots + \alpha_D \Delta x_D$$

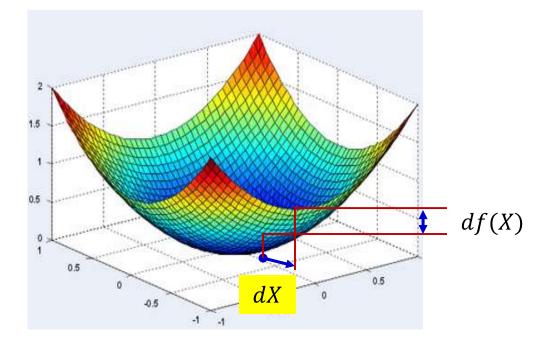
- The *partial* derivative α_i gives us how y increments when *only* x_i is incremented
- Often represented as $\frac{\partial y}{\partial x_i}$ $\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \dots + \frac{\partial y}{\partial x_D} \Delta x_D$

Multivariate scalar function: Scalar function of *vector* argument



 You may be more familiar with the term "gradient" which is actually defined as the transpose of the derivative

Gradient of a scalar function of a vector

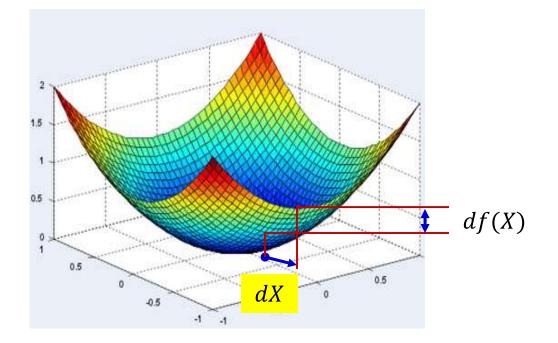


• The *derivative* $\nabla_X f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X $\frac{df(X) = \nabla_X f(X) dX}{dX}$

$$- \nabla_X f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} & \frac{\partial f(X)}{\partial x_2} & \cdots & \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$

- The **gradient** is the transpose of the derivative $\nabla_X f(X)^T$
 - A column vector of the same dimensionality as X

Gradient of a scalar function of a vector



• The *derivative* $\nabla_X f(X)$ of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

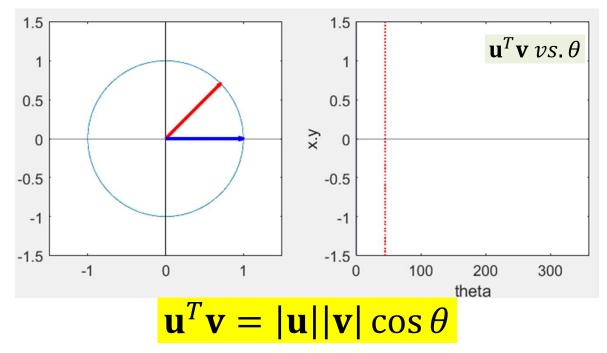
 $df(X) = \nabla_{x} f(X) dX$

$$V_X f(X) = \begin{bmatrix} \frac{\partial f(X)}{\partial x_1} & \frac{\partial f(X)}{\partial x_2} & \cdots & \frac{\partial f(X)}{\partial x_n} \end{bmatrix}$$

 \overline{V}

This is a vector inner product. To understand its behavior lets consider a well-known property of inner products

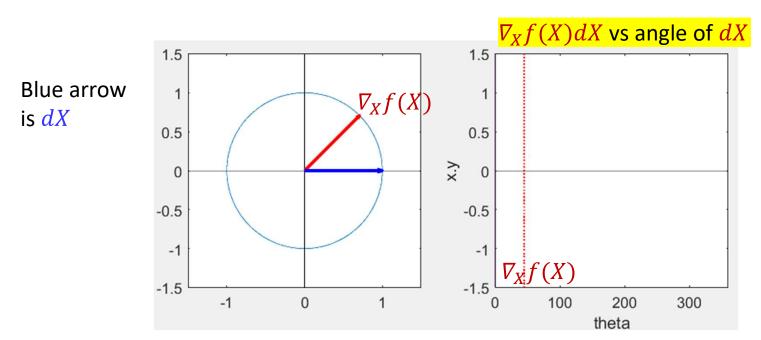
A well-known vector property



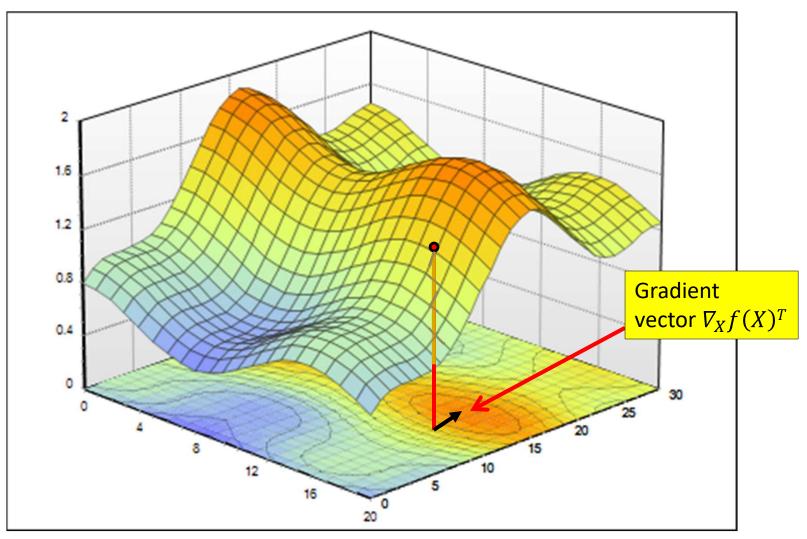
 The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

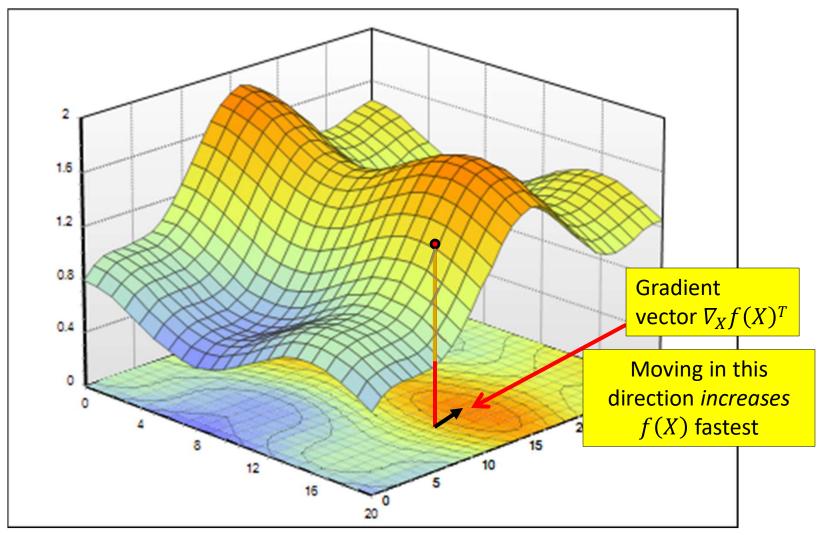
-i.e. when $\theta = 0$

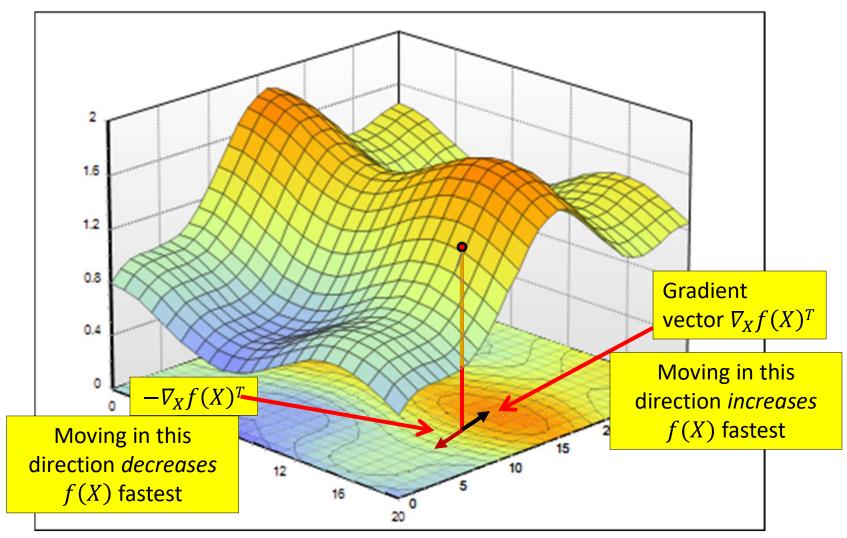
Properties of Gradient

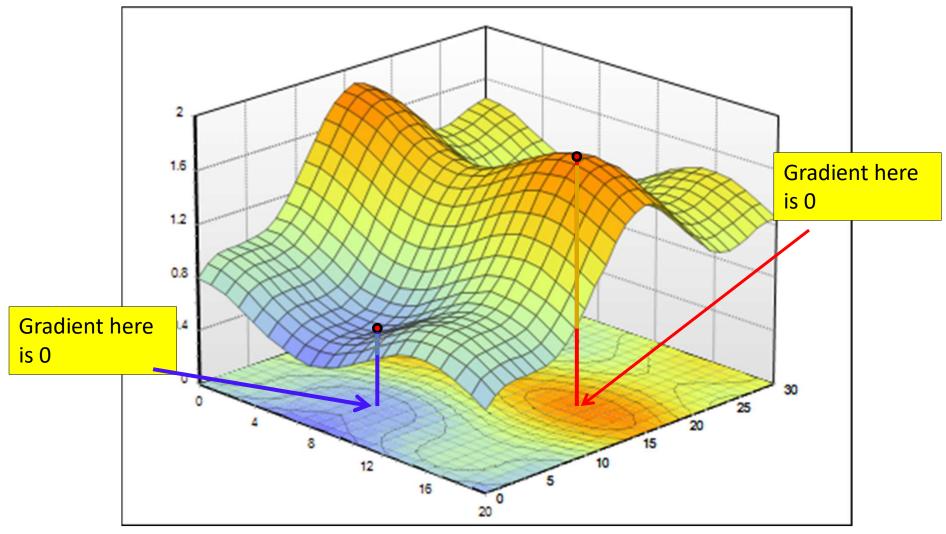


- $df(X) = \nabla_X f(X) dX$
- For an increment dX of any given length df(X) is max if dX is aligned with $\nabla_X f(X)^T$
 - The function f(X) increases most rapidly if the input increment dX is exactly in the direction of $\nabla_X f(X)^T$
- The gradient is the direction of fastest increase in f(X)

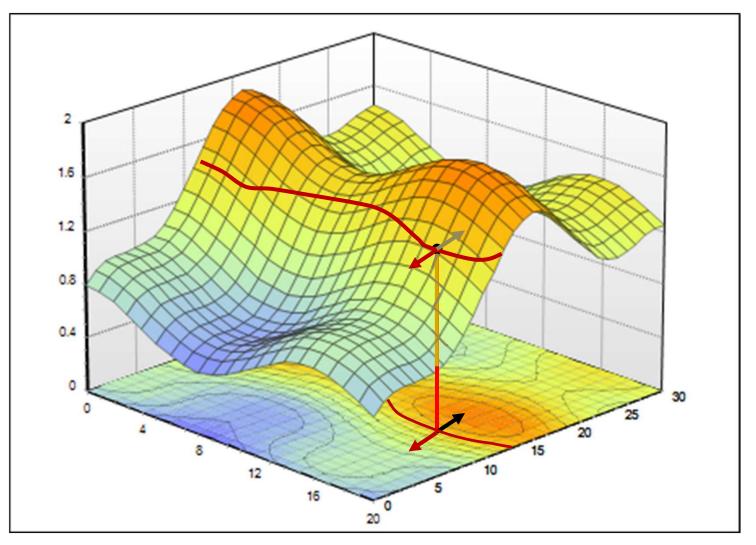








Properties of Gradient: 2



• The gradient vector $\nabla_X f(X)^T$ is perpendicular to the level curve

The Hessian

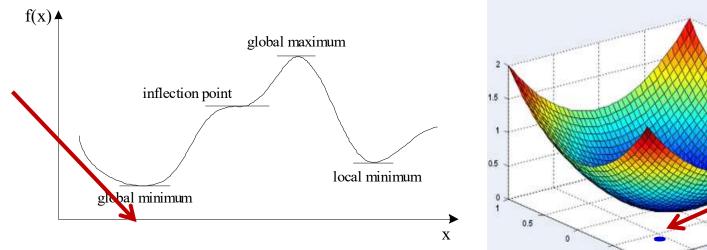
The Hessian of a function f (x₁, x₂, ..., x_n) is given by the second derivative

$$\nabla_{x}^{2} f(x_{1},...,x_{n}) \coloneqq \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdot & \cdot & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

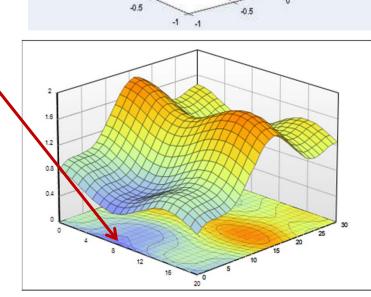
Poll 1

- Select all that are true about derivatives of a scalar function f(X) of multivariate inputs
 - At any location X, there may be many directions in which we can step, such that f(X) increases
 - The direction of the gradient is the direction in which the function increases fastest
 - The gradient is the derivative of f(X) w.r.t. X
- y = f(x) is a scalar function of an Nx1 column vector variable x. What is the shape of the derivative of y with respect to x
 - Scalar
 - N x 1 column vector
 - 1 x N row vector
 - There is insufficient information to decide

The problem of optimization



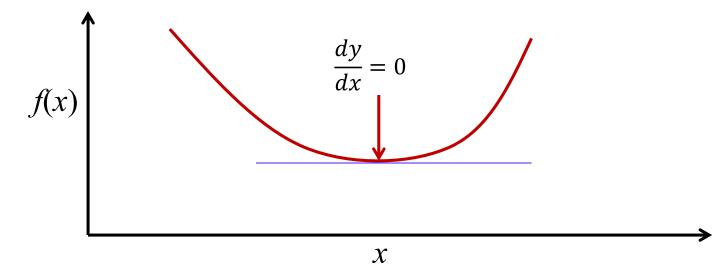
- General problem of optimization: Given a function
 f(x) of some variable x ...
- Find the value of *x* where **f**(*x*) is minimum



0.5

0

Finding the minimum of a function

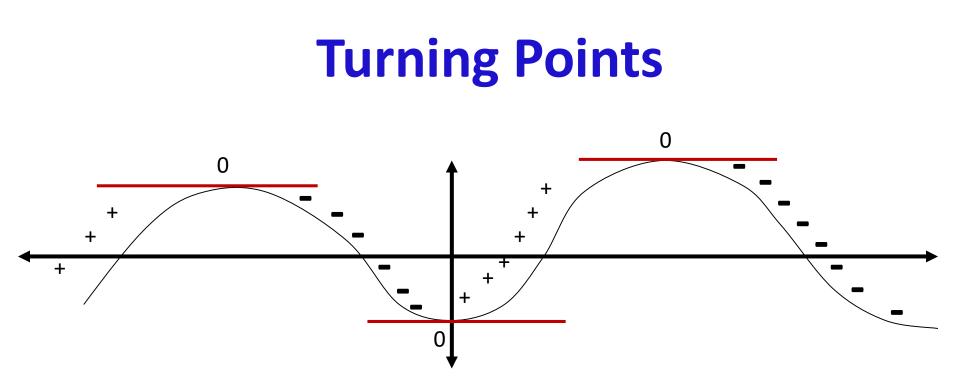


• Find the value x at which f'(x) = 0

- Solve

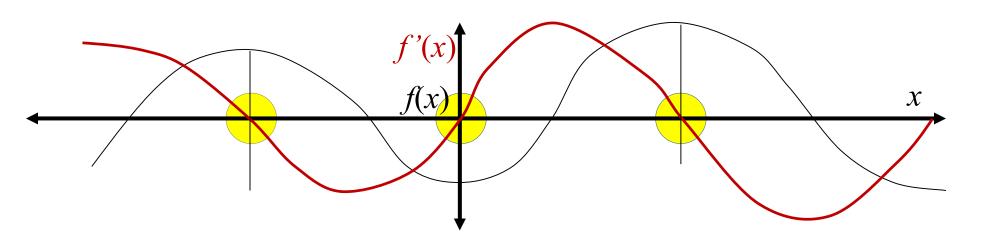
$$\frac{df(x)}{dx} = 0$$

- The solution is a "turning point"
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?



- Both maxima and minima have zero derivative
- Both are turning points

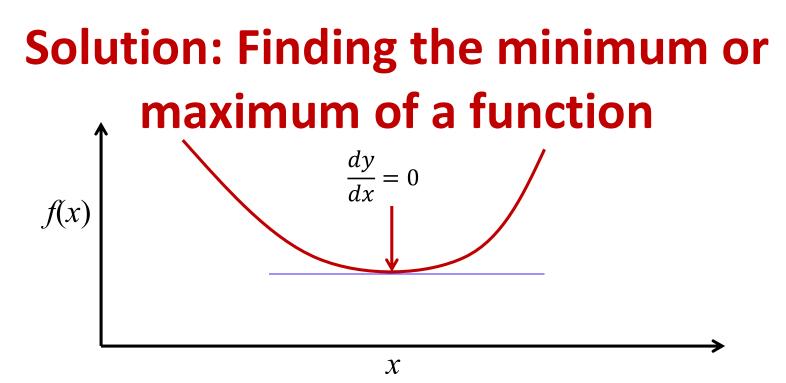
Derivatives of a curve



- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative

Derivative of the derivative of the curve f''(x) = f''(x) + f(x) + f(x

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative
- The second derivative f''(x) is -ve at maxima and +ve at minima!



• Find the value x at which
$$f'(x) = 0$$
: Solve

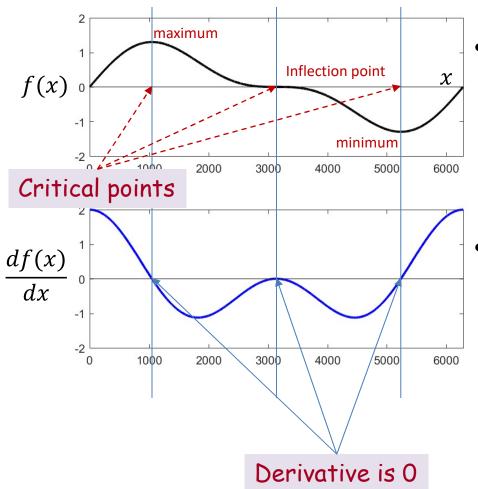
$$\frac{df(x)}{dx} = 0$$

- The solution *x*_{soln} is a *turning point*
- Check the double derivative at *x*_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

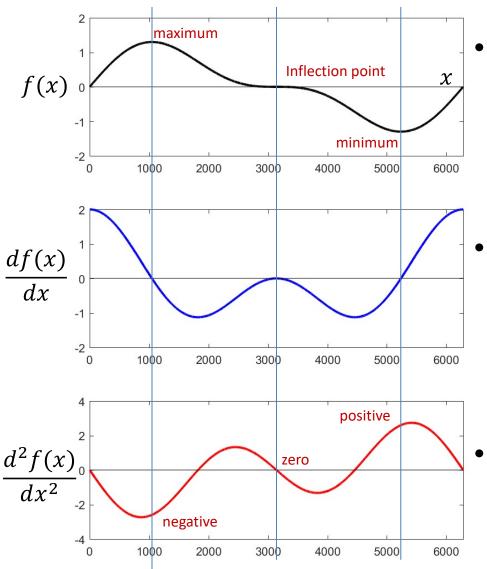
• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

A note on derivatives of functions of single variable



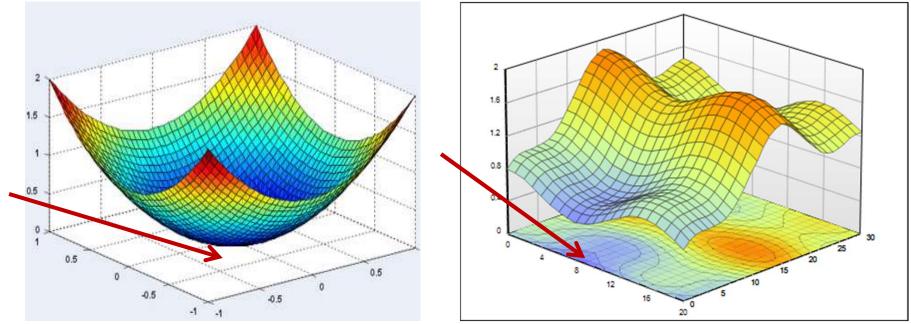
- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
 - The *second* derivative is
 - Positive (or 0) at minima
 - Negative (or 0) at maxima
 - Zero at inflection points

A note on derivatives of functions of single variable



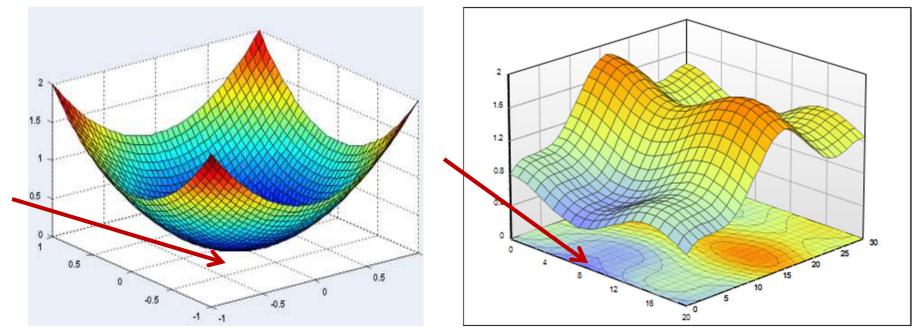
- All locations with zero derivative are *critical* points
 - These can be local maxima, local minima, or inflection points
 - The *second* derivative is
 - ≥ 0 at minima
 - $\ \le 0$ at maxima
 - Zero at inflection points
 - It's a little more complicated for functions of multiple variables..

What about functions of multiple variables?



- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, at the minimum/maximum, the gradient is 0
 - Really tiny shifts will not change the function value

Finding the minimum of a scalar function of a multivariate input



- The optimum point is a turning point the gradient will be 0
- Find the location where the gradient is 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the X where the derivative (or gradient) equals to zero $\nabla_{Y} f(X) = 0$

- 2. Compute the Hessian Matrix $\nabla_X^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

• Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) + (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

• Gradient

$$\nabla_{X} f^{T} = \begin{bmatrix} 2x_{1} + 1 - x_{2} \\ -x_{1} + 2x_{2} - x_{3} \\ -x_{2} + 2x_{3} + 1 \end{bmatrix}$$

Unconstrained Minimization of function (Example)

• Set the gradient to null

$$\nabla_{X} f = 0 \Longrightarrow \begin{bmatrix} 2x_{1} + 1 - x_{2} \\ -x_{1} + 2x_{2} - x_{3} \\ -x_{2} + 2x_{3} + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

Unconstrained Minimization of

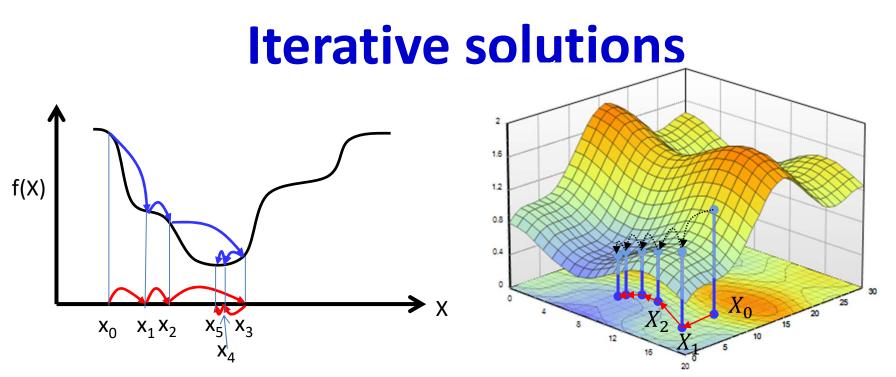
- Compute the Hessian matrix $\nabla_X^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

$$\lambda_1 = 3.414, \ \lambda_2 = 0.586, \ \lambda_3 = 2$$

 All the eigenvalues are positives => the Hessian matrix is positive definite

• The point
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
 is a minimum

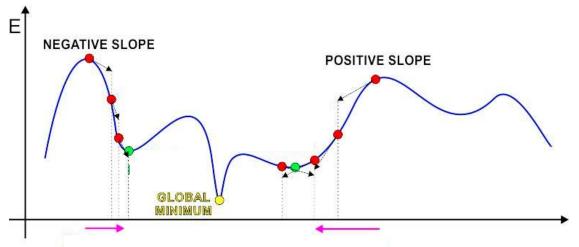
- Often it is not possible to simply solve $\nabla_X f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained



- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be



- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A negative derivative \rightarrow moving right decreases error
 - A positive derivative \rightarrow moving left decreases error
 - Shift point in this direction



- Iterative solution: Trivial algorithm
 - Initialize x^0

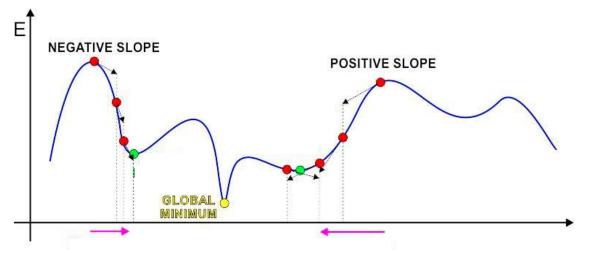
• While
$$f'(x^k) \neq 0$$

• If
$$sign(f'(x^k))$$
 is positive:
 $x^{k+1} = x^k - step$

• Else

$$x^{k+1} = x^k + step$$

– What must step be to ensure we actually get to the optimum?

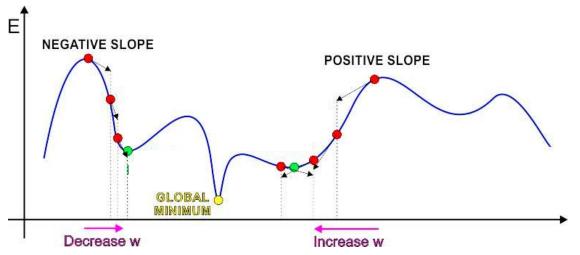


- Iterative solution: Trivial algorithm
 - Initialize x⁰

• While
$$f'(x^k) \neq 0$$

 $x^{k+1} = x^k - sign(f'(x^k))$.step

• Identical to previous algorithm



- Iterative solution: Trivial algorithm
 - Initialize x⁰

• While
$$f'(x^k) \neq 0$$

 $x^{k+1} = x^k - \eta^k f'(x^k)$

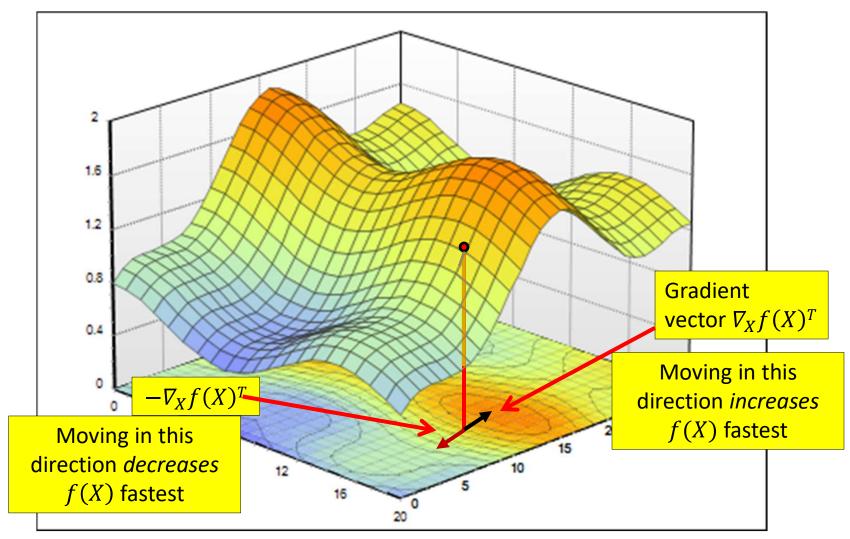
• η^k is the "step size"

Poll 3: Multivariate functions

Poll 3: Multivariate functions

- Select all that are true about derivatives of a scalar function f(X) of multivariate inputs
 - At any location X, there may be many directions in which we can step, such that f(X) increases
 - The direction of the gradient is the direction in which the function increases fastest
 - The gradient is the derivative of f(X) w.r.t. X

Gradients of multivariate functions



Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function *f* iteratively
 - To find a maximum move in the direction of the gradient

$$x^{k+1} = x^k + \eta^k \nabla_x f(x^k)^T$$

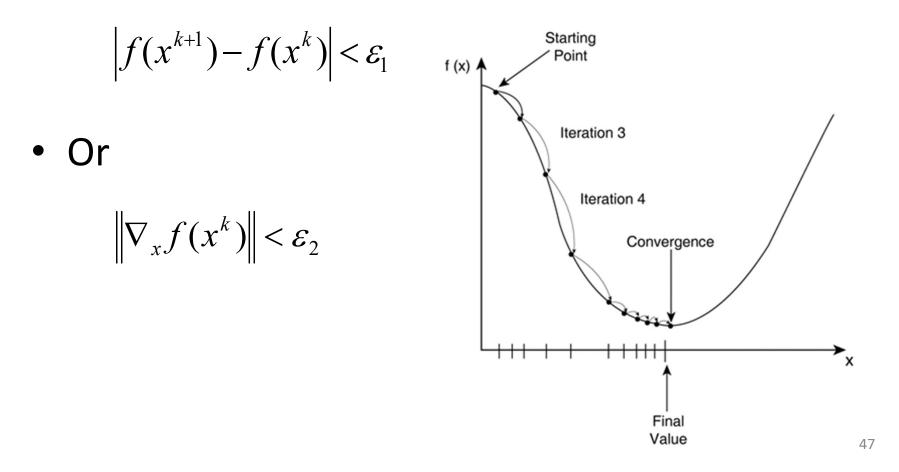
 To find a minimum move exactly opposite the direction of the gradient

$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• Many solutions to choosing step size η^k

Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied



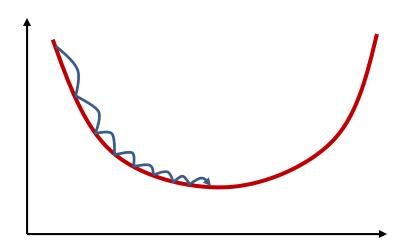
Overall Gradient Descent Algorithm

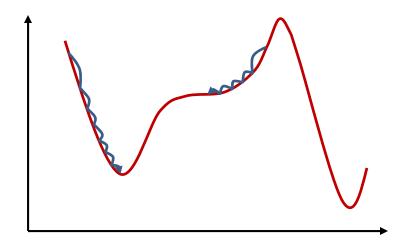
• Initialize:

• do
•
$$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• $k = k + 1$
• while $|f(x^{k+1}) - f(x^k)| > \varepsilon$

Convergence of Gradient Descent





- For appropriate step size, for convex (bowlshaped) functions gradient descent will always find the minimum.
- For non-convex functions it will find a local minimum or an inflection point

Poll 4

- y = f(x) is a scalar function of an Nx1 column vector variable
 x. Starting from x = x₀, in which direction must we move in
 the space of x, to achieve the maximum decrease in f()?
 - Exactly in the direction of the gradient of f(x) at x_0
 - Exactly perpendicular to the direction of the gradient of f(x) at x_0
 - Exactly opposite to the direction of the gradient of f(x) at x_0
 - Exactly perpendicular to the direction of the gradient of f(x) at x_0 .

• Returning to our problem from our detour..

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function $Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$

w.r.t W

• This is problem of function minimization

– An instance of optimization

Gradient Descent to train a network

• Initialize:

$$-W^{0}$$

$$-k = 0$$

do

$$-W^{k+1} = W^{k} - \eta^{k} \nabla Loss(W^{k})^{T}$$

$$-k = k + 1$$
while $|Loss(W^{k}) - Loss(W^{k-1})| > \varepsilon$

Preliminaries

• Before we proceed: the problem setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

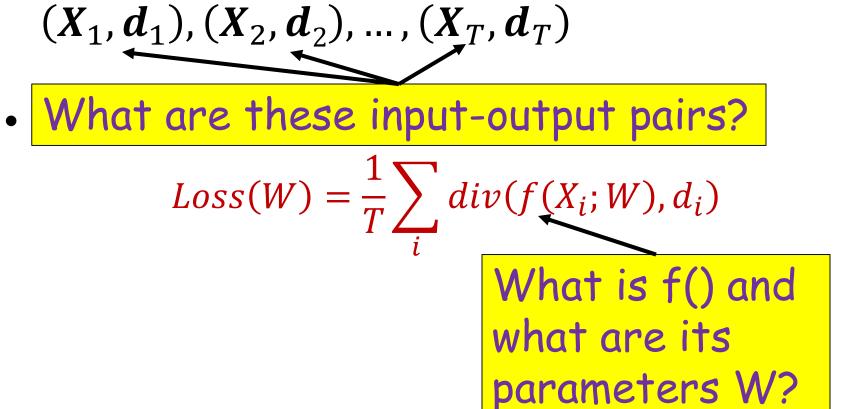
w.r.t W

• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$

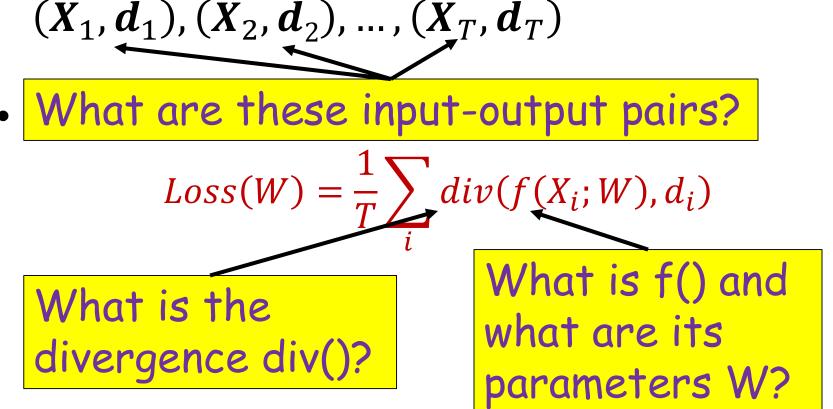
• What are these input-output pairs?

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

• Given a training set of input-output pairs



• Given a training set of input-output pairs

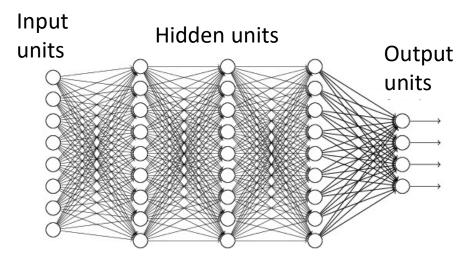


- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

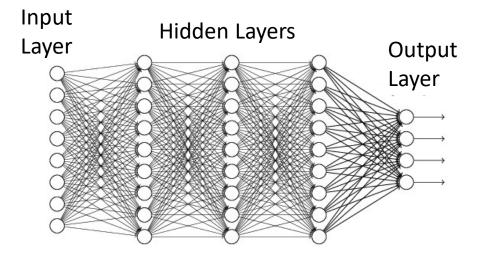
What is f() and
what are its
parameters W?

What is f()? Typical network



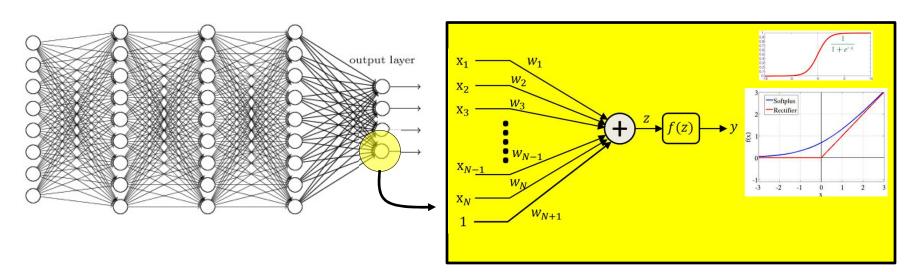
- Multi-layer perceptron
- A *directed* network with a set of inputs and outputs
 - No loops

Typical network



- We assume a "layered" network for simplicity
 - Each "layer" of neurons only gets inputs from the earlier layer(s) and outputs signals only to later layer(s)
 - We will refer to the inputs as the *input layer*
 - No neurons here the "layer" simply refers to inputs
 - We refer to the outputs as the *output layer*
 - Intermediate layers are "hidden" layers

The individual neurons



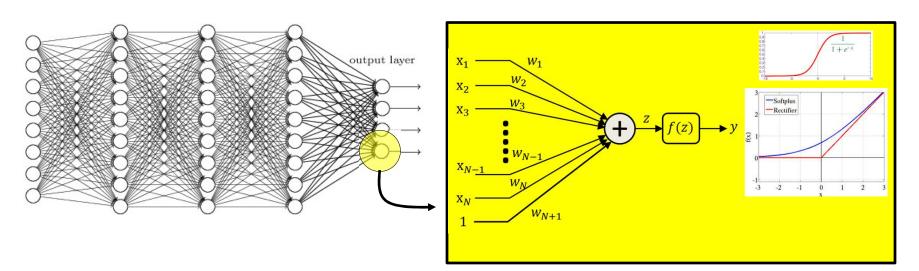
- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A continuous activation function applied to an affine function of the inputs

$$y = f\left(\sum_{i} w_i x_i + b\right)$$

- More generally: *any* differentiable function

$$y = f(x_1, x_2, ..., x_N; W)$$
 63

The individual neurons



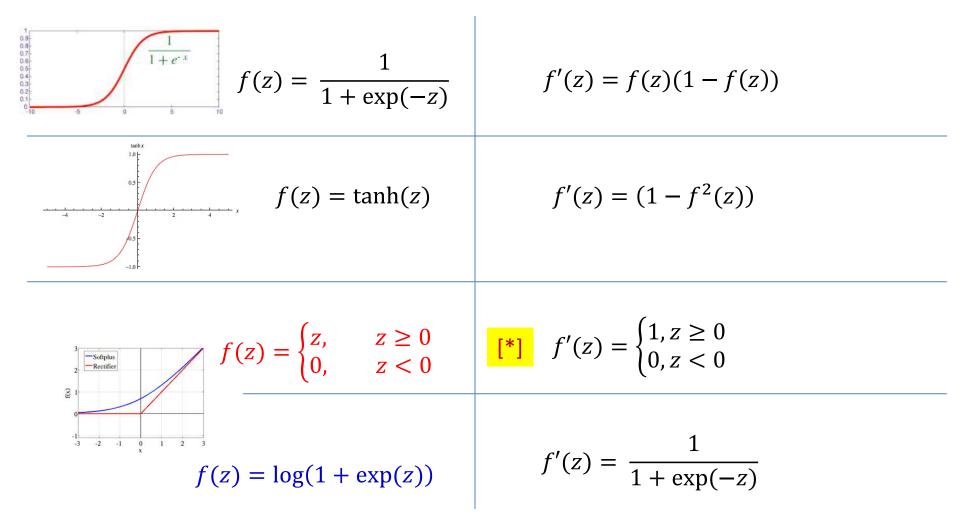
- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A continuous activation function applied to an affine function of the inputs
 We will assume this

$$y = f\left(\sum_{i} w_i x_i + b\right) \bigstar$$

- More generally: *any* differentiable function $y = f(x_1, x_2, ..., x_N; W)$ We will assume this unless otherwise specified

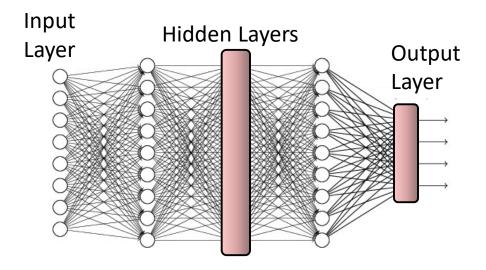
Parameters are weights w_i and bias b

Activations and their derivatives



Some popular activation functions and their derivatives

Vector Activations

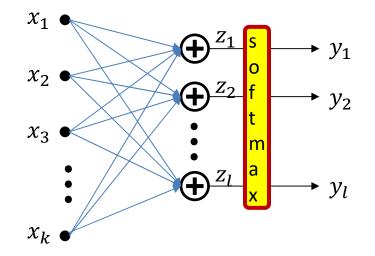


• We can also have neurons that have *multiple coupled* outputs

$$[y_1, y_2, \dots, y_l] = f(x_1, x_2, \dots, x_k; W)$$

- Function *f*() operates on set of inputs to produce set of outputs
- Modifying a single parameter in W will affect *all* outputs 66

Vector activation example: Softmax

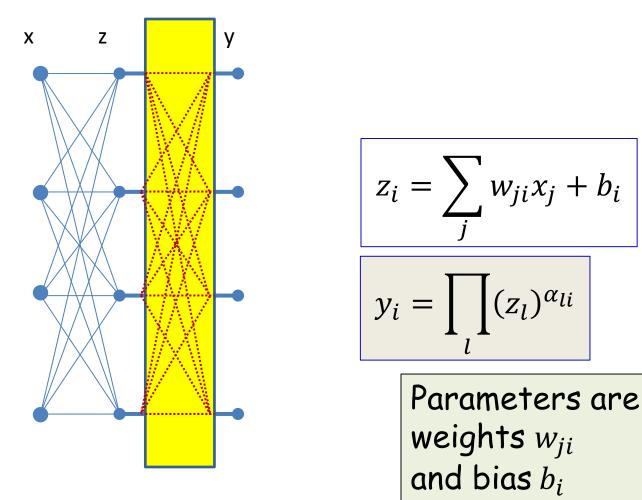


• Example: Softmax *vector* activation

$$z_{i} = \sum_{j} w_{ji} x_{j} + b_{i}$$
$$y = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$$

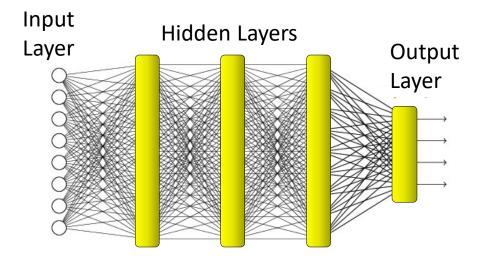
Parameters are weights w_{ji} and bias b_i

Multiplicative combination: Can be viewed as a case of vector activations

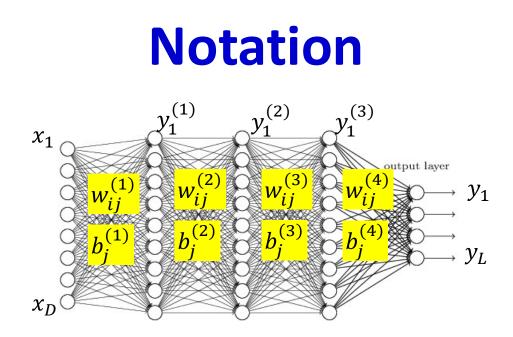


• A layer of multiplicative combination is a special case of vector activation

Typical network

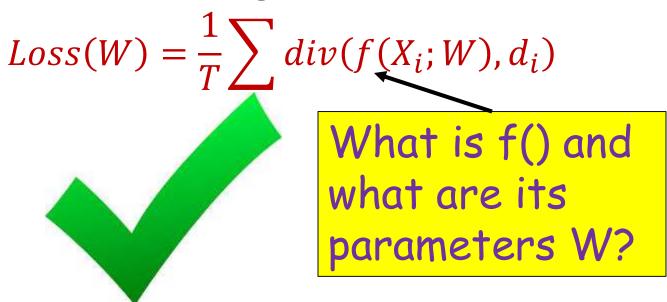


 In a layered network, each layer of perceptrons can be viewed as a single vector activation



- The input layer is the Oth layer
- We will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the k-th layer as w^(k)_{ii}
 - The bias to the jth unit of the k-th layer is $b_i^{(k)}$

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

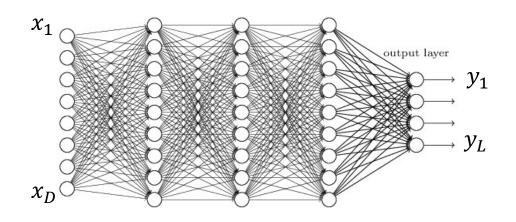


• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$

• What are these input-output pairs?

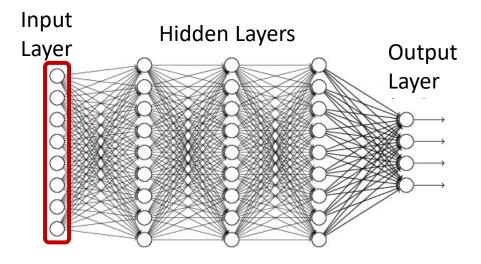
$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

Input, target output, and actual output: Vector notation

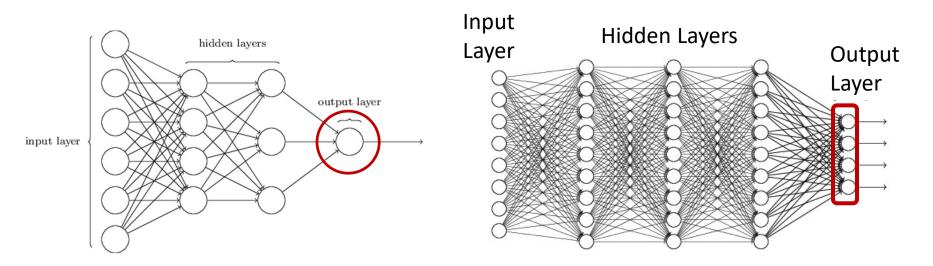


- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- $X_n = [x_{n1}, x_{n2}, \dots, x_{nD}]^T$ is the nth input vector
- $d_n = [d_{n1}, d_{n2}, \dots, d_{nL}]^T$ is the nth desired output
- $Y_n = [y_{n1}, y_{n2}, ..., y_{nL}]^T$ is the nth vector of *actual* outputs of the network - Function of input X_n and network parameters
- We will sometimes drop the first subscript when referring to a *specific* instance

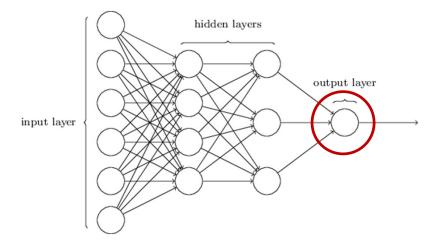
Representing the input



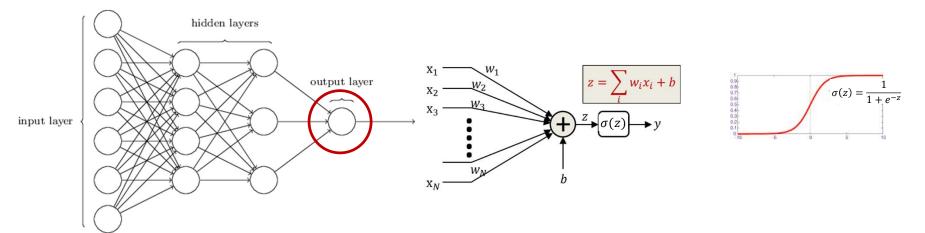
- Vectors of numbers
 - (or may even be just a scalar, if input layer is of size 1)
 - E.g. vector of pixel values
 - E.g. vector of speech features
 - E.g. real-valued vector representing text
 - We will see how this happens later in the course
 - Other real valued vectors



- If the desired *output* is real-valued, no special tricks are necessary
 - Scalar Output : single output neuron
 - d = scalar (real value)
 - Vector Output : as many output neurons as the dimension of the desired output
 - $d = [d_1 d_2 .. d_L]$ (vector of real values)



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - -1 = Yes it's a cat
 - 0 = No it's not a cat.



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
 - Viewed as the probability P(Y = 1|X) of class value 1
 - Indicating the fact that for actual data, in general a feature value X may occur for both classes, but with different probabilities
 - Is differentiable



- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it's a cat
 - 0 = No it's not a cat.
- Sometimes represented by *two* outputs, one representing the desired output, the other representing the *negation* of the desired output
 - Yes: \rightarrow [1 0]
 - No: \rightarrow [0 1]
- The output explicitly becomes a 2-output softmax

Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector, with the classes arranged in a chosen order:

[cat dog camel hat flower][⊤]

• For inputs of each of the five classes the desired output is:

```
cat: [10000]<sup>T</sup>
```

```
dog: [0 \ 1 \ 0 \ 0 \ 0]^{\top}
```

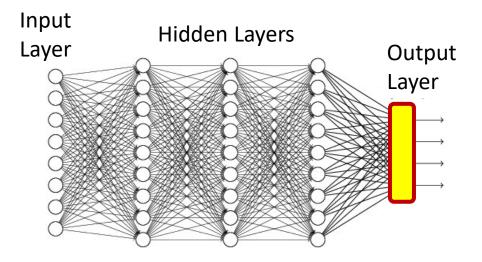
```
camel: [0 \ 0 \ 1 \ 0 \ 0]^{T}
```

```
hat: [00010]<sup>+</sup>
```

```
flower: [0 \ 0 \ 0 \ 0 \ 1]^{T}
```

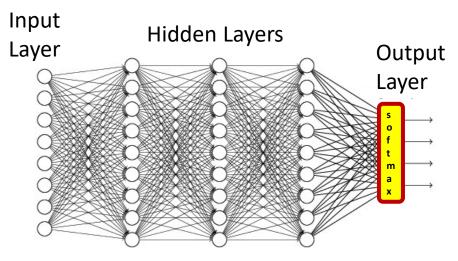
- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks



- For a multi-class classifier with N classes, the one-hot representation will have N binary target outputs
 - The desired output d is an N-dimensional binary vector
- The neural network's **actual** output too must ideally be binary (N-1 zeros and a single 1 in the right place)
- More realistically, it will be a probability vector
 - N probability values that sum to 1.

Multi-class classification: Output



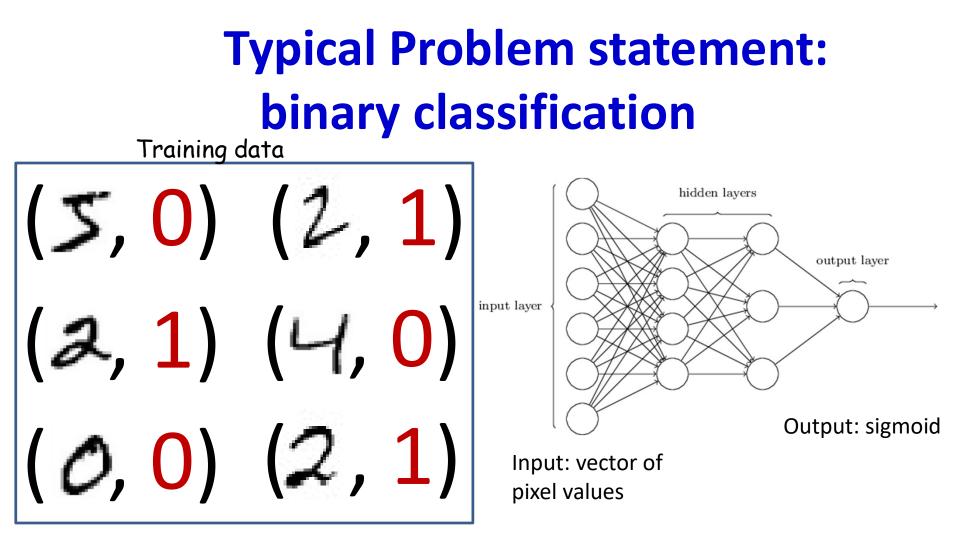
• Softmax *vector* activation is often used at the output of multi-class classifier nets

$$z_{i} = \sum_{j} w_{ji}^{(n)} y_{j}^{(n-1)}$$
$$y_{i} = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$$

• This can be viewed as the probability $y_i = P(class = i|X)$

Inputs and outputs: Typical Problem Statement

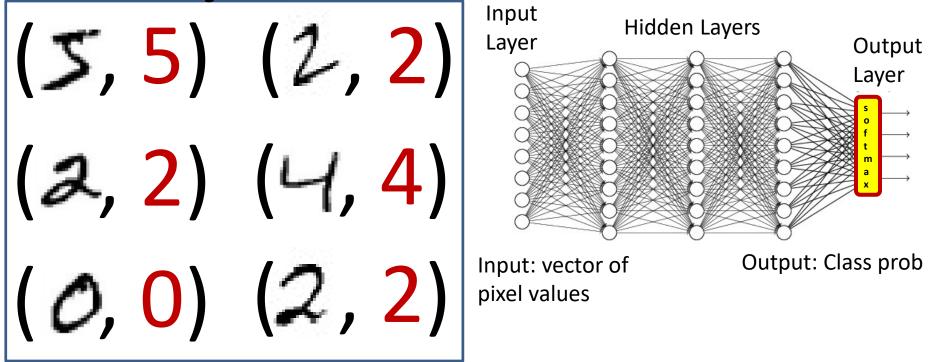
- We are given a number of "training" data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
 - Binary recognition: Is this a "2" or not
 - Multi-class recognition: Which digit is this?



- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Typical Problem statement: multiclass classification

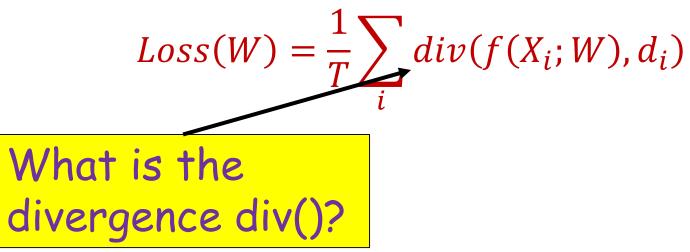
Training data



- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

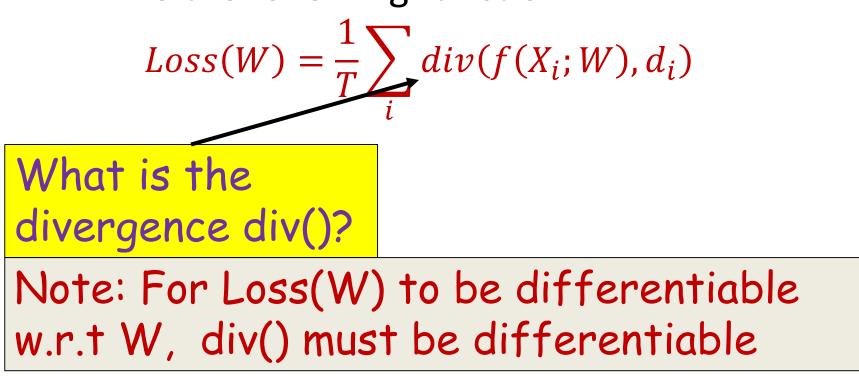
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

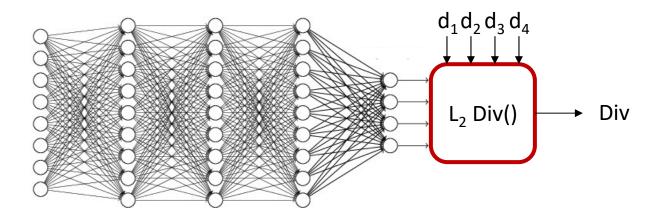


Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function



Examples of divergence functions



• For real-valued output vectors, the (scaled) L₂ divergence is popular

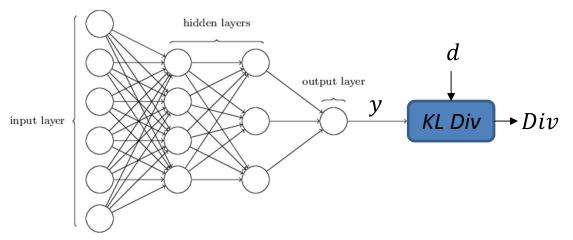
$$Div(Y,d) = \frac{1}{2} ||Y - d||^2 = \frac{1}{2} \sum_{i} (y_i - d_i)^2$$

- Squared Euclidean distance between true and desired output
- Note: this is differentiable

$$\frac{dDiv(Y,d)}{dy_i} = (y_i - d_i)$$

$$\nabla_Y Div(Y,d) = [y_1 - d_1, y_2 - d_2, \dots]$$

For binary classifier



• For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the Kullback Leibler (KL) divergence between the probability distribution [Y, 1 - Y] and the ideal output probability [d, 1 - d] is popular

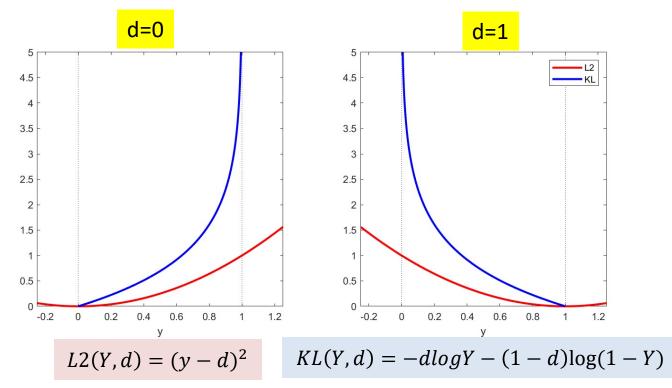
$$Div(Y,d) = -dlogY - (1-d)\log(1-Y)$$

- Minimum when d = Y
- Derivative

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

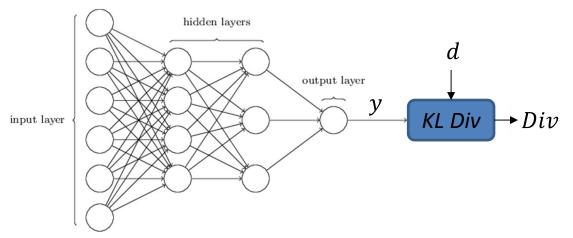
$$\frac{dKLDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

KL vs L2



- Both KL and L2 have a minimum when y is the target value of d
- KL rises much more steeply away from *d*
 - Encouraging faster convergence of gradient descent
- The derivative of KL is *not* equal to 0 at the minimum
 - It is 0 for L2, though

For binary classifier



• For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the Kullback Leibler (KL) divergence between the probability distribution [Y, 1 - Y] and the ideal output probability [d, 1 - d] is popular

$$Div(Y,d) = -dlogY - (1-d)\log(1-Y)$$

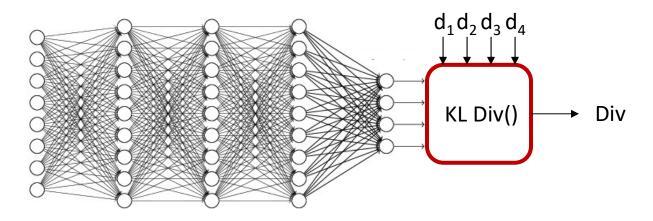
(1

- Minimum when d = Y
- Derivative

Note: when
$$y = d$$
 the derivative is *not* 0

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$
Even though div() = 0
(minimum) *when y = d*

For multi-class classification



- Desired output *d* is a one hot vector $[0 \ 0 \dots 1 \ \dots 0 \ 0 \ 0]$ with the 1 in the *c*-th position (for class *c*)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y, d) = \sum_{i} d_i \log \frac{d_i}{y_i} = \sum_{i} d_i \log d_i - \sum_{i} d_i \log y_i = -\log y_c$$

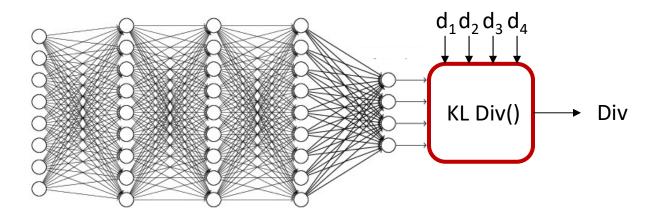
• Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1}{y_{c}} & \text{for the } c - th \text{ component} \\ 0 & \text{for remaining component} \end{cases}$$
$$\nabla_{Y}Div(Y,d) = \begin{bmatrix} 0 & \dots & \frac{-1}{y_{c}} & \dots & 0 & 0 \end{bmatrix}$$

The slope is negative w.r.t. y_c

Indicates *increasing* y_c will *reduce* divergence

For multi-class classification



- Desired output *d* is a one hot vector $[0 \ 0 \dots 1 \ \dots 0 \ 0 \ 0]$ with the 1 in the *c*-th position (for class *c*)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i} = 0 - \log y_{c} = -\log y_{c}$$
Note: when $y = d$ the
derivative is not 0
$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1}{y_{c}} \text{ for the } c - th \text{ component}} \\ 0 \text{ for remaining component} \end{cases}$$

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1}{y_{c}} \text{ for the } c - th \text{ component}} \\ 0 \text{ for remaining component} \end{cases}$$

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{bmatrix} 0 0 \dots \frac{-1}{y_{c}} \dots 0 0 \end{bmatrix}$$

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{bmatrix} 0 0 \dots \frac{-1}{y_{c}} \dots 0 0 \end{bmatrix}$$

KL divergence vs cross entropy

• KL divergence between *d* and *y*:

$$KL(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

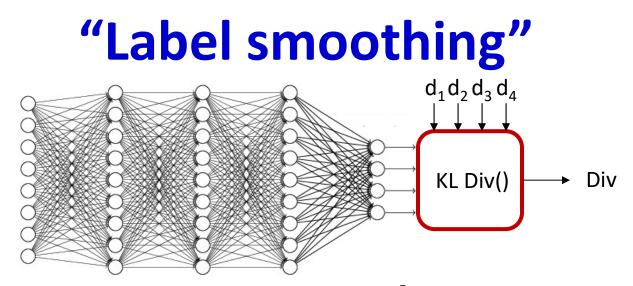
• *Cross-entropy* between *d* and *y*:

$$Xent(Y,d) = -\sum_{i} d_i \log y_i$$

• The cross entropy is merely the KL - entropy of d

$$Xent(Y,d) = KL(Y,d) - \sum_{i} d_{i} \log d_{i} = KL(Y,d) - H(d)$$

- The W that minimizes cross-entropy will minimize the KL divergence
 - since d is the desired output and does not depend on the network, H(d) does not depend on the net
 - In fact, for one-hot d, H(d) = 0 (and KL = Xent)
- We will generally minimize to the *cross-entropy* loss rather than the KL divergence
 - The Xent is *not* a divergence, and although it attains its minimum when y = d, its minimum value is not 0

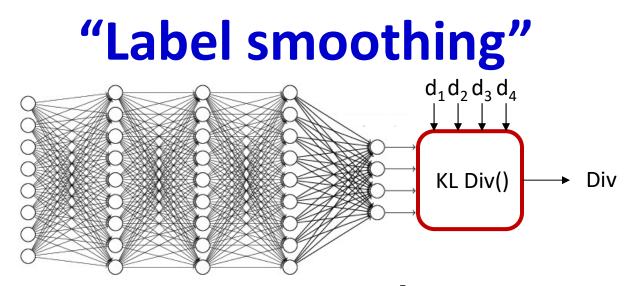


- It is sometimes useful to set the target output to [ε ε ... (1 − (K − 1)ε) ... ε ε ε] with the value 1 − (K − 1)ε in the *c*-th position (for class *c*) and ε elsewhere for some small ε
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:

$$Div(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1 - (K - 1)\epsilon}{y_{c}} & \text{for the } c - th \text{ component} \\ -\frac{\epsilon}{y_{i}} \text{for remaining components} \end{cases}$$



- It is sometimes useful to set the target output to [ε ε ... (1 − (K − 1)ε) ... ε ε ε] with the value 1 − (K − 1)ε in the *c*-th position (for class *c*) and ε elsewhere for some small ε
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:

$$Div(Y,d) = \sum_{i} d_{i} \log d_{i} - \sum_{i} d_{i} \log y_{i}$$

Negative derivatives encourage increasing the probabilities of all classes, including incorrect classes! (Seems wrong, no?)

• Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1 - (K - 1)\epsilon}{y_{c}} & \text{for the } c - th \text{ component} \\ -\frac{\epsilon}{y_{i}} & \text{for remaining components} \end{cases}$$

Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

ALL TERMS HAVE BEEN DEFINED

Poll 5

- Select all that are correct
 - The gradient of the loss will always be 0 or close to 0 at a minimum
 - The gradient of the loss may be 0 or close to 0 at a minimum
 - The gradient of the loss may have large magnitude at a minimum
 - If the gradient is not 0 at a minimum, it must be a local minimum

Story so far

- Neural nets are universal approximators
- Neural networks are trained to approximate functions by adjusting their parameters to minimize the average divergence between their actual output and the desired output at a set of "training instances"
 - Input-output samples from the function to be learned
 - The average divergence is the "Loss" to be minimized
- To train them, several terms must be defined
 - The network itself
 - The manner in which inputs are represented as numbers
 - The manner in which outputs are represented as numbers
 - As numeric vectors for real predictions
 - As one-hot vectors for classification functions
 - The divergence function that computes the error between actual and desired outputs
 - L2 divergence for real-valued predictions
 - KL divergence for classifiers

Next Class

• Backpropagation