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Recap: Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Divergence on the i-th instance:  ௜ ௜

– Empirical average divergence on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected 
divergence

ௐ

– I.e. minimize the empirical risk over the drawn samples 2



Recap: Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:  ௜ ௜

– Empirical average error on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 3

This is an instance of 
function minimization
(optimization)



A quick intro to 
function optimization

with an initial discussion of 
derivatives

4



A brief note on derivatives..

• A derivative of a function at any point tells us how 
much a minute increment to the argument of the 
function will increment the value of the function
 For any expressed as a multiplier to a tiny 

increment to obtain the increments to the output

 Based on the fact that at a fine enough resolution, any 
smooth, continuous function is locally linear at any point 5

derivative



• When and are scalar

 Derivative:

 Often represented (using somewhat inaccurate notation) as ௗ௬

ௗ௫

 Or alternately (and more reasonably) as 
6

Scalar function of scalar argument



 Derivative is the rate of change of the function at 
 How fast it increases with increasing 𝑥
 The magnitude of f’(x) gives you the steepness of the curve at x

 Larger |f’(x)|  the function is increasing or decreasing more rapidly

 It will be positive where a small increase in x results in an increase of f(x)
 Regions of positive slope

 It will be negative where a small increase in x results in a decrease  of f(x)
 Regions of negative slope 

 It will be 0 where the function is locally flat (neither increasing nor decreasing)
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• Giving us that is a row vector: ଵ ஽

ଵ ଵ ଶ ଶ ஽ ஽

• The partial derivative ௜ gives us how increments when only ௜ is 
incremented

• Often represented as డ௬

డ௫೔

ଵ
ଵ

ଶ
ଶ

஽
஽
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Multivariate scalar function:
Scalar function of vector argument

Note: is now also a vector

ଵ

஽

is now a vector: 
ଵ

஽



• Where

o You may be more familiar with the term “gradient” which 
is actually defined as the transpose of the derivative

9

Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

We will be using this 
symbol for vector and
matrix derivatives



Gradient of a scalar function of a vector

• The derivative ௑ of a scalar function of a multi-variate input is a 
multiplicative factor that gives us the change in for tiny variations in 

௑

– ௑
డ௙ ௑

డ௫భ

డ௙ ௑

డ௫మ

డ௙ ௑

డ௫೙

• The gradient is the transpose of the derivative ௑
்

– A column vector of the same dimensionality as 
10



Gradient of a scalar function of a vector

• The derivative ௑ of a scalar function of a multi-variate input is a 
multiplicative factor that gives us the change in for tiny variations in 

௑

– ௑
డ௙ ௑

డ௫భ

డ௙ ௑

డ௫మ

డ௙ ௑

డ௫೙

• The gradient is the transpose of the derivative ௑
்

– A column vector of the same dimensionality as 
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This is a vector inner product.  To understand its behavior lets
consider a well-known property of inner products



A well-known vector property

• The inner product between two vectors of 
fixed lengths is maximum when the two 
vectors are aligned
– i.e. when 

12
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Properties of Gradient

•

• For an increment of any given length  is max if 
is aligned with T

– The function f(X) increases most rapidly if the input increment 
is exactly in the direction of ௑

T

• The gradient is the direction of fastest increase in f(X) 13

௑

௑ vs angle of 

Blue arrow
is 

௑



Gradient
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Gradient
vector ௑

𝑇



Gradient

15

Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest



Gradient
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Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest
௑

𝑇

Moving in this 
direction decreases 

fastest



Gradient

17

Gradient here
is 0

Gradient here
is 0



Properties of Gradient: 2

• The gradient vector ௑
𝑇 is perpendicular to the level curve
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The Hessian
• The Hessian of a function is 

given by the second derivative 
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Poll 1
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Poll 1
• Select all that are true about derivatives of a scalar function f(X) of 

multivariate inputs
– At any location X, there may be many directions in which we can step, such 

that f(X) increases
– The direction of the gradient is the direction in which the function increases 

fastest 
– The gradient is the derivative of f(X) w.r.t. X 

• y = f(x) is a scalar function of an Nx1  column vector variable x. What is the 
shape of the derivative of  y with respect to x
– Scalar
– N x 1  column vector
– 1 x N row vector
– There is insufficient information to decide

21



The problem of optimization

• General problem of 
optimization: Given a function 
f(x) of some variable x …

• Find the value of x where f(x)
is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

22



Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum? 
23

x

f(x)



Poll 2
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Turning Points
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• Both maxima and minima have zero derivative

• Both are turning points
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Derivatives of a curve
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• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)



Derivative of the derivative of the 
curve
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• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and 
+ve at minima!

xf(x)

f ’(x)
f ’’(x)



Solution: Finding the minimum or 
maximum of a function

• Find the value at which = 0:    Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum, otherwise it is a maximum

28

x

f(x)



A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables

29

Critical points

Derivative is 0

maximum
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A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables..

30

ଶ

ଶ

maximum

minimum

Inflection point

negative

positive

zero



What about functions of multiple 
variables?

• The optimum point is still  “turning” point
– Shifting in any direction will increase the value
– For smooth functions, at the minimum/maximum, the gradient 

is 0
• Really tiny shifts will not change the function value

31



Finding the minimum of a scalar 
function of a multivariate input

• The optimum point is a turning point – the 
gradient will be 0

• Find the location where the gradient is 0
32



Unconstrained Minimization of 
function (Multivariate)

1. Solve for the where the derivative (or gradient) 
equals to zero

2. Compute the Hessian Matrix at the candidate 
solution and verify that
– Hessian is positive definite (eigenvalues positive)  -> to 

identify local minima 

– Hessian is negative definite (eigenvalues negative) -> to 
identify local maxima

33
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Unconstrained Minimization of 
function (Example)

• Minimize

• Gradient 
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Unconstrained Minimization of 
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns
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Unconstrained Minimization of 
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian 
matrix is positive definite

• The point                                is a minimum
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Closed Form Solutions are not always 
available

• Often it is not possible to simply solve 
– The function to minimize/maximize may have an 

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it 

iteratively until the correct value is obtained
37
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Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal 
– Update the guess towards a (hopefully) “better” value of 
– Stop when no longer decreases

• Problems: 
– Which direction to step in
– How big must the steps be

38

f(X)

X
x0 x1 x2 x3

x4

x5
଴

ଵ
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The Approach of Gradient Descent

• Iterative solution:  
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A negative derivative moving right decreases error
– A positive derivative moving left decreases error

– Shift point in this direction
39



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• If ᇱ ௞ is positive:
𝑥௞ାଵ = 𝑥௞ − 𝑠𝑡𝑒𝑝

• Else
𝑥௞ାଵ = 𝑥௞ + 𝑠𝑡𝑒𝑝

– What must step be to ensure we actually get to the optimum?40



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• Identical to previous algorithm
41



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• is the “step size”
42



Poll 3:  Multivariate functions

43



Poll 3:  Multivariate functions

• Select all that are true about derivatives of a 
scalar function f(X) of multivariate inputs
– At any location X, there may be many directions 

in which we can step, such that f(X) increases
– The direction of the gradient is the direction in 

which the function increases fastest
– The gradient is the derivative of f(X) w.r.t. X

44



Gradients of multivariate functions

45

Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest
௑

𝑇

Moving in this 
direction decreases 

fastest



Gradient descent/ascent (multivariate) 

• The gradient descent/ascent method to find the 
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the 

gradient

– To find a minimum move exactly opposite the 
direction of the gradient

• Many solutions to choosing step size 
46



Gradient descent convergence criteria 

• The gradient descent algorithm converges 
when one of the following criteria is satisfied

• Or

47
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Overall Gradient Descent Algorithm

• Initialize: 




• do





• while 

48



Convergence of Gradient Descent
• For appropriate step 

size, for convex (bowl-
shaped) functions 
gradient descent will 
always find the 
minimum.

• For non-convex 
functions it will find a 
local minimum or an 
inflection point

49



Poll 4
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Poll 4

• y = f(x) is a scalar function of an Nx1 column vector variable 
x. Starting from x = x0,  in which direction must we move in 
the space of x, to achieve the maximum decrease in f()?
– Exactly in the direction of the gradient of  f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at x0

– Exactly opposite to the direction of the gradient of f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at 
x0.

51



• Returning to our problem from our detour..

52



Problem Statement
• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization

53



Gradient Descent to train a network

• Initialize: 
–

–

• do 
–  
–

• while 

11-755/18-797 54



Preliminaries

• Before we proceed: the problem setup

55



• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization

56

Problem Setup: Things to define



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

57

What are these input-output pairs?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

58

What are these input-output pairs?

What is f() and 
what are its 
parameters W?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

59

What are these input-output pairs?

What is f() and 
what are its 
parameters W?

What is the 
divergence div()?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

60

What is f() and 
what are its 
parameters W?



What is f()? Typical network

• Multi-layer perceptron

• A directed network with a set of inputs and 
outputs
– No loops

61

Input
units Output

units

Hidden units



Typical network

• We assume a “layered” network for simplicity
– Each “layer” of neurons only gets inputs from the earlier layer(s) 

and outputs signals only to later layer(s)
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer
– Intermediate layers are “hidden” layers 62

Input
Layer Output

Layer

Hidden Layers



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A continuous activation function applied to an affine 

function of the inputs

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally:  any differentiable function

ଵ ଶ ே 63



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A continuous activation function applied to an affine 

function of the inputs

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally:  any differentiable function

ଵ ଶ ே 64

We will assume this
unless otherwise
specified

Parameters are weights
௜ and bias 



Activations and their derivatives

• Some popular activation functions and their 
derivatives 65
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Vector Activations

• We can also have neurons that have multiple coupled 
outputs

– Function operates on set of inputs to produce set of 
outputs

– Modifying a single parameter in will affect all outputs 66

Input
Layer Output

Layer

Hidden Layers



Vector activation example: Softmax

• Example: Softmax vector activation
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Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
68

zx y

೗೔

Parameters are 
weights 
and bias



Typical network

• In a layered network, each layer of 
perceptrons can be viewed as a single vector 
activation

69

Input
Layer Output

Layer

Hidden Layers



Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as ௜
(௞)

– Input to network: ௜
(଴)

௜

– Output of network:  ௜ ௜
(ே)

• We will represent the weight of the connection between the i-th unit of 
the k-1th layer and the jth unit of the k-th layer as ௜௝

(௞)

– The bias to the jth unit of the k-th layer is ௝
(௞)

70
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

71

What is f() and 
what are its 
parameters W?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

72

What are these input-output pairs?



Input, target output, and actual output: 
Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

• ௡ ௡ଵ ௡ଶ ௡஽
ୃ is the nth input vector

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth desired output

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth vector of actual outputs of the network

– Function of input ௡ and network parameters

• We will sometimes drop the first subscript when referring to a specific 
instance

73
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Representing the input

• Vectors of numbers 
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
74

Input
Layer Output

Layer

Hidden Layers



Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the 
desired output
• d = [d1 d2 .. dL] (vector of real values)

75
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Layer Output
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Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

76



Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X 
may occur for both classes, but with different probabilities

• Is differentiable 77

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭



Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired 
output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two outputs, one representing the desired output, the other 
representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

• The output explicitly becomes a 2-output softmax

78



Multi-class output: One-hot 
representations

• Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, 
or a flower

• We can represent this set as the following vector, with the classes arranged in a 
chosen order:

[cat  dog  camel  hat flower]T

• For inputs of each of the five classes the desired output is:
cat:  [1 0 0 0 0] T

dog:   [0 1 0 0 0] T

camel:   [0 0 1 0 0] T

hat:   [0 0 0 1 0] T

flower:  [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output with four 
zeros and a single 1 at the position of that class

• This is a one hot vector

79



Multi-class networks

• For a multi-class classifier with N classes, the one-hot 
representation will have N binary target outputs
– The desired output is an N-dimensional binary vector

• The neural network’s actual output too must ideally be binary (N-1 
zeros and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

80
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Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class 
classifier nets

௜ ௝௜
(௡)

௝
(௡ିଵ)

௝

௜
௜

௝௝

• This can be viewed as the probability ௜
81
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Inputs and outputs: 
Typical Problem Statement

• We are given a number of “training” data instances

• E.g. images of digits, along with information about 
which digit the image represents

• Tasks:
– Binary recognition:   Is this a “2” or not

– Multi-class recognition:  Which digit is this? 
82



Typical Problem statement: 
binary classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job

83
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Training data

Input: vector of
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Output: sigmoid



Typical Problem statement: 
multiclass classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job

84

(   , 5)
(   , 2)
(   , 0)

(   , 2)
(   , 4)
(   , 2)

Training data

Input: vector of
pixel values

Output: Class prob

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

85

What is the 
divergence div()?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

86

What is the 
divergence div()?
Note: For Loss(W) to be differentiable 
w.r.t W,  div() must be differentiable



Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
௜ ௜

ଶ

௜

– Squared Euclidean distance between true and desired output
– Note:  this is differentiable

௜
௜ ௜

௒ ଵ ଵ ଶ ଶ
87

L2 Div()

d1d2 d3 d4

Div



For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL) 
divergence between the probability distribution and the ideal output 
probability is popular

– Minimum when 𝑑 = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0
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KL Div



KL vs L2

• Both KL and L2 have a minimum when is the target value of 
• KL rises much more steeply away from 

– Encouraging faster convergence of gradient descent

• The derivative of KL is not equal to 0 at the minimum
– It is 0 for L2, though
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d=0 d=1

𝐾𝐿 𝑌, 𝑑 = −𝑑𝑙𝑜𝑔𝑌 − 1 − 𝑑 log (1 − 𝑌)𝐿2 𝑌, 𝑑 = (𝑦 − 𝑑)ଶ

𝑑𝐾𝐿𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0



For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL) 
divergence between the probability distribution and the ideal output 
probability is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0

90

KL Div

Note:  when the 
derivative is not 0

Even though 
(minimum) when y = d



For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log
𝑑௜

𝑦௜
௜

= ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = − log 𝑦௖

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0
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KL Div()

d1d2 d3 d4

Div

The slope is negative 
w.r.t. ௖

Indicates increasing ௖

will reduce divergence



For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = 0 − log 𝑦௖

௜

= − log 𝑦௖

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0 92

KL Div()

d1d2 d3 d4

Div

Note:  when the 
derivative is not 0

Even though 
(minimum) when y = d

The slope is negative 
w.r.t. ௖

Indicates increasing ௖

will reduce divergence



KL divergence vs cross entropy
• KL divergence between and :

௜ ௜

௜

௜ ௜

௜

• Cross-entropy between and :

௜ ௜

௜

• The cross entropy is merely the KL - entropy of 

௜ ௜

௜

• The that minimizes cross-entropy will minimize the KL divergence 
– since 𝑑 is the desired output and does not depend on the network, 𝐻(𝑑) does not depend on 

the net
– In fact, for one-hot 𝑑, 𝐻 𝑑 = 0 (and KL = Xent)

• We will generally minimize to the cross-entropy loss rather than the KL divergence
– The Xent is not a divergence, and although it attains its minimum when 𝑦 = 𝑑, its minimum 

value is not 0
93



“Label smoothing”

• It is sometimes useful to set the target output to 
with the value in the -th position (for class ) and elsewhere for 
some small 
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
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d1d2 d3 d4
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“Label smoothing”

• It is sometimes useful to set the target output to 
with the value in the -th position (for class ) and elsewhere for 
some small 
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
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KL Div()

d1d2 d3 d4

Div

Negative derivatives
encourage increasing
the probabilities of
all classes, including
incorrect classes!
(Seems wrong, no?)



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function
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ALL TERMS HAVE BEEN DEFINED



Poll 5
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Poll 5

• Select all that are correct
– The gradient of the loss will always be 0 or close 

to 0 at a minimum
– The gradient of the loss may be 0 or close to 0 at 

a minimum
– The gradient of the loss may have large 

magnitude at a minimum
– If the gradient is not 0 at a minimum, it must be a 

local minimum
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Story so far
• Neural nets are universal approximators

• Neural networks are trained to approximate functions by adjusting their 
parameters to minimize the average divergence between their actual output and 
the desired output at a set of “training instances”
– Input-output samples from the function to be learned
– The average divergence is the “Loss” to be minimized

• To train them, several terms must be defined
– The network itself
– The manner in which inputs are represented as numbers
– The manner in which outputs are represented as numbers

• As numeric vectors for real predictions
• As one-hot vectors for classification functions

– The divergence function that computes the error between actual and desired outputs
• L2 divergence for real-valued predictions
• KL divergence for classifiers
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Next Class

• Backpropagation
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