HW3P2 Bootcamp

Utterance to Phoneme Mapping using Sequence Models Fall 2022

Aparajith Srinivasan | Abuzar Khan | Pranav Karnani

Thanks to Urvil Kenia for helping with the slides and ablation.

Logistics

- Early submission is due Nov 3rd, 11:59PM ET
 - Kaggle submission a with Lev. Dist <= 30
 - Canvas MCQ
- On time submission deadline: Nov 17th, 11:59PM ET
- This part may not take time as much as HW2P2 for training but the high cut-off will be significantly harder
- Constrains:
 - No attention

Problem at hand

Input Utterance MFCC

Sequence of Phonemes

Data and Task

- Features: Same as HW1P2 (15D)
- Labels: Order synchronous but not time synchronous
- Should output sequence of phonemes
 - ['B', 'IH', 'K', 'SH', 'A'] (precisely the indexes)
- Loss: CTCLoss
- Metric: mean Levenshtein distance
 - Can import (given in starter notebook)
 - Sequence of Phonemes -> String and then calculate distance (Use CMUdict and ARPABet)

- HW1, HW2: Equal length inputs
- HW3: Variable Length sequences
- Steps:
 - Padding
 - Packing

Padding

Need to store unpadded lengths as well. Have the variables *lengths_x, lengths_y* in the starter notebook

Padded to equal lengths

Padding

Need to store unpadded lengths as well. Have the variables *lengths_x, lengths_y* in the starter notebook

Padded to equal lengths

 $(B, *, 15) \rightarrow (B, T, 15)$

Padding

Need to store unpadded lengths as well. Have the variables *lengths_x, lengths_y* in the starter notebook Padded to equal lengths

 $(B, *, 13) \rightarrow (B, T, 13)$

List of Tensors to be packed. Each has same number of features but different time steps.

Figure 2: List of tensors we want to pack

Tensors sorted in descending order based on the number of time steps in each sample.

Figure 3: First we sort the list in a descending order based on number of timesteps in each

Figure 4: Final Packed 2d Tensor

Parts of a Sequence Model

Embedding Layer

- Optional but recommended
- Used to increase/decrease the dimensionality of the input

Embedding Layer

- Optional but recommended
- Used to increase/decrease the dimensionality of the input
- Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

Embedding Layer

- Optional but recommended
- Used to increase/decrease the dimensionality of the input
- Our task:
 - Input dim = 15
 - Expand to emb_dim > 15 for feature extraction

• Consider the below as an input having 3 features at each time instant

• We can use Convolution which increases the channels of the input as we go deeper.

• We can use Convolution to which increases the channels of the input as we go deeper.

- No. Filters = 5
- Kernel= 3; Padding= 1; Stride= 1
- Kernel= 5; Padding= 2; Stride= 1 (Or anything similar)

• We can use Convolution to which increases the channels of the input as we go deeper.

- No. Filters = 5
- Kernel= 3; Padding= 1; Stride= 1
- Kernel= 5; Padding= 2; Stride= 1 (Or anything similar)

 $3D \rightarrow 5D$

• Our input is of shape (B, T, 15) (after padding). How can we change it to (B, T, 64) ?

Assuming *batch_first = True* (You may also have it as (T, B, 13)

- Our input is of shape (B, T, 15) (after padding). How can we change it to (B, T, 64) ?
- Transpose/Permute: (B, T, 15) → (B, 15, T) which makes #channels = 15 (Conv1d)
- Apply convolution (B, 15, T) \rightarrow (B, 64, T)
- Transpose/Permute: (B, 64, T) → (B, T, 64) (pack and pass to LSTM/ GRU)
- Note: This is done in the forward function

Assuming *batch_first = True* (You may also have it as (T, B, 13)

If stride > 1, we effectively reduce the time steps

- Stride > 1 reduces computation for LSTM and training is faster.
- However, too much reduction in time steps will lead to loss of information (we don't recommend downsampling more than 4x)

- Stride > 1 reduces computation for LSTM and training is faster.
- However, too much reduction in time steps will lead to loss of information (we don't recommend downsampling more than 4x)
- Note: Stride > 1 alters number of time steps. You need to change lengths_x accordingly
 - Use convolution formula (X K + 2*P)//S (or)
 - Clamp lengths to length of embedding (torch function)

- You can try convolution layers based on residual blocks
- Hint: Remember HW2P2!

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Sequence Model

• Can use RNN, GRU, LSTM (recommended) from torch.nn

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequence Model

- Important parameters/hyper parameters in *nn.LSTM()*
 - input_size (15 or emb_size)
 - hidden_dim
 - num_layers
 - dropout
 - bidirectional
 - Note: when *bidirection = True*, LSTM outputs a shape of *hidden_dim* in the forward direction and *hidden_dim* in the backward direction (in total, 2*hidden_dim)

Classification Layer

- Same as HW1P2
- Output from the sequence model goes to the classification layer
- Variations
 - Deeper
 - Wider
 - Different activations
 - Dropout

• Cepstral Normalization:

 $X \rightarrow (X - mean)/std$

- Different weight initialization (for Conv and Linear layers)
- Weight decay with optimizer

- Scheduler is very important
 - ReduceLRonPlateau (Most of our ablation)
 - Lev distance might start to oscillate at lower values
 - Cosine Annealing
 - Try with higher number of epochs

- Dropout is key
 - Can use dropout in all the 3 layers: Embedding, Sequence model and classification
 - You can also start with a small dropout rate and increase after the model gets trained
- Locked Dropout for LSTM layer

- Addition of Noise (only during training)
 - Gaussian Noise
 - Gumbel Noise
- Need not add to all samples.
 Implement your module
 AddNoise(nn.module) in such a
 way that it adds noise to random inputs

- Torch Audio Transforms [docs]
 - Time Masking
 - Frequency Masking

- Beam width
 - Higher beam width may give better results (advisable to keep test beam width below 50 for computation purposes)
 - Sometimes bw = 1 (greedy search) also gives good results
 - Tip: Don't use a high beam width while validating in each epoch (time per epoch will be higher)

Final Tips

• Make sure to split work within your study groups

All the best!