
HW3P2 Bootcamp
Utterance to Phoneme Mapping using Sequence Models

Fall 2022

Aparajith Srinivasan| Abuzar Khan | Pranav Karnani

Thanks to Urvil Kenia for helping with the slides and ablation.

Logistics

• Early submission is due Nov 3rd, 11:59PM ET

• Kaggle submission a with Lev. Dist <= 30

• Canvas MCQ

• On time submission deadline: Nov 17th, 11:59PM ET

• This part may not take time as much as HW2P2 for training but the

high cut-off will be significantly harder

• Constrains:

• No attention

Problem at hand

MODEL [’B’, ‘IH’, ‘K’, ’SH’, ‘A’]

Input Utterance MFCC Sequence of Phonemes

15

Data and Task

• Features: Same as HW1P2 (15D)

• Labels: Order synchronous but not time synchronous

• Should output sequence of phonemes

• [‘B’, ‘IH’, ‘K’, ‘SH’, ‘A’] (precisely the indexes)

• Loss: CTCLoss

• Metric: mean Levenshtein distance

• Can import (given in starter notebook)

• Sequence of Phonemes -> String and then calculate distance (Use CMUdict

and ARPABet)

Batch of Variable Length Inputs: Padding

• HW1, HW2: Equal length inputs

• HW3: Variable Length sequences

• Steps:

• Padding

• Packing

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Padding

• Padding
Padded to equal lengths

Need to store unpadded lengths as well.

Have the variables lengths_x, lengths_y in

the starter notebook

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Padding

• Padding
Padded to equal lengths

Need to store unpadded lengths as well.

Have the variables lengths_x, lengths_y in

the starter notebook

Ref: 11785 Fall 21 Bootcamp

(B, *, 15)  (B, T, 15)

Batch of Variable Length Inputs: Padding

• Padding

• Not for the whole dataset (instead we pack after
padding)

Padded to equal lengths

Need to store unpadded lengths as well.

Have the variables lengths_x, lengths_y in

the starter notebook

Ref: 11785 Fall 21 Bootcamp

(B, *, 13)  (B, T, 13)

Batch of Variable Length Inputs: Packing

Ref: 11785 Fall 21 Bootcamp

Batch of Variable Length Inputs: Packing

Ref: 11785 Fall 21 Bootcamp

Parts of a Sequence Model

Embedding
Layer

Sequence
Model

Classification

Layer

Embedding Layer

• Optional but recommended

• Used to increase/decrease the dimensionality of the input

Embedding Layer

• Optional but recommended

• Used to increase/decrease the dimensionality of the input

• Eg. In NLP, 10k vocabulary represented as 1 hot vectors with 10k dim

1
0
0
…
0
0

0
1
0
…
0
0

0
0
1
…
0
0

‘deep’ ‘neural’ ‘net’

Shape

10,000 x 1

0.2
1
…

0.7

0.3
0.5
…

0.4

0.2
1.2
…

0.6

Shape

emb_dim x 1

Real valued
vectors

Embedding Layer

• Optional but recommended

• Used to increase/decrease the dimensionality of the input

• Our task:

• Input dim = 15

• Expand to emb_dim > 15 for feature extraction

Ref: HW1P2 Write-up

15

Embedding Layer: Conv1d Layers

• Consider the below as an input having 3 features at each time instant

Time steps 

<-
- F

ea
tu

re
s

Embedding Layer: Conv1d Layers

• We can use Convolution which increases the channels of the input as
we go deeper.

Embedding Layer: Conv1d Layers

• We can use Convolution to which increases the channels of the input
as we go deeper.

• No. Filters = 5

• Kernel= 3; Padding= 1; Stride= 1

• Kernel= 5; Padding= 2; Stride= 1

(Or anything similar)

Embedding Layer: Conv1d Layers

• We can use Convolution to which increases the channels of the input
as we go deeper.

• No. Filters = 5

• Kernel= 3; Padding= 1; Stride= 1

• Kernel= 5; Padding= 2; Stride= 1

(Or anything similar)

3D 
5D

Embedding Layer: Conv1d Layers

• Our input is of shape (B, T, 15) (after padding). How can we change it
to (B, T, 64) ?

Assuming batch_first = True (You
may also have it as (T, B, 13)

Embedding Layer: Conv1d Layers

• Our input is of shape (B, T, 15) (after padding). How can we change it
to (B, T, 64) ?

• Transpose/Permute: (B, T, 15)  (B, 15, T) which makes #channels =
15 (Conv1d)

• Apply convolution (B, 15, T)  (B, 64, T)

• Transpose/Permute: (B, 64, T)  (B, T, 64) (pack and pass to LSTM/
GRU)

• Note: This is done in the forward function

Assuming batch_first = True (You
may also have it as (T, B, 13)

Embedding Layer: Conv1d Layers

If stride > 1, we effectively reduce the time steps

stride = 1

stride = 2

Embedding Layer: Conv1d Layers

• Stride > 1 reduces computation for LSTM and training is faster.

• However, too much reduction in time steps will lead to loss of

information (we don’t recommend downsampling more than 4x)

Embedding Layer: Conv1d Layers

• Stride > 1 reduces computation for LSTM and training is faster.

• However, too much reduction in time steps will lead to loss of

information (we don’t recommend downsampling more than 4x)

• Note: Stride > 1 alters number of time steps. You need to change
lengths_x accordingly

• Use convolution formula (X – K + 2*P)//S (or)

• Clamp lengths to length of embedding (torch function)

• You can try convolution layers based on
residual blocks

• Hint: Remember HW2P2!

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Embedding Layer: Conv1d Layers

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

Sequence Model

• Can use RNN, GRU, LSTM (recommended) from torch.nn

http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequence Model

• Important parameters/hyper parameters in nn.LSTM()

▪ input_size (15 or emb_size)

▪ hidden_dim

▪ num_layers

▪ dropout

▪ bidirectional

▪ Note: when bidirection = True, LSTM outputs a shape of hidden_dim in the

forward direction and hidden_dim in the backward direction 	 	 (in
total, 2*hidden_dim)

Classification Layer

• Same as HW1P2

• Output from the sequence model goes to the classification layer

• Variations

• Deeper

• Wider

• Different activations

• Dropout

Hyperparameters and Regularization

• Cepstral Normalization:

X  (X – mean)/std

• Different weight initialization (for Conv and Linear layers)

• Weight decay with optimizer

Hyperparameters and Regularization

• Scheduler is very important

• ReduceLRonPlateau (Most of our ablation)

• Lev distance might start to oscillate at lower values

• Cosine Annealing

• Try with higher number of epochs

Hyperparameters and Regularization

• Dropout is key

• Can use dropout in all the 3 layers: Embedding, Sequence model and

classification

• You can also start with a small dropout rate and increase after the model gets

trained

• Locked Dropout for LSTM layer

Hyperparameters and Regularization

• Addition of Noise (only during
training)

• Gaussian Noise

• Gumbel Noise

• Need not add to all samples.
Implement your module
AddNoise(nn.module) in such a
way that it adds noise to random
inputs

https://en.wikipedia.org/wiki/Gumbel_distribution

https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

Hyperparameters and Regularization

• Torch Audio Transforms [docs]

• Time Masking

• Frequency Masking

https://pytorch.org/audio/stable/transforms.html

Hyperparameters and Regularization

• Beam width

• Higher beam width may give better results (advisable to keep test beam width

below 50 for computation purposes)

• Sometimes bw = 1 (greedy search) also gives good results

• Tip: Don’t use a high beam width while validating in each epoch (time per

epoch will be higher)

Final Tips

• Make sure to split work within your study groups

All the best!

