
Homework 3 Part 1
RNNs and GRUs and Search, Oh My!

11-785: Introduction to Deep Learning (Fall 2022)

OUT: October 27, 2022, 11:59 PM
ESB: November 3, 2022, 11:59 PM
DUE: November 17, 2022, 11:59 PM

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with / work with other students on homework assignments

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

• Overview:

– MyTorch

– Multiple Choice

– RNN

– GRU

– CTC

– Greedy Search and Beam Search

• Directions:

– You are required to do this assignment in the Python (version 3) programming language. Do not
use any auto-differentiation toolboxes (PyTorch, TensorFlow, Keras, etc) - you are only permitted
and recommended to vectorize your computation using the Numpy library.

– We recommend that you look through all of the problems before attempting the first problem.
However we do recommend you complete the problems in order, as the difficulty increases, and
questions often rely on the completion of previous questions.

– If you haven’t done so, use pdb to debug your code effectively.

1

https://www.youtube.com/watch?v=-HrfbV16-FQ
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/

MyTorch

The culmination of all of the Homework Part 1’s will be your own custom deep learning library, which we
are naming mytorch © just like any other deep learning library like PyTorch or Tensorflow. The files in
your homework are structured in such a way that you can easily import and reuse modules of code for your
subsequent homeworks. For Homework 3, MyTorch will have the following structure:

Latest Autograder & Write-up Version: v1.1

• mytorch

– rnn cell.py

– gru cell.py

– CTC.py

– CTCDecoding.py

– linear.py

– activation.py

– loss.py

• hw3

– hw3.py

– rnn classifier.py

– mc.py

• autograder

– hw3 autograder

–runner.py

• Install Python3, NumPy and PyTorch in order to run the local autograder on your machine:

pip3 install numpy

pip3 install torch

• Hand-in your code by running the following command from the directory containing the handout,
then SUBMIT the created handin.tar file to autolab:

tar -c -f handin.tar handout

• Autograde your code by running the following command from the top level directory:

python3 autograder/hw3_autograder/runner.py

• DO NOT:

– Import any other external libraries other than numpy, as extra packages that do not exist in
autolab will cause submission failures. Also do not add, move, or remove any files or change any
file names.

2

1 Multiple Choice [5 points]

(1) Question 1: Review the following chapter linked below to gain some stronger insights
into RNNs. [2 points]

Figure 1: The high-level computational graph to compute the training loss of a recurrent net-
work that maps an input sequence of x values to a corresponding sequence of output values from
http://www.deeplearningbook.org/contents/rnn.html. (Please note that this is just a general RNN, be-
ing shown as an example of loop unrolling, and the notation may not match the notation used later in the
homework.)

(A) I have decided to forgo the reading of the aforementioned chapter on RNNs and have instead
dedicated myself to rescuing wildlife in our polluted oceans.

(B) I have completed the optional reading of http://www.deeplearningbook.org/contents/rnn.html
(Note the RNN they derive is different from the GRU later in the homework.)

(C) Gravitational waves ate my homework.

(2) Question 2: In an RNN with N layers, how many unique RNN Cells are there? [1 point]

(A) 1, only one unique cell is used for the entire RNN

(B) N, 1 unique cell is used for each layer

(C) 3, 1 unique cell is used for the input, 1 unique cell is used for the transition between input and
hidden, and 1 unique cell is used for any other transition between hidden and hidden

(3) Question 3: Given a sequence of ten words and a vocabulary of four words, find the
decoded sequence using greedy search. [1 point]

probs = [[0.1, 0.2, 0.3, 0.4],

[0.4, 0.3, 0.2, 0.1],

[0.1, 0.2, 0.3, 0.4],

3

http://www.deeplearningbook.org/contents/rnn.html
http://www.deeplearningbook.org/contents/rnn.html

[0.1, 0.4, 0.3, 0.2],

[0.1, 0.2, 0.3, 0.4],

[0.4, 0.3, 0.2, 0.1],

[0.1, 0.4, 0.3, 0.2],

[0.4, 0.3, 0.2, 0.1],

[0.1, 0.2, 0.4, 0.3],

[0.4, 0.3, 0.2, 0.1]]

Each row gives the probability of a symbol at that timestep, we have 10 time steps and 4 words for
each time step. Each word is the index of the corresponding probability (ranging from 0 to 3).

(A) [3,0,3,0,3,1,1,0,2,0]

(B) [3,0,3,1,3,0,1,0,2,0]

(C) [3,0,3,1,3,0,0,2,0,1]

(4) Question 4: I have watched the lectures for Beam Search and Greedy Search. Also, I
understand that I need to complete each question for this homework in the order they
are presented or else the local autograder won’t work. Also, I understand that the local
autograder and the autolab autograder are different and may test different things- passing
the local autograder doesn’t automatically mean I will pass autolab. [1 point]

(A) I understand.

(B) I do not understand.

(C) Potato

4

2 RNN Cell

The RNN Cell can be thought of as the smallest unit of a Recurrent Neural Network (RNN). As you already
know, RNNs deal with time-dependent and/or sequence-dependent problems. They are ”recurrent” because
they have memory that can be reused to predict future states. Typically, an RNN architecture will be spread
over time and multiple layers. This might be overwhelming to look at, however, this homework will help you
overcome that! Figure 2 shows what a typical RNN model may look like. As the model extends, previous
hidden states will be utilized by newer time steps. Similarly, previous outputs will be utilized by newer
layers. However, our focus for this section and the next will be to look closely at the red box highlighting a
single RNN cell.
In mytorch/rnn cell.py we will write an Elman RNN cell.

Figure 2: The red box shows one single RNN cell. RNNs can have multiple layers across multiple time steps.
This is indicated by the two-axis in the bottom-left.

In this section, your task is to implement the forward and backward attribute functions of RNNCell class.
Please consider the following class structure.

class RNNCell:

def __init__(self, input_size, hidden_size):

<Weight definitions>

<Gradient Definitions>

def init_weights(self, W_ih, W_hh, b_ih, b_hh):

<Assignments>

def zero_grad(self):

<zeroing gradients>

def forward(self, x, h_prev_t):

h_t = # TODO

5

def backward(self, delta, h, h_prev_l, h_prev_t):

dz = None # TODO

1) Compute the averaged gradients of the weights and biases

self.dW_ih += None # TODO

self.dW_hh += None # TODO

self.db_ih += None # TODO

self.db_hh += None # TODO

2) Compute dx, dh_prev_t

dx = None # TODO

dh_prev_t = None # TODO

return dx, dh_prev_t

As you can see, the RNNCell class has initialization, forward, and backward attribute functions. Immediately
once the class is instantiated, the code in init is run. In forward, we calculate h t. The attribute function
forward includes:

• As arguments, forward expects x and h prev t as input.

• As an attribute, forward stores no variables.

• As an output, forward returns variable h t

In backward, we calculate gradient changes and store values needed for optimization. The attribute function
backward includes:

• As arguments, backward expects inputs delta (graident wrt current layer), h t, h prev l and h prev t.

• As attributes, backward stores dW ih, dW hh, db hh and db ih.

• As an output, backward returns dx and dh prev t.

Table 1: RNNCell Class Components

Code Name Math Type Shape Meaning
x xt matrix B ×Ni Input at current time step
h prev t ht−1,l matrix B ×Nh Previous time step hidden state and current layer
W ih Wih matrix Nh ×Ni Weight between input and hidden
b ih bih vector Nh Bias between input and hidden
W hh Whh matrix Nh ×Nh Weight between hidden and hidden
b hh bhh vector No Bias between hidden and hidden
delta ∂L/∂h matrix B ×Nh gradient wrt current hidden layer
h t ht,l matrix B ×Nh Hidden state at current time step and current layer
h prev l ht,l−1 matrix B ×Ni Hidden state at current time step and previous layer
h prev t ht−1,l matrix B ×Nh Hidden state at previous time step and current layer
dW ih ∂L/Wih matrix Nh ×Ni Gradient between input and hidden
db ih ∂L/bih vector Nh Gradient between input and hidden
dW hh ∂L/∂Whh matrix Nh ×Nh Gradient between hidden and hidden
db hh ∂L/∂bhh vector No Gradient between hidden and hidden

2.1 RNN Cell Forward (5 points)

The underlying principle of computing each cell’s forward output is the same as any neural network you have
seen before. There are weights and biases that are plugged into an affine function, and finally activated.
But what does the forward pass look like for the RNN cell that has to also incorporate the previous state’s
memory?

6

Figure 3: The figure compares a perceptron with a single layer, single time step RNN cell.

Each of the inputs have a weight and bias attached to their connections. First, we compute the affine function
of both these inputs as follows.

Affine function for inputs

Wihxt + bih (1)

Affine function for previous hidden state

Whhht−1,l + bhh (2)

Now we add up these affines and pass it through the tanh activation function. The final equation can be
written as follows.

ht,l = tanh(Wihxt + bih +Whhht−1,l + bhh) (3)

These equations are for a single element. You may need to transpose in order to accommodate for
the batch dimension in your code.

You can also refer to the equation from the PyTorch documentation for computing the forward pass for an
Elman RNN cell with a tanh activation found here: nn.RNNCell documentation. Use the ”activation”
attribute from the init method as well as all of the other weights and biases already defined
in the init method. The inputs and outputs are defined in the starter code.

Also, note that this can be completed in one line of code!

7

https://pytorch.org/docs/stable/nn.html#rnncell

2.2 RNN Cell Backward (5 points)

Calculate each of the gradients for the backward pass of the RNN Cell.

1. ∂L
∂Wih

(self.dW ih)

2. ∂L
∂Whh

(self.dW hh)

3. ∂L
∂bih

(self.db ih)

4. ∂L
∂bhh

(self.db hh)

5. ∂L
∂x (dx) (returned by the method, explained below)

6. ∂L
∂ht−1

(dh prev t) (returned by the method, explained below)

With the way that we have chosen to implement the RNN Cell, you should add the calculated gradients to
the current gradients. This follows from the idea that, given an RNN layer, the same cell is used at each
time step. The Figure 1 in the multiple choice shows this loop occurring for a single layer.

Note that the gradients for the weights and biases should be averaged (i.e. divided by the batch size) but
the gradients for dx and dh prev t should not.

(Also, note that a clean implementation will only require 6 lines of code. In other words, you can calculate
each gradient in one line, if you wish)

How to start? We recommend drawing a computational graph.

8

2.3 RNN Phoneme Classifier (10 points)

In hw3/rnn classifier.py implement the forward and backward methods for the RNN Phoneme Classifier.

Read over the init method and uncomment the self.rnn and self.output layer after understanding their
initialization. self.rnn consists of RNNCell and self.output layer is a Linear layer that maps hidden
states to the output.

Making sure to understand the code given to you, implement an RNN as described in the images below.
You will be writing the forward and backward loops. A clean implementation will require no more than 10
lines of code (on top of the code already given).

Below are visualizations of the forward and backward computation flows. Your RNN Classifier is expected
to execute given with an arbitrary number of layers and time sequences.

Table 2: RNNPhonemeClassifier Class Components

Code Name Math Type Shape Meaning
x x matrix (batch size, seq len, input size) Input
h 0 h0 matrix (num layers, batch size, hidden size) Initial hidden states
delta ∂L/∂h matrix (batch size, hidden size) Gradient w.r.t. last time step output

2.3.1 RNN Classifier Forward

Follow the diagram given below to complete the forward pass of RNN Phoneme Classifier.

Figure 4: The forward computation flow for the RNN.

9

Figure 5: The forward computation flow for the RNN at time step t.

2.3.2 RNN Classifier Backward

This question might be the toughest question conceptually, in this homework. However, if you follow this
pseudocode and try to understand whats going on, you can complete it without much hassle.

PSEUDOCODE:

* Iterate in reverse order of time (from seq_len-1 to 0)

* Iterate in reverse order of layers (from num_layers-1 to 0)

* Get h_prev_l either from hiddens or x depending on the layer

(Recall that hiddens has an extra initial hidden state)

* Use dh and hiddens to get the other parameters for the backward method

(Recall that hiddens has an extra initial hidden state)

* Update dh with the new dh from the backward pass of the rnn cell

* If you aren’t at the first layer, you will want to add

dx to the gradient from l-1th layer.

* Normalize dh by batch_size since initial hidden states are also treated

as parameters of the network (divide by batch size)

The exact same is given in your handout as well. You will be able to complete this question easily, if you
understand the flow with the help of the figures 6, 7 and then follow the pseudocode.

10

Figure 6: The backward computation flow for the RNN.

Figure 7: The backward computation flow for the RNN at time step t.

11

3 GRU Cell

In a standard RNN, a long product of matrices can cause the long-term gradients to vanish (i.e reduce to
zero) or explode (i.e tend to infinity). One of the earliest methods that were proposed to solve this issue
is LSTM (Long short-term memory network). GRU (Gated recurrent unit) is a variant of LSTM that has
fewer parameters, offers comparable performance and is significantly faster to compute. GRUs are used for
a number of tasks such as Optical Character Recognition and Speech Recognition on spectograms using
transcripts of the dialog. In this section, you are going to get a basic understanding of how the forward and
backward pass of a GRU cell work.

Figure 8: GRU Cell

Replicate a portion of the torch.nn.GRUCell interface. Consider the following class definition.

class GRUCell:

def forward(self, x, h_prev_t):

self.x = x

self.hidden = h_prev_t

self.r = # TODO

self.z = # TODO

self.n = # TODO

h_t = # TODO

return h_t

def backward(self, delta):

self.dWrx = # TODO

self.dWzx = # TODO

self.dWnx = # TODO

self.dWrh = # TODO

self.dWzh = # TODO

self.dWnh = # TODO

self.dbrx = # TODO

self.dbzx = # TODO

12

self.dbnx = # TODO

self.dbrh = # TODO

self.dbzh = # TODO

self.dbnh = # TODO

return dx, dh

As you can see in the code given above, the GRUCell class has forward and backward attribute functions.
In forward, we calculate h t. The attribute function forward includes multiple components:

• As an argument, forward expects input x and h prev t.

• As an attribute, forward stores variables x, hidden, r, z, and n.

• As an output, forward returns variable h t.

In backward, we calculate the gradient changes needed for optimization. The attribute function backward

includes multiple components:

• As arguments, backward expects input delta.

• As attributes, backward stores variables dWrx, dWzx, dWnx, dWrh, dWzh, dWnh, dbrx, dbzx, dbnx, dbrh,
dbzh, dbnh and calculates dz, dn, dr, dh prev t and dx.

• As an output, backward returns variables dx and dh prev t.

NOTE: Your GRU Cell will have a fundamentally different implementation in comparison to the RNN
Cell (mainly in the backward method). This is a pedagogical decision to introduce you to a variety of
different possible implementations, and we leave it as an exercise to you to gauge the effectiveness of each
implementation.

3.1 GRU Cell Forward (5 points)

In mytorch/gru.py implement the forward pass for a GRUCell using Numpy, analogous to the Pytorch
equivalent nn.GRUCell (Though we follow a slightly different naming convention than the Pytorch docu-
mentation.) The equations for a GRU cell are the following:

rt = σ(Wrxxt + brx +Wrhht−1 + brh) (4)

zt = σ(Wzxxt + bzx +Wzhht−1 + bzh) (5)

nt = tanh(Wnxxt + bnx + rt ⊗ (Wnhht−1 + bnh)) (6)

ht = (1− zt)⊗ nt + zt ⊗ ht−1 (7)

Please refer to (and use) the GRUCell class attributes defined in the init method, and define any more
attributes that you deem necessary for the backward pass. Store all relevant intermediary values in the
forward pass.
The inputs to the GRUCell forward method are x and h prev t represented as xt and ht−1 in the equations
above. These are the inputs at time t. The output of the forward method is ht in the equations above.

There are other possible implementations for the GRU, but you need to follow the equations above for the
forward pass. If you do not, you might end up with a working GRU and zero points on autolab. Do not
modify the init method, if you do, it might result in lost points.

Equations given above can be represented by the following figures:

13

https://pytorch.org/docs/stable/nn.html#grucell

Figure 9: The computation for zt

Figure 10: The computation for rt

Figure 11: The computation for nt

14

3.2 GRU Cell Backward (15 points)

In mytorch/gru.py implement the backward pass for the GRUCell specified before. The backward method
of the GRUCell seems like the most time-consuming task in this homework because you have to compute 14
gradients but it is not difficult if you do it the right way.

This method takes as input delta, and you must calculate the gradients w.r.t the parameters and return
the derivative w.r.t the inputs, xt and ht−1, to the cell.

The partial derivative input you are given, delta, is the summation of: the derivative of the loss w.r.t
the input of the next layer xl+1,t and the derivative of the loss w.r.t the input hidden-state at
the next time-step hl,t+1. Using these partials, compute the partial derivative of the loss w.r.t each of
the six weight matrices, and the partial derivative of the loss w.r.t the input xt, and the hidden state ht.

Specifically, there are fourteen gradients that need to be computed:

1. ∂L
∂Wrx

(self.dWrx)

2. ∂L
∂Wzx

(self.dWzx)

3. ∂L
∂Wnx

(self.dWnx)

4. ∂L
∂Wrh

(self.dWrh)

5. ∂L
∂Wzh

(self.dWzh)

6. ∂L
∂Wnh

(self.dWnh)

7. ∂L
∂brx

(self.dbrx)

8. ∂L
∂bzx

(self.dbzx)

9. ∂L
∂bnx

(self.dbnx)

10. ∂L
∂brh

(self.dbrh)

11. ∂L
∂bzh

(self.dbzh)

12. ∂L
∂bnh

(self.dbnh)

13. ∂L
∂xt

(returned by method)

14. ∂L
∂ht−1

(returned by method)

To be more specific, the input delta refers to the derivative with respect to the output of your forward pass.

∂L
∂ht−1

(number 14 above) refers to the derivative with respect to the input h prev t of your forward pass

How to start? Given below are the equations you need to compute the derivatives for backward pass. We
also recommend refreshing yourself on the rules for gradients from Lecture 5.

IMPORTANT NOTE: As you compute the above gradients, you will notice that a lot of expressions are
being reused. Store these expressions in other variables to write code that is easier for you to debug. This
problem is not as big as it seems. Apart from dx and dh prev t, all gradients can computed in 2-3 lines of
code.

1. ∂L
∂zt

= ∂L
∂ht

× ∂ht

∂zt

2. ∂L
∂nt

= ∂L
∂ht

× ∂ht

∂nt

3. ∂L
∂ht−1

= ∂L
∂ht

× ∂ht

∂ht−1
+ ∂L

∂nt
× ∂nt

∂ht−1
+ ∂L

∂zt
× ∂zt

∂ht−1
+ ∂L

∂rt
× ∂rt

∂ht−1

15

4. ∂L
∂Wnx

= ∂L
∂nt

× ∂nt

∂Wnx

5. ∂L
∂bnx

= ∂L
∂nt

× ∂nt

∂bnx

6. ∂L
∂xt

= ∂L
∂nt

× ∂nt

∂xt
+ ∂L

∂zt
× ∂zt

∂xt
+ ∂L

∂rt
× ∂rt

∂xt

7. ∂L
∂rt

= ∂L
∂nt

× ∂nt

∂rt

8. ∂l
∂Wnh

= ∂L
∂nt

× ∂nt

∂Wnh

9. ∂L
∂bnh

= ∂L
∂nt

× ∂nt

∂bnh

10. ∂L
∂Wzx

= ∂L
∂zt

× ∂zt
∂Wzx

11. ∂L
∂bzx

= ∂L
∂zt

× ∂zt
∂bzx

12. ∂L
∂Wzh

= ∂L
∂zt

× ∂zt
∂Wzh

13. ∂L
∂bzh

= ∂L
∂zt

× ∂zt
∂bzh

14. ∂L
∂Wrx

= ∂L
∂rt

× ∂rt
∂Wrx

15. ∂L
∂brx

= ∂L
∂rt

× ∂rt
∂brx

16. ∂L
∂Wrh

= ∂L
∂rt

× ∂rt
∂Wrh

17. ∂L
∂brh

= ∂L
∂rt

× ∂rt
∂brh

16

To facilitate understanding, we have organized a table describing all relevant variables.

Table 3: GRUCell Components

Code Name Math Type Shape Meaning
h hd scalar - Hidden Dimension
d id scalar - Input Dimension
x xt vector id observation at the current time-step
h prev t ht−1 vector hd hidden state at previous time-step
Wrx Wrx matrix hd× id Weight matrix for input (for reset gate)
Wzx Wzx matrix hd× id Weight matrix for input (for update gate)
Wnx Wnx matrix hd× id Weight matrix for input (for candidate hidden state)
Wrh Wrh matrix hd× hd Weight matrix for hidden state (for reset gate)
Wzh Wzh matrix hd× hd Weight matrix for hidden state (for update gate)
Wnh Wnh matrix hd× hd Weight matrix for hidden state (for candidate hidden state)
brx brx vector hd bias vector for input (for reset gate)
bzx bzx vector hd bias vector for input (for update gate)
bnx bnx vector hd bias vector for input (for candidate hidden state)
brh brh vector hd bias vector for hidden state (for reset gate)
bzh bzh vector hd bias vector for hidden state (for update gate)
bnh bnh vector hd bias vector for hidden state (for candidate hidden state)
dWrx ∂L/∂Wrx matrix hd× id Gradient of loss w.r.t Wrx

dWzx ∂L/∂Wzx matrix hd× id Gradient of loss w.r.t Wzx

dWnx ∂L/∂Wnx matrix hd× id Gradient of loss w.r.t Wnx

dWrh ∂L/∂Wrh matrix hd× hd Gradient of loss w.r.t Wrh

dWzh ∂L/∂Wzh matrix hd× hd Gradient of loss w.r.t Wzh

dWnh ∂L/∂Wnh matrix hd× hd Gradient of loss w.r.t Wnh

dbrx ∂L/∂brx vector hd Gradient of loss w.r.t brx
dbzx ∂L/∂bzx vector hd Gradient of loss w.r.t bzx
dbnx ∂L/∂bnx vector hd Gradient of loss w.r.t bnx
dbrh ∂L/∂brh vector hd Gradient of loss w.r.t brh
dbzh ∂L/∂bzh vector hd Gradient of loss w.r.t bzh
dbnh ∂L/∂bnh vector hd Gradient of loss w.r.t bnh
dx ∂L/∂xt vector hd Gradient of loss w.r.t xt

dh prev t ∂L/∂ht−1 vector hd Gradient of loss w.r.t ht−1

dAdZ ∂A/∂Z matrix N × C how changes in pre-activation features
affect post-activation values

17

3.3 GRU Inference (10 points)

In hw3/hw3.py, use the GRUCell implemented in the previous section and a linear layer to compose a
neural net. This neural net will unroll over the span of inputs to provide a set of logits per time step
of input.

Big differences between this problem and the RNN Phoneme Classifier are 1) we are only doing inference
(a forward pass) on this network and 2) there is only 1 layer. This means that the forward method in
the CharacterPredictor can be just 2 or 3 lines of code and the inference function can be completed
in less than 10 lines of code.

You have to complete the following in this section.

• The CharacterPredictor class by initializing the GRU Cell and Linear layer in the init
function

• The forward pass for the class and the return what is necessary. The input dim is the input
dimension for the GRU Cell, the hidden dim is the hidden dimension that should be outputted
from the GRU Cell, and inputted into the Linear layer. And num classes is the number of classes
being predicted from the Linear layer. (We refer to the linear layer self.projection in the code
because it is just a linear transformation between the hidden state to the output state)

• Then complete the inference function which takes the following inputs and outputs.

– Input

∗ net: An instance of CharacterPredictor

∗ inputs (seq len, feature dim): a sequence of inputs

– Output

∗ logits (seq len, num classes): Unwrap the net seq len time steps and return the logits
(with the correct shape)

You will compose the neural network with the CharacterPredictor class in hw3/hw3.py and use the
inference function (also in hw3/hw3.py) to use the neural network that you have created to get the
outputs.

18

4 CTC (25 points)

In Homework 3 Part 2, for the utterance to phoneme mapping task, you utilized CTC Loss to train a
seq-to-seq model. In this part, mytorch/CTC.py, you will implement the CTC Loss based on the For-
wardBackward Algorithm as shown in lecture.

For the input, you are given the output sequence from an RNN/GRU. This will be a probability distribution
over all input symbols at each timestep. Your goal is to use the CTC algorithm to compute a new probability
distribution over the symbols, including the blank symbol, and over all alignments. This is known as
the posterior Pr(st = Sr|S,X) = γ(t, r)

Use the (mytorch/CTC.py) file to complete this section.

class CTC(object):

def __init__(self, BLANK=0)

self.blank = BLANK

def extend_target_with_blank(self, target):

extSymbols = # TODO

skipConnect = # TODO

return extSymbols, skipConnect

def get_forward_probs(self, logits, extSymbols, skipConnect):

alpha = # TODO

return alpha

def get_backward_probs(self, logits, extSymbols, skipConnect):

beta = # TODO

return beta

def get_posterior_probs(self, alpha, beta):

gamma = # TODO

return gamma

Table 4: CTC Components

Code Name Math Type Shape Meaning
target - matrix (target len,) Target sequence
logits - matrix (input len, len(Symbols)) Predicted (log) probabilities
extSymbols - vector (2 * target len + 1,) Output from extending the target with blanks
skipConnect - vector (2 * target len + 1,) Boolean array containing skip connections
alpha α vector (input len, 2 * target len + 1) Forward probabilities
beta β vector (input len, 2 * target len + 1) Backward probabilities
gamma γ vector (input len, 2 * target len + 1) Posterior probabilities

As you can see, the CTC class is consist of initialization, get forward probs, and get backward probs attribute
functions. Immediately once the class is instantiated, the code in init will run. The initialization phase
assigns the argument BLANK to variable self.blank.

Tip: You will be able to complete this section completely based on the pseudocodes given in the lecture
slides.

1. Extend target with blank Given an output sequence from an RNN/GRU, we want to extend the
target sequence with blanks, where blank has been defined in the initialization of CTC.

19

Figure 12: An overall CTC setup example

skipConnect: An array with same length as extSymbols to keep track of whether an extended symbol
Sext(j) is allowed to connect directly to Sext(j-2) (instead of only to Sext(j-1)) or not. The elements in the
array can be True/False or 1/0. This will be used in the forward and backward algorithms.

The extend target with blank attribute function includes:

• As an argument, it expects target as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable extSymbols and skipConnect.

Figure 13: Extend symbols

Figure 14: Skip connections

2. Forward Algorithm In forward, we calculate alpha α(t, r) (Fig.15).

α(t, r) = P (S0...Sr, st = Sr|X) =
∑

q:Sq∈pred(Sr)

α(t− 1, q)ySr
t

α(t, r) is the total probability of all paths leading to the alignment of Sr to time t, pred(Sr) is any symbol
that is permitted to come before Sr and may include Sr.

The attribute for get forward probs include:

• As an argument, forward expects logits, extSymbols, skipConnect as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable alpha

20

Figure 15: Forward Algorithm

3. Backward Algorithm In backward, we calculate beta β(t, r) (Fig. 16), which is defined recursively
in terms of the β(t+ 1, q) of the next time step.

β(t, r) = P (st+1 ∈ succ(Sr), succ(Sr), ..., SK−1|X) =
∑

q:Sq∈succ(Sr)

β(t+ 1, q)y
Sq

t+1

Where succ(Sr) is any symbol that is permitted to come after Sr and does not include Sr. The attribute
for get backward probs include:

• As an argument, forward expects logits, extSymbols, skipConnect as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable beta

4. CTC Posterior Probability In posterior probability, we calculate gamma γ(t, r) (Fig. 17). The
attribute function backward include:

• As an argument, forward expects alpha, beta as input.

• As an attribute, forward stores no attributes.

• As an output, forward returns variable gamma

γ(t, r) = P (st = Sr|S,X) =
α(t, r)β(t, r)∑
r′ α(t, r)β(t, r)

21

Figure 16: Backward Algorithm

Figure 17: Posterior Probability

22

4.1 CTC Loss

class CTCLoss(object):

def __init__(self, BLANK=0)

super(CTCLoss, self).__init__()

self.BLANK = BLANK

self.gammas = []

self.ctc = CTC()

def forward(self, logits, target, input_lengths, target_lengths):

for b in range(B):

TODO

total_loss = np.sum(total_loss) / B

return total_loss

def backward(self):

dY = # TODO

return dY

Table 5: CTC Loss Components

Code Name Math Type Shape Meaning
target - matrix (batch size, paddedtargetlen) Target sequences
logits - matrix (seqlength, batch size, len(Symbols)) Predicted (log) probabilities
input lengths - vector (batch size,) Lengths of the inputs
target lengths - vector (batch size,) Lengths of the target
loss - scalar - Avg. divergence between posterior. prob-

ability γ(t, r) and the input symbols yt
r

dY dY matrix (seqlength, batch size, len(Symbols)) Derivative of divergence wrt the input
symbols at each time.

4.1.1 CTC Forward

In the forward method, mytorch/ctc loss.py, you will implement CTC Loss using your implementation
from mytorch/ctc.py.

Here for one batch, the CTC loss is calculated for each element in a loop and then meaned over the batch.
Within the loop, follow the steps: 1) set up a CTC 2) truncate the target sequence and the logit with
their lengths 3) extend the target sequence with blanks 4) calculate the forward probablities, backward
probabilities and posteriors 5) compute the loss.

In forward function, we calculate avgLoss. The attribute function forward include:

• As an argument, forward expects target, input lengths, target lengths as input.

• As an attribute, forward stores gammas and extSymbols as attributes.

• As an output, forward returns variable avgLoss.

23

4.1.2 CTC Backward

Using the posterior probability distribution you computed in the forward pass, you will now compute the
divergence ▽Yt

DIV of each Yt.

Similar to the CTC forward, loop over the items in the batch and fill in the divergence vector.

In backward function, we calculate dY. The attribute function backward include:

• As an argument, backward expects no inputs.

• As an attribute, backward stores no attributes.

• As an output, backward returns variable dY

5 CTC Decoding: Greedy Search and Beam Search (20 points)

After training your sequence model, the next step to do is to decode the model output probabilities to get an
understandable output. Even without thinking explicitly about decoding, you have actually done a simple
version of decoding in both HW1P2 and HW2P2. You take the predited class as the one with the highest
output probability by searching through the probabilities of all classes in the final linear layer. Now we will
learn about decoding for sequence models.

• In mytorch/CTCDecoding.py, you will implement greedy search and beam search.

• For both the functions you will be provided with:

– SymbolSets, a list of symbols that can be predicted, except for the blank symbol.

– y probs, an array of shape (len(SymbolSets) + 1, seq length, batch size) which is the
probability distribution over all symbols including the blank symbol at each time step.

∗ The probability of blank for all time steps is the first row of y probs (index 0).

∗ The batch size is 1 for all test cases, but if you plan to use your implementation for part 2
you need to incorporate batch size.

After training a model with CTC, the next step is to use it for inference. During inference, given an input
sequence X, we want to infer the most likely output sequence Y . We can find an approximate, sub-optimal
solution Y ∗ using:

Y ∗ = argmax
Y

p(Y |X)

We will cover two approaches for the inference step:

• Greedy Search

• Beam Search

Use the mytorch/CTCDecoding.py file to complete this section.

24

5.1 Greedy Search

One possible way to decode at inference time is to simply take the most probable output at each time-step,
which will give us the alignment A∗ with the highest probability as:

A∗ = argmax
A

T∏
t=1

pt(at|X)

where pt(at|X) is the probability for a single alignment at at time-step t. Repeated tokens and ϵ (the blank
symbol) can then be collapsed in A∗ to get the output sequence Y .

Figure 18: Greedy Search

Consider the example in Figure 18. The output is given for 7 time steps. Each probability distribution
has 5 element (4 for each symbol and 1 for the blank). Greedy decode chooses the most likely time-aligned
sequence by choosing the symbol corresponding to the highest probability at that time step. The final output
is obtained by compressing the sequence to remove the blanks and repetitions in-between blanks. The class
is given below.

class GreedySearchDecoder(object):

def __init__(self, symbol_set):

self.symbol_set = symbol_set

def decode(self, y_probs):

decoded_path = []

blank = 0

path_prob = 1

TODO:

1. Iterate over sequence length - len(y_probs[0])

25

2. Iterate over symbol probabilities

3. update path probability, by multiplying with the current max probability

4. Select most probable symbol and append to decoded_path

5. Compress sequence (Inside or outside the loop)

return decoded_path, path_prob

Note: Detailed pseudo-code for Greedy Search can be found in the lecture slides.

5.2 Beam Search

Although Greedy Search is easy to implement, it misses out on alignments that can lead to outputs with
higher probability because it simply selects the most probable output at each time-step.

To deal with this short-coming, we can use Beam Search, a more effective decoding technique that obtains a
sub-optimal result out of sequential decisions, striking a balance between a greedy search and an exponential
exhaustive search by keeping a beam of top-k scored sub-sequences at each time step (BeamWidth).

In the context of CTC, you would also consider a blank symbol and repeated characters, and merge the
scores for several equivalent sub-sequences. Hence at each time-step we would maintain a list of possible
outputs after collapsing repeating characters and blank symbols. The score for each possible output at
current time-step will be the accumulated score of all alignments that map to it. Based on this score, the
top-k beams will be selected to expand for the next time-step.

Beam search might be a difficult concept to understand at first. We recommend you to watch the lectures
and recitations pertaining to beam search to better understand the concept. Detailed pseudo-code for
Beam Search can be found in the lecture slides, which is to be implemented in the decode method of the
BeamSearchDecoder class. The Figure 19 gives a clearer understanding of the pseudo-code. Please take
some time to go through it, try doing the calculations on your own and verifying them. It uses the first
test example from the local autograder. It is also to be noted that the given figure only shows the
output after time step t=1.

Debugging tips:

• Assign T=2 and complete the code before proceeding

• Don’t write the whole beam search code and then try running the local autograder. After you complete
writing one of the functions from the pseudocode, make sure to check it

• Print intermediate outputs, i.e, outputs returned by each small function. The green boxes in Figure
19 tells you the expected output values of each function. Make sure you get these output when
t=1

26

Figure 19: Beam Search

27

You can implement additional methods within this class, as long as you return the expected variables from
the decode method (which is called during training). As mentioned earlier, the figure explains the pseudocode
followed in the lectures. You are also welcomed to try a more efficient way. One of which has the following
pseudocode.

Efficient Beam Search:

0. Intialize:

decoded_path = list()

sequences = [[list(), 1.0]]

ordered = None

1. Iterate over sequence length - len(y_probs[0])

- initialize a list to store all candidates

2. Iterate over ’sequences’

3. Iterate over symbol probabilities

- Update all candidates by appropriately compressing sequences

- Handle cases when current sequence is empty vs. when not empty

4. Sort all candidates based on score (descending), and rewrite ’ordered’

5. Update ’sequences’ with first self.beam_width candidates from ’ordered’

6. Merge paths in ’ordered’, and get merged paths scores

7. Select best path based on merged path scores, and return

(Explanations and examples have been provided by referring: https://distill.pub/2017/ctc/)

class BeamSearchDecoder(object):

def __init__(self, symbol_set, beam_width):

self.symbol_set = symbol_set

self.beam_width = beam_width

def decode(self, y_probs):

T = y_probs.shape[1]

bestPath, FinalPathScore = None, None

#return bestPath, FinalPathScore

28

https://distill.pub/2017/ctc/

6 Toy Examples

In this section, we will provide you with a detailed toy example for each section with intermediate numbers.
You are not required but encouraged to run these tests before running the actual tests.

Run the following command to run the whole toy example tests

• python3 autograder/hw3 autograder/toy runner.py

6.1 RNN

You can run tests for RNN only with the following command.

python3 autograder/hw3 autograder/toy runner.py rnn

You can run the above command first to see what toy data you will be tested against. You should expect
something like what is shown in the code block below. If your value and the expected does not match, the
expected value will be printed. You are also encouraged to look at the test rnn toy.py file and print any
intermediate values needed.

*** time step 0 ***

input:

[[-0.5174464 -0.72699493]

[0.13379902 0.7873791]]

hidden:

[[-0.45319408 3.0532858 0.1966254]

[0.19006363 -0.32204345 0.3842657]]

For the RNN Classifier, you should expect the following values in your forward and backward calculation.
You are encouraged to print out the intermediate values in rnn classifier.py to check the correctness. Note
that the variable naming follows Figure 4 and Figure 6.

*** time step 0 ***

input:

[[-0.5174464 -0.72699493]

[0.13379902 0.7873791]

[0.2546231 0.5622532]]

h_1,1:

[[-0.32596806 -0.66885584 -0.04958976]]

h_2,1:

[[0.0457021 -0.38009422 0.22511855]]

h_3,1:

[[-0.08056512 -0.3035707 0.03326178]]

h_1,2:

[[-0.57588165 -0.05876583 0.07493359]]

h_2,2:

[[-0.39792368 -0.50475268 -0.18843713]]

h_3,2:

[[-0.39261185 -0.16278453 0.06340214]]

dy:

[[-0.81569054 0.15619404 0.14065858 0.08515406 0.12171953 0.09829506 0.11741257 0.09625671]]

dh_3,2:

[[-0.10989283 -0.33949198 -0.13078328]]

dh_2,2:

[[-0.19552927 0.10362767 0.10584534]]

29

dh_1,2:

[[0.07086602 0.02721845 -0.10503672]]

dh_3,1:

[[0.10678867 -0.08892407 0.17659623]]

dh_2,1:

[[0.02254178 -0.10607887 -0.2609735]]

dh_1,1:

[[-0.00454101 0.00640496 0.14489316]]

6.2 GRU

You can run tests for GRU only with the following command.

python3 autograder/hw3 autograder/toy runner.py gru

Similarly to RNN toy examples, we provide two inputs for GRU, namely GRU Forward One Input (single
input) and GRU Forward Three Input (a sequence of three input vectors). You should expect something
like what is shown in the code block below.

*** time step 0 ***

input data: [[0 -1]]

hidden: [0 -1 0]

Values needed to compute z_t for GRU Forward One Input:

W_zx :

[[0.33873054 0.32454306]

[-0.04117032 0.15350085]

[0.19508289 -0.31149986]]

b_zx: [0.3209093 0.48264325 -0.48868895]

W_zh:

[[5.2004099e-01 -3.2403603e-01 -2.4332339e-01]

[2.0603785e-01 -3.4281990e-04 4.7853872e-01]

[-2.5018784e-01 8.5339367e-02 -2.9516235e-01]]

b_rh: [0.05053747 0.27746138 -0.20656243]

z_act: Sigmoid activation

Expected value of z_t using the above values:

[0.58066287 0.62207662 0.55666673]

Values needed to compute r_t for GRU Forward One Input:

W_rx:

[[-0.12031382 0.48722494]

[0.29883575 -0.13724688]

[-0.54706806 -0.16238078]]

b_rx:

[-0.43146715 0.1538158 -0.01858002]

W_rh:

[[0.12764311 -0.4332353 0.37698156]

[-0.3329033 0.41271853 -0.08287123]

30

[-0.11965907 -0.4111069 -0.57348186]]

b_rh:

[0.05053747 0.2774614 -0.20656243]

r_t: Sigmoid Activation

Expected value of r_t using the above values:

[0.39295226 0.53887278 0.58621625]

Values needed to compute n_t for GRU Forward One Input:

W_nx:

[[0.34669924 0.2716753]

[0.2860521 0.06750154]

[0.14151925 0.39595175]]

b_nx:

[0.54185045 -0.23604721 0.25992656]

W_nh:

[[-0.29145974 -0.4376279 0.21577674]

[0.18676305 0.01938683 0.472116]

[0.43863034 0.22506309 -0.04515916]]

b_nh:

[0.0648244 0.47537327 -0.05323243]

n_t: Tanh Activation

Expected value of n_t using the above values:

[0.43627021 -0.05776569 -0.2905497]

Values needed to compute h_t for GRU Forward One Input:

z_t: [0.58066287 0.62207662 0.55666673]

n_t: [0.43627018 -0.05776571 -0.29054966]

h_(t-1): [0 -1 0]

Expected values for h_t:

[0.18294427 -0.64390767 -0.12881033]

6.3 Beam Search

Fig. 20 depicts a toy problem for understanding Beam Search. Here, we are performing Beam Search over a
vocabulary of {-, A, B}, where ” - ” is the BLANK character. The beam width is 3 and we perform three
decoding steps. Table 6 shows the output probabilities for each token at each decoding step.

Vocabulary P(symbol) @ T=1 P(symbol) @ T=2 P(symbol) @ T=3

- 0.49 0.38 0.02
A 0.03 0.44 0.40
B 0.47 0.18 0.58

Table 6: Probabilities of each symbol in the vocabulary over three consecutive decoding steps

To perform beam search with a beam width = 3, we select the top 3 most probable sequences at each time

31

Figure 20: Beam Search over a vocabulary / symbols set = {-, A, B} with beam width (k) = 3. (” - ”
== BLANK). The blue shaded nodes indicate the compressed decoded sequence at given time step, and the
expansion tables show the probability (right column) and symbols (left column) at each time step pre-pended
with the current decoded sequence

step, and expand them further in the next time step. It should be noted that the selection of top-k most
probable sequences is made based on the probability of the entire sequence, or the conditional probability
of a given symbol given a set of previously decoded symbols. This probability will also take into account all
the sequences that can be reduced (collapsing blanks and repeats) to the given output. For example, the
probability of observing a ”A” output at the 2nd decoding step will be:

P (A) = P (A) ∗ P (−|A) + P (A) ∗ P (A|A) + P (−) ∗ P (A|−)

This can also be observed in 20, where the sequence ”A” at time step = 2 has three incoming connections.
The decoded sequence with maximum probability at the final time step will be the required best output
sequence, which is the sequence ”A” in this toy problem.

32

	Multiple Choice [5 points]
	RNN Cell
	RNN Cell Forward (5 points)
	RNN Cell Backward (5 points)
	RNN Phoneme Classifier (10 points)
	RNN Classifier Forward
	RNN Classifier Backward

	GRU Cell
	GRU Cell Forward (5 points)
	GRU Cell Backward (15 points)
	GRU Inference (10 points)

	CTC (25 points)
	CTC Loss
	CTC Forward
	CTC Backward

	CTC Decoding: Greedy Search and Beam Search (20 points)
	Greedy Search
	Beam Search

	Toy Examples
	RNN
	GRU
	Beam Search

