How to compute a derivative
Computing derivatives of complicated functions

• How do you compute the derivatives in an LSTM or GRU cell?
• How do you compute derivatives of complicated functions in general?
• In these slides we will give you some hints
• In the slides we will assume vector functions and vector activations
• But we will also give you scalar versions of the equations to provide intuition
• The two sets will be almost identical, except that when we deal with vector functions
 • The notation becomes uglier and less intuitive
 • We must ensure that the dimensions come out right
• Please compare vector versions of equations to their scalar counterparts for better intuition, if needed
First: Some notation and conventions

- We will refer to the derivative of scalar L with respect to x as $\nabla_x L$
 - Regardless of whether the derivative is a scalar, vector, matrix or tensor

- The derivative of a scalar L w.r.t an $N \times 1$ column vector x is a $1 \times N$ row vector $\nabla_x L$

- The derivative of a scalar L w.r.t an $N \times M$ matrix X is an $M \times N$ matrix $\nabla_X L$
 - Remember our gradient update rule: $W = W - \eta \nabla_w L^T$

- The derivative of an $N \times 1$ vector Y w.r.t an $M \times 1$ vector X is an $N \times M$ matrix $J_X(Y)$
 - The Jacobian
Rules: 1 (scalar)

\[z = Wx \]

- All terms are scalars
- \(\frac{\partial L}{\partial z} \) is known

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} W \]

\[\frac{\partial L}{\partial W} = x \frac{\partial L}{\partial z} \]
Rules: 1 (vector)

\[z = Wx \]

- \(z \) is an \(N \times 1 \) vector
- \(x \) is an \(M \times 1 \) vector
- \(W \) is an \(N \times M \) matrix
- \(L \) is a function of \(z \)
- \(\nabla_z L \) is known (and is a \(1 \times N \) vector)

\[\nabla_x L = (\nabla_z L)W \]
\[\nabla_W L = x(\nabla_z L) \]

Please verify that the dimensions match!
Rules: 2 (vector, \textit{schur} multiply)

\[z = x \circ y \]

• \(x, y \) and \(z \) are all \(N \times 1 \) vectors
• “\(\circ \)” represents component-wise multiplication
• \(\nabla_z L \) is known (and is a \(1 \times N \) vector)

\[
\nabla_x L = (\nabla_z L) \circ y^T \\
\nabla_y L = (\nabla_z L) \circ x^T
\]

Please verify that the dimensions match!
Rules: 3 (scalar)

\[z = x + y \]

- All terms are scalars
- \(\frac{\partial L}{\partial z} \) is known

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} = \frac{\partial L}{\partial z}
\]
Rules: 3 (vector)

\[z = x + y \]

- \(x, y \) and \(z \) are all \(N \times 1 \) vectors
- \(\nabla_z L \) is known (and is a \(1 \times N \) vector)

\[
\begin{align*}
\nabla_x L &= \nabla_z L \\
\nabla_y L &= \nabla_z L
\end{align*}
\]

Please verify that the dimensions match!
Rules: 4 (scalar)

\[z = g(x) \]

- \(x \) and \(z \) are scalars
- \(\frac{\partial L}{\partial z} \) is known

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} g'(x) \]
Rules: 4 (vector)

\[z = g(x) \]

- \(x \) and \(z \) are \(N \times 1 \) vectors
- \(\nabla_z L \) is known (and is a \(1 \times N \) vector)
- \(J_x g \) is the Jacobian of \(g(x) \) with respect to \(x \)
 - May be a diagonal matrix

\[\nabla_x L = \nabla_z L \cdot J_x g \]

Please verify that the dimensions match!
Rules: 4b (vector) component-wise multiply notation

\[z = g(x) \]

- \(x \) and \(z \) are \(N \times 1 \) vectors
- \(\nabla_z L \) is known (and is a \(1 \times N \) vector)
- \(g(x) \) is actually a vector of component-wise functions
 - i.e. \(z_i = g(x_i) \)
- \(g'(x) \) is a column vector consisting of the derivatives of the individual components of \(g(x) \) w.r.t individual components of \(x \)

\[\nabla_x L = \nabla_z L \circ g'(x)^T \]

Please verify that the dimensions match!
Rule 5: Addition of derivatives

• Given two variables

\[z = g(x) \]
\[y = h(x) \]

• And given \(\frac{\partial L}{\partial y} \) and \(\frac{\partial L}{\partial z} \)

• we get

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} g'(x) + \frac{\partial L}{\partial y} h'(x) \]

• The rule also extends to vector derivatives
Computing derivatives of complex functions

• We now are prepared to compute very complex derivatives

• Procedure:
 • Express the computation as a series of computations of intermediate values
 • Each computation must comprise either a unary or binary relation
 • Unary relation: RHS has one argument, e.g. \(y = g(x) \)
 • Binary relation: RHS has two arguments e.g. \(z = x + y \) or \(z = xy \)
 • Work your way backward through the derivatives of the simple relations
Example: LSTM

• Full set of LSTM equations (in the order in which they must be computed)

1. \(f_t = \sigma (W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f) \)
2. \(i_t = \sigma (W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i) \)
3. \(\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \)
4. \(C_t = f_t \ast C_{t-1} + i_t \ast \tilde{C}_t \)
5. \(o_t = \sigma (W_o \cdot [C_t, h_{t-1}, x_t] + b_o) \)
6. \(h_t = o_t \ast \tanh (C_t) \)

• It's actually much cleaner to separate the individual components, so let's do that first
LSTM

1. $f_t = \sigma(W_{fC} C_{t-1} + W_{fh} h_{t-1} + W_{fx} x_t + b_f)$
2. $i_t = \sigma(W_{iC} C_{t-1} + W_{ih} h_{t-1} + W_{ix} x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{Ch} h_{t-1} + W_{Cx} x_t + b_C)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$
5. $o_t = \sigma(W_{oC} C_{t-1} + W_{oh} h_{t-1} + W_{ox} x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$

• This is the full set of equations in the order in which they must be computed
• Lets rewrite these in terms of unary and binary operations
LSTM

1. \(f_t = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f) \)
2. \(i_t = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i) \)
3. \(\tilde{C}_t = \sigma(W_{ch}h_{t-1} + W_{cx}x_t + b_C) \)
4. \(C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t \)
5. \(o_t = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o) \)
6. \(h_t = o_t \circ \tanh(C_t) \)

- Lets rewrite these in terms of unary and binary operations

\[
\begin{align*}
 z_1 &= W_{fc}C_{t-1} \\
 z_2 &= W_{fh}h_{t-1} \\
 z_3 &= z_1 + z_2 \\
 z_4 &= W_{fx}x_t \\
 z_5 &= z_3 + z_4 \\
 z_6 &= z_5 + b_f \\
 f_t &= \sigma(z_6)
\end{align*}
\]
LSTM

1. \(z_1 = W_f c C_{t-1} \)
2. \(z_2 = W_f h h_{t-1} \)
3. \(z_3 = z_1 + z_2 \)
4. \(z_4 = W_f x x_t \)
5. \(z_5 = z_3 + z_4 \)
6. \(z_6 = z_5 + b_f \)
7. \(f_t = \sigma(z_6) \)
LSTM

1. \(f_t = \sigma(W_{fC} C_{t-1} + W_{fh} h_{t-1} + W_{fx} x_t + b_f) \)
2. \(i_t = \sigma(W_{ic} C_{t-1} + W_{ih} h_{t-1} + W_{ix} x_t + b_i) \)
3. \(\tilde{C}_t = \sigma(W_{Ch} h_{t-1} + W_{Cx} x_t + b_C) \)
4. \(C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t \)
5. \(o_t = \sigma(W_{oC} C_{t-1} + W_{oh} h_{t-1} + W_{ox} x_t + b_o) \)
6. \(h_t = o_t \circ \tanh(C_t) \)

- Lets rewrite these in terms of unary and binary operations
LSTM

1. \(z_1 = W_{fc} C_{t-1} \)
2. \(z_2 = W_{fh} h_{t-1} \)
3. \(z_3 = z_1 + z_2 \)
4. \(z_4 = W_{fx} x_t \)
5. \(z_5 = z_3 + z_4 \)
6. \(z_6 = z_5 + b_f \)
7. \(f_t = \sigma(z_6) \)
8. \(z_7 = W_{ic} C_{t-1} \)
9. \(z_8 = W_{ih} h_{t-1} \)
10. \(z_9 = z_7 + z_8 \)
11. \(z_{10} = W_{ix} x_t \)
12. \(z_{11} = z_9 + z_{10} \)
13. \(z_{12} = z_{11} + b_i \)
14. \(i_t = \sigma(z_{12}) \)
LSTM

1. $f_t = \sigma(W_{fC} C_{t-1} + W_{fh} h_{t-1} + W_{fx} x_t + b_f)$
2. $i_t = \sigma(W_{iC} C_{t-1} + W_{ih} h_{t-1} + W_{ix} x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{Ch} h_{t-1} + W_{Cx} x_t + b_C)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$
5. $o_t = \sigma(W_{oC} C_{t-1} + W_{oh} h_{t-1} + W_{ox} x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$

- Lets rewrite these in terms of unary and binary operations
LSTM

15. $z_{13} = W_{Ch} h_{t-1}$
16. $z_{14} = W_{Cx} x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
LSTM

1. \(f_t = \sigma(W_{fC} C_{t-1} + W_{fh} h_{t-1} + W_{fx} x_t + b_f) \)
2. \(i_t = \sigma(W_{iC} C_{t-1} + W_{ih} h_{t-1} + W_{ix} x_t + b_i) \)
3. \(\tilde{C}_t = \sigma(W_{Ch} h_{t-1} + W_{C} x_t + b_C) \)
4. \(C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t \)
5. \(o_t = \sigma(W_{oc} C_{t-1} + W_{oh} h_{t-1} + W_{ox} x_t + b_o) \)
6. \(h_t = o_t \circ \tanh(C_t) \)

- Let's rewrite these in terms of unary and binary operations
LSTM

15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)
LSTM

1. $f_t = \sigma(W_{fC}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f)$
2. $i_t = \sigma(W_{iC}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i)$
3. $\tilde{C}_t = \sigma(W_{Ch}h_{t-1} + W_{Cx}x_t + b_C)$
4. $C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t$
5. $o_t = \sigma(W_{oC}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o)$
6. $h_t = o_t \circ \tanh(C_t)$

- Lets rewrite these in terms of unary and binary operations

$z_{19}=W_{oC}C_{t-1}$
$z_{20}=W_{oh}h_{t-1}$
$z_{21}=z_{19}+z_{20}$
$z_{22}=W_{ox}x_t$
$z_{23}=z_{21}+z_{22}$
$z_{24}=z_{23}+b_o$
$o_t=\sigma(z_{24})$
LSTM

15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)

23. \(z_{19} = W_{oC} C_{t-1} \)
24. \(z_{20} = W_{oh} h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox} x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
LSTM

1. \(f_t = \sigma(W_{fc}C_{t-1} + W_{fh}h_{t-1} + W_{fx}x_t + b_f) \)
2. \(i_t = \sigma(W_{ic}C_{t-1} + W_{ih}h_{t-1} + W_{ix}x_t + b_i) \)
3. \(\tilde{C}_t = \sigma(W_{ch}h_{t-1} + W_{cx}x_t + b_C) \)
4. \(C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \)
5. \(o_t = \sigma(W_{oc}C_{t-1} + W_{oh}h_{t-1} + W_{ox}x_t + b_o) \)
6. \(h_t = o_t \cdot \tanh(C_t) \)

\[z_{25} = \tanh(C_t) \]
\[h_t = o_t \cdot z_{25} \]

- Lets rewrite these in terms of unary and binary operations
LSTM

15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)
23. \(z_{19} = W_{oC} C_{t-1} \)
24. \(z_{20} = W_{oh} h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox} x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
30. \(z_{25} = \tanh(C_t) \)
31. \(h_t = o_t \circ z_{25} \)
• The full forward computation of the LSTM can be performed by computing Equations 1-31 in sequence

• Every one of these equations is unary or binary
LSTM

1. \(z_1 = W_{fc} C_{t-1} \)
2. \(z_2 = W_{fh} h_{t-1} \)
3. \(z_3 = z_1 + z_2 \)
4. \(z_4 = W_{fx} x_t \)
5. \(z_5 = z_3 + z_4 \)
6. \(z_6 = z_5 + b_f \)
7. \(f_t = \sigma(z_6) \)
8. \(z_7 = W_{ic} C_{t-1} \)
9. \(z_8 = W_{ih} h_{t-1} \)
10. \(z_9 = z_7 + z_8 \)
11. \(z_{10} = W_{ix} x_t \)
12. \(z_{11} = z_9 + z_{10} \)
13. \(z_{12} = z_{11} + b_i \)
14. \(i_t = \sigma(z_{12}) \)
LSTM

15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)
23. \(z_{19} = W_{oC} C_{t-1} \)
24. \(z_{20} = W_{oh} h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox} x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
30. \(z_{25} = \tanh(C_t) \)
31. \(h_t = o_t \circ z_{25} \)
Computing derivatives

We will now work our way backward.

We assume derivatives $\frac{dL}{dh_t}$ and $\frac{dL}{dC_t}$ of the loss w.r.t h_t and C_t are given.

We must compute $\frac{dL}{dC_{t-1}}$, $\frac{dL}{dh_{t-1}}$ and $\frac{dL}{dx_t}$.

And also derivatives w.r.t the parameters within the cell.

Recall: the shape of the derivative for any variable will be transposed with respect to that variable.
LSTM

1. $\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T$
2. $\nabla_{z_{25}} L = \nabla_{h_t} L \circ o_t^T$

23. $z_{19} = W_{oc} C_{t-1}$
24. $z_{20} = W_{oh} h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox} x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_o$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$
LSTM

1. $\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T$
2. $\nabla_{z_{25}} L = \nabla_{h_t} L \circ o_t^T$
3. $\nabla_{C_t} L = \nabla_{z_{25}} L \circ (1 - \tanh^2(C_t))^T$

23. $z_{19} = W_{oC} C_{t-1}$
24. $z_{20} = W_{oh} h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox} x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_o$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$
1. \(\nabla_{o_t}L = \nabla_{h_t}L \circ z_{25}^T \)
2. \(\nabla_{z_{25}}L = \nabla_{h_t}L \circ o_t^T \)
3. \(\nabla_{C_t}L = \nabla_{z_{25}}L \circ \\
 (1 - \tanh^2(C_t))^T \)
4. \(\nabla_{z_{24}}L = \nabla_{o_t}L \circ \sigma(z_{24})^T \circ \\
 (1 - \sigma(z_{24}))^T \)

23. \(z_{19} = W_{oC}C_{t-1} \)
24. \(z_{20} = W_{oh}h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox}x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
30. \(z_{25} = \tanh(C_t) \)
31. \(h_t = o_t \circ z_{25} \)
LSTM

1. \(\nabla_{o_t} L = \nabla_{h_t} L \circ z_{25}^T \)
2. \(\nabla_{z_{25}} L = \nabla_{h_t} L \circ o_t^T \)
3. \(\nabla_{C_t} L = \nabla_{z_{25}} L \circ (1 - \tanh^2(C_t))^T \)
4. \(\nabla_{z_{24}} L = \nabla_{o_t} L \circ \sigma(z_{24})^T \circ (1 - \sigma(z_{24}))^T \)
5. \(\nabla_{z_{23}} L = \nabla_{z_{24}} L \)
6. \(\nabla_{b_o} L = \nabla_{z_{24}} L \)

23. \(z_{19} = W_{oC} C_{t-1} \)
24. \(z_{20} = W_{oh} h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox} x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
30. \(z_{25} = \tanh(C_t) \)
31. \(h_t = o_t \circ z_{25} \)

Equations highlighted in yellow show derivatives w.r.t. parameters
LSTM

7. \(\nabla_{z_{22}} L = \nabla_{z_{23}} L \)
8. \(\nabla_{z_{21}} L = \nabla_{z_{23}} L \)

23. \(z_{19} = W_{oC} C_{t-1} \)
24. \(z_{20} = W_{oh} h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox} x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
30. \(z_{25} = \tanh(C_t) \)
31. \(h_t = o_t \circ z_{25} \)
LSTM

7. $\nabla_{z_{22}} L = \nabla_{z_{23}} L$
8. $\nabla_{z_{21}} L = \nabla_{z_{23}} L$
9. $\nabla_{W_{ox}} L = x_t \nabla_{z_{22}} L$
10. $\nabla_{x_t} L = \nabla_{z_{22}} L W_{ox}$

23. $z_{19} = W_{oC} C_{t-1}$
24. $z_{20} = W_{oh} h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox} x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_0$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$
LSTM

7. \(\nabla_{z_{22}} L = \nabla_{z_{23}} L \)
8. \(\nabla_{z_{21}} L = \nabla_{z_{23}} L \)
9. \(\nabla_{W_{ox}} L = x_t \nabla_{z_{22}} L \)
10. \(\nabla_{x_t} L = \nabla_{z_{22}} L W_{ox} \)
11. \(\nabla_{z_{20}} L = \nabla_{z_{21}} L \)
12. \(\nabla_{z_{19}} L = \nabla_{z_{21}} L \)

23. \(z_{19} = W_{oc} C_{t-1} \)
24. \(z_{20} = W_{oh} h_{t-1} \)
25. \(z_{21} = z_{19} + z_{20} \)
26. \(z_{22} = W_{ox} x_t \)
27. \(z_{23} = z_{21} + z_{22} \)
28. \(z_{24} = z_{23} + b_o \)
29. \(o_t = \sigma(z_{24}) \)
30. \(z_{25} = \tanh(C_t) \)
31. \(h_t = o_t \circ z_{25} \)
LSTM

7. $\nabla_{z_{22}} L = \nabla_{z_{23}} L$

8. $\nabla_{z_{21}} L = \nabla_{z_{23}} L$

9. $\nabla_{W_{ox}} L = x_t \nabla_{z_{22}} L$

10. $\nabla_{x_t} L = \nabla_{z_{22}} L W_{ox}$

11. $\nabla_{z_{20}} L = \nabla_{z_{21}} L$

12. $\nabla_{z_{19}} L = \nabla_{z_{21}} L$

13. $\nabla_{W_{oh}} L = h_{t-1} \nabla_{z_{20}} L$

14. $\nabla_{h_{t-1}} L = \nabla_{z_{20}} L W_{oh}$

23. $z_{19} = W_{oc} C_{t-1}$

24. $z_{20} = W_{oh} h_{t-1}$

25. $z_{21} = z_{19} + z_{20}$

26. $z_{22} = W_{ox} x_t$

27. $z_{23} = z_{21} + z_{22}$

28. $z_{24} = z_{23} + b_o$

29. $o_t = \sigma(z_{24})$

30. $z_{25} = \tanh(C_t)$

31. $h_t = o_t \circ z_{25}$
LSTM

7. $\nabla_{z_{22}} L = \nabla_{z_{23}} L$
8. $\nabla_{z_{21}} L = \nabla_{z_{23}} L$
9. $\nabla_{W_{ox}} L = x_t \nabla_{z_{22}} L$
10. $\nabla_{x_t} L = \nabla_{z_{22}} LW_{ox}$
11. $\nabla_{z_{20}} L = \nabla_{z_{21}} L$
12. $\nabla_{z_{19}} L = \nabla_{z_{21}} L$
13. $\nabla_{W_{oh}} L = h_{t-1} \nabla_{z_{20}} L$
14. $\nabla_{h_{t-1}} L = \nabla_{z_{20}} LW_{oh}$
15. $\nabla_{W_{OC}} L = C_{t-1} \nabla_{z_{19}} L$
16. $\nabla_{C_{t-1}} L = \nabla_{z_{19}} LW_{OC}$

23. $z_{19} = W_{OC} C_{t-1}$
24. $z_{20} = W_{oh} h_{t-1}$
25. $z_{21} = z_{19} + z_{20}$
26. $z_{22} = W_{ox} x_t$
27. $z_{23} = z_{21} + z_{22}$
28. $z_{24} = z_{23} + b_o$
29. $o_t = \sigma(z_{24})$
30. $z_{25} = \tanh(C_t)$
31. $h_t = o_t \circ z_{25}$
LSTM

15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)

7. \(\nabla_{z_{18}} L = \nabla_{C_t} L \)
8. \(\nabla_{z_{17}} L = \nabla_{C_t} L \)
LSTM

15. $z_{13}=W_{Ch}h_{t-1}$
16. $z_{14}=W_{Cx}x_t$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17}=f_t \circ C_{t-1}$
21. $z_{18}=i_t \circ \tilde{C}_t$
22. $C_t = z_{17}+z_{18}$

7. $\nabla_{z_{18}} L = \nabla_{C_t} L$
8. $\nabla_{z_{17}} L = \nabla_{C_t} L$
9. $\nabla_{i_t} L = \nabla_{z_{18}} L \circ \tilde{C}_t$
10. $\nabla_{\tilde{C}_t} L = \nabla_{z_{18}} L \circ i_t^T$
LSTM

15. $z_{13} = W_{Ch} h_{t-1}$
16. $z_{14} = W_{Cx} x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$

7. $\nabla z_{18} L = \nabla C_t L$
8. $\nabla z_{17} L = \nabla C_t L$
9. $\nabla i_t L = \nabla z_{18} L \circ \tilde{C}_t^T$
10. $\nabla \tilde{C}_t L = \nabla z_{18} L \circ i_t^T$
11. $\nabla C_{t-1} L += \nabla z_{17} L \circ f_t^T$
12. $\nabla f_t L = \nabla z_{17} L \circ C_{t-1}^T$

Second time we’re computing a derivative for C_{t-1}, so we increment the derivative ("+=")
15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)
7. \(\nabla_{z_{18}} L = \nabla_{C_t} L \)
8. \(\nabla_{z_{17}} L = \nabla_{C_t} L \)
9. \(\nabla_{i_t} L = \nabla_{z_{18}} L \circ \tilde{C}_t^T \)
10. \(\nabla_{\tilde{C}_t} L = \nabla_{z_{18}} L \circ i_t^T \)
11. \(\nabla_{C_{t-1}} L += \nabla_{z_{17}} L \circ f_t^T \)
12. \(\nabla_{f_t} L = \nabla_{z_{17}} L \circ C_{t-1}^T \)
13. \(\nabla_{z_{16}} L = \nabla_{\tilde{C}_t} L \circ \sigma(z_{16})^T \circ (1 - \sigma(\tilde{z}_{16}))^T \)
LSTM

15. \(z_{13} = W_{Ch} h_{t-1} \)
16. \(z_{14} = W_{Cx} x_t \)
17. \(z_{15} = z_{13} + z_{14} \)
18. \(z_{16} = z_{15} + b_C \)
19. \(\tilde{C}_t = \sigma(z_{16}) \)
20. \(z_{17} = f_t \circ C_{t-1} \)
21. \(z_{18} = i_t \circ \tilde{C}_t \)
22. \(C_t = z_{17} + z_{18} \)

14. \(\nabla_{b_C} L = \nabla_{z_{16}} L \)
15. \(\nabla_{z_{15}} L = \nabla_{z_{16}} L \)
15. $z_{13} = W_{Ch} h_{t-1}$
16. $z_{14} = W_{Cx} x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$
LSTM

15. $z_{13} = W_{Ch} h_{t-1}$

16. $z_{14} = W_{Cx} x_t$

17. $z_{15} = z_{13} + z_{14}$

18. $z_{16} = z_{15} + b_C$

19. $\tilde{C}_t = \sigma(z_{16})$

20. $z_{17} = f_t \circ C_{t-1}$

21. $z_{18} = i_t \circ \tilde{C}_t$

22. $C_t = z_{17} + z_{18}$

14. $\nabla_{b_C} L = \nabla_{z_{16}} L$

15. $\nabla_{z_{15}} L = \nabla_{z_{16}} L$

16. $\nabla_{b_C} L = \nabla_{z_{16}} L$

17. $\nabla_{z_{15}} L = \nabla_{z_{16}} L$

18. $\nabla_{W_{Cx}} L = x_t \nabla_{z_{14}} L$

19. $\nabla_{x_t} L \leftarrow= \nabla_{z_{14}} LW_{Cx}$

Note the "+="
15. $z_{13} = W_C h_{t-1}$
16. $z_{14} = W_C x_t$
17. $z_{15} = z_{13} + z_{14}$
18. $z_{16} = z_{15} + b_C$
19. $\tilde{C}_t = \sigma(z_{16})$
20. $z_{17} = f_t \circ C_{t-1}$
21. $z_{18} = i_t \circ \tilde{C}_t$
22. $C_t = z_{17} + z_{18}$

14. $\nabla_{b_C} L = \nabla_{z_{16}} L$
15. $\nabla_{z_{15}} L = \nabla_{z_{16}} L$
16. $\nabla_{b_C} L = \nabla_{z_{16}} L$
17. $\nabla_{z_{15}} L = \nabla_{z_{16}} L$
18. $\nabla_{W_C x_t} L = x_t \nabla_{z_{14}} L$
19. $\nabla_{x_t} L += \nabla_{z_{14}} L W_{C x}$
20. $\nabla_{W_{C h}} L = h_{t-1} \nabla_{z_{14}} L$
21. $\nabla_{h_{t-1}} L += \nabla_{z_{13}} L W_{C h}$

Note the “+=”
Continuing the computation

- Continue the backward progression until the derivatives from forward Equation 1 have been computed.
- At this point all derivatives will be computed.
Overall procedure

• Express the overall computation as a sequence of unary or binary operations
 • Can be automated

• Computes derivatives incrementally, going backward over the sequence of equations!

• Since each atomic computation is simple and belongs to one of a small set of possibilities, the conversion to derivatives is trivial once the computation is serialized as above
May be easier to think of it in terms of a “derivative” routine

• Define a routine that returns derivatives for unary and binary operations

• **SCALAR version (all variables are scalars)**

```python
function deriv(dz, x, y, operator)
    case operator:
        'none' : return dx
        '*' : return y*dz, dz*x
        '+' : return dz, dz
        '-' : return dz, -dz
    # Single argument operations
    'tanh' : return dz(1-tanh²(x))
    'sigmoid' : return dz sigmoid(x) (1-sigmoid(x))
```
Derivative routine, vector version

- Note distinction between component-wise and matrix multiplies
- Observe also that matrix and vector dimensions are correctly handled (locally)
- “∘” is component-wise multiply
- “∗” is matrix multiply

```python
function deriv(dz, x, y, operator):
    case operator:
        'none' : return dx  # component-wise “schur” multiply
        '∘' : return dz ∘ y^T, dz ∘ x^T  # Matrix multiply. X must be a matrix
        '∗' : return y ∘ dz, dz ∘ x
        '+' : return dz, dz
        '-' : return dz, -dz
    # The following will expect a single argument
        'tanh' : return dz ∘ (1-tanh^2(x))^T
        'sigmoid' : return dz ∘ sigmoid(x)^T ∘ (1-sigmoid(x))^T
    # The jacobian is the full derivative matrix of the sigmoid
        'softmax' : return dz ∘ Jacobian(sigmoid, x)
```
When to use “=" vs “+=“

• In the forward computation a variable may be used multiple times to compute other intermediate variables

• During backward computations, the first time the derivative is computed for the variable, the we will use “="

• In subsequent computations we use “+=“

• It may be difficult to keep track of when we first compute the derivative for a variable
 • When to use “=" vs when to use “+=“

• Cheap trick:
 • Initialize all derivatives to 0 during computation
 • Always use “+=“
 • You will get the correct answer (why?)
\([\text{d}C_{t-1}, \text{d}x_t, \text{d}h_{t-1}, \text{d}[W,b]] = \text{LSTM
derivative}(\text{d}C_t, \text{d}h_t)\)

initialize d(variable)=0 (all variables)

Derivative of eq. 31 \(h_t = o_t \circ z_{25}\)
[do_t, dz_25] += deriv(dh_t, o_t, z_25, '\circ')

Derivative of eq. 30 \(z_{25}=\tanh(C_t)\)
[dC_t] += deriv(dz_25, C_t, 'tanh')

Derivative of eq. 29 \(o_t=\sigma(z_{24})\)
[dz_25] += deriv(do_t, z_25, 'sigmoid')

Derivative of eq. 28 \(z_{24}=z_{23}+b_o\)
[dz_23, db_o] += deriv(dz_24, z_23, b_o, '+')

Derivative of eq. 27 \(z_{23}=z_{21}+z_{22}\)
[dz_21, dz_22] += deriv(dz_23, z_21, z_22, '+')

Derivative of eq. 26 \(z_{22}=W_{ox}x_t\)
[dW_ox, dx_t] += deriv(dz_22, W_ox, x_t, '⋆')

Derivative of eq. 25 \(z_{21}=z_{19}+z_{20}\)
[dz_19, dz_20] += deriv(dz_21, z_19, z_20, '+')

Derivative of eq. 24 \(z_{20}=W_{oh}h_{t-1}\)
[dW_oh, dh_{t-1}] += deriv(dz_20, W_oh, h_{t-1}, '⋆')

Derivative of eq. 23 \(z_{19}=W_{oc}C_{t-1}\)
[dW_oc, dC_{t-1}] += deriv(dz_19, W_oc, C_{t-1}, '⋆')
... continued from previous slide

Derivative of eq. 22 $C_t = z_{17} + z_{18}$
$$[dz_{17}, dz_{18}] += \text{deriv}(dC_t, z_{18}, z_{18}, '+')$$

Derivative of eq. 21 $z_{18} = i_t \circ \tilde{C}_t$
$$[di_t, dtildC_t] += \text{deriv}(dz_{18}, i_t, dtildC_t, 'o')$$

Derivative of eq. 20 $z_{17} = f_t \circ C_{t-1}$
$$[df_t, dC_{t-1}] += \text{deriv}(dz_{17}, f_t, C_{t-1}, 'o')$$

Derivative of eq. 19 $\tilde{C}_t = \sigma(z_{16})$
$$[dz_{16}] += \text{deriv}(dtildC_t, 'sigmoid')$$

Derivative of eq. 18 $z_{16} = z_{15} + b_C$
$$[dz_{15}, db_c] += \text{deriv}(dz_{16}, z_{15}, b_c, '+')$$

Derivative of eq. 17 $z_{15} = z_{13} + z_{14}$
$$[dz_{13}, dz_{14}] += \text{deriv}(dz_{15}, z_{13}, z_{14}, '+')$$

Derivative of eq. 16 $z_{14} = W_{Cx} x_t$
$$[dW_{Cx}, dx_t] += \text{deriv}(dz_{14}, W_{Cx}, x_t, '*')$$

Derivative of eq. 15 $z_{13} = W_{Ch} h_{t-1}$
$$[dW_{Ch}, dh_{t-1}] += \text{deriv}(dz_{13}, W_{Ch}, h_{t-1}, '*')$$
... continued from previous slide

Derivative of eq. 14 \(i_t = \sigma(z_{12}) \)

\[dz_{12} \] += deriv(di_t, 'sigmoid')

Derivative of eq. 13 \(z_{12} = z_{11} + b_f \)

\[dz_{11}, \; db_i \] += deriv(dz_{12}, z_{11}, b_i, '+')

Derivative of eq. 12 \(z_{11} = z_9 + z_{10} \)

\[dz_9, \; dz_{10} \] += deriv(dz_{11}, z_9, z_{10}, '+')

Derivative of eq. 11 \(z_{10} = W_{ix} x_t \)

\[dW_{ix}, \; dx_t \] += deriv(dz_{10}, W_{ix}, x_t, '+')

Derivative of eq. 10 \(z_9 = z_7 + z_8 \)

\[dz_7, \; dz_8 \] += deriv(dz_9, z_7, z_8, '+')

Derivative of eq. 9 \(z_8 = W_{ih} h_{t-1} \)

\[dW_{ih}, \; dh_{t-1} \] += deriv(dz_8, W_{ih}, h_{t-1}, '*')

Derivative of eq. 8 \(z_7 = W_{ic} C_{t-1} \)

\[dW_{ic}, \; dC_{t-1} \] += deriv(dz_7, W_{ic}, C_{t-1}, '*')
... continued from previous slide

Derivative of eq. 7 \(f_t = \sigma(z_6) \)

\[
[dz_6] += \text{deriv}(df_t, 'sigmoid')
\]

Derivative of eq. 6 \(z_6 = z_5 + b_f \)

\[
[dz_5, db_f] += \text{deriv}(dz_6, z_5, b_f, '+')
\]

Derivative of eq. 5 \(z_5 = z_3 + z_4 \)

\[
[dz_3, dz_4] += \text{deriv}(dz_5, z_3, z_4, '+')
\]

Derivative of eq. 4 \(z_4 = W_{fx} x_t \)

\[
[dW_{fx}, dx_t] += \text{deriv}(dz_4, W_{fx}, x_t, '*')
\]

Derivative of eq. 3 \(z_3 = z_1 + z_2 \)

\[
[dz_1, dz_2] += \text{deriv}(dz_3, z_1, z_2, '+')
\]

Derivative of eq. 2 \(z_2 = W_{fh} h_{t-1} \)

\[
[dW_{fh}, dh_{t-1}] += \text{deriv}(dz_2, W_{fh}, h_{t-1}, '*')
\]

Derivative of eq. 1 \(z_1 = W_{fC} C_{t-1} \)

\[
[dW_{fC}, dC_{t-1}] += \text{deriv}(dz_7, W_{fC}, C_{t-1}, '*')
\]

return \(dC_{t-1}, dh_{t-1}, dx_t, d[W, b] \)
Caveats

• The deriv() routine given is missing several operators
 • Operations involving constants (z = 2y, z = 1-y, z = 3+y)
 • Division and inversion (e.g. z = x/y, z = 1/y, z = A⁻¹)
 • You may have to extend it to deal with these, or rewrite your equations to eliminate such operations if possible

• In practice many of the operations will be grouped together for computational efficiency
 • And to take advantage of parallel processing capabilities

• But the basic principle applies to any computation that can be expressed as a serial operation of unary and binary relations
 • If you can do it on a computer, you can express it as a serial operation

• In fact the preceding logic is exactly what we use to compute derivatives in backprop
 • We saw this explicitly in the vector version of BP for MLPs.