
11785
Fall’22
Recitation-2

Network Optimization
Data Manipulation, Model Architecture, Hyperparameter Optimization

Swathi Jadav | Vishhvak Srinivasan



Data 
Manipulation ● Data Quality

● Data Augmentation
● Data Normalization



Data Quality
● It’s obvious how important data is for deep learning. We need clean large datasets for obtaining

high accuracies especially for tasks such as machine translation, sentiment analysis, etc.

● The amount of data required also depends on the dimensionality of the data. The higher the 
dimensionality, the higher is the amount of data needed. Data collected can also often be noisy, 
unannotated, or downright unusable. There are various pre-processing techniques you can use to 
obtain desired datasets.

CIFAR-10 MNIST



Data Augmentation
● Sometimes, it is not possible to obtain the amount of data required. In such cases, we can use data 

augmentation techniques to generate more data and it also makes the model more generalizable.

● You can use image augmentation techniques such as flipping, rotating, Scaling, Changing perspective 
etc. and also Time masking and frequency masking for speech data used in all the HW’s.

Ref: https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/audio/master/tutorials/audio_feature_augmentation_tutorial.html


Data Normalization
Datasets obtained may have different scales for different features. In such cases, we scale the data which 
leads to faster convergence. It is also helpful when data is collected under varying conditions such as 
lighting in an image, gain in speech data, etc.

Types of normalization techniques:

● Z-score normalization (standardization)
● Min-max scaling
● Standard scaling
● Cepstral Mean Normalization



Cepstral Mean Normalization

● Cepstral mean normalization (CMN) is a computationally efficient normalization technique for robust 
speech recognition.

● CMN minimizes distortion by noise contamination for robust feature extraction.

● CMN has been used in different applications as this technique has proven to provide better speech 
recognitions results in different environments. 

● CMN has the capabilities to reduce differences between test and training data produced by channel 
distortions.

● CMN has also been found to be able to reduce differences in feature representation between 
speakers can also partly reduce the influence of background noise.



Model
Architecture ● How do I think about Model 

Architecture for HW1P2? 🤔



Model Architecture

● As you might know already, one of your two biggest tasks in HW1P2 is to find the right model 
architecture for your MLP to be able to predict the phoneme of a given frame with context.

● Experimenting with finding the right model architecture is not easy - and takes a lot of time in a deep 
learning task. 

● One of the ways to find useful architectures for your tasks is to to read papers, blogs, Piazza (for this 
course) and understand the intricacies and measure relative performance for your task.

● Typically, Deeper and wider models tend to generally perform better (Why?) 



Model Architecture - Diamond

Diamond Architecture



Model Architecture - Pyramids

Pyramid/ Inverse-Pyramid



Model Architecture - Cylinder

Cylinder



Model Architecture 

Or Any weird Architecture 🤪



Model Architecture - Summary
While working with MLPs in HW1P2, you will have to experiment with 
the following possibilities in your architecture

- Network shape (as discussed in previous slides)
- Deeper Layers 
- Wider Layers
- Activation Functions (ReLU, Sigmoid, GELU, Softplus, Tanh)
- Batchnorm (more on this in an upcoming slide)
- Dropout (more on this in an upcoming slide)

Remember, you have a parameter limit so you have to construct 
your architecture around a limited budget of parameters. This will 
enable you to actively experiment with hyperparameters and model 
structure than to just stick to models that are 10+ layers deep and 
over 8000 neurons wide at each layer and let it do its job. 



Hyperparameter
Optimization ● What are 

Hyperparameters?



What are Hyperparameters?

● Explicitly specified parameters that control the training process

Parameter Hyperparameter

Parameters are internal to the model - model weights, 
biases, 

Hyperparameters are the explicitly specified 
parameters that control the training process.

Parameters are essential for making predictions. Hyperparameters are essential for optimizing the 
model.

These are learned & set by the model by itself. These are set manually by a machine learning 
engineer/practitioner.



Why do we need to tune hyperparameters?

1. Improve Model Accuracy.
2. Faster convergence for Model.
3. Work with resource constraints (training time, 

infrastructure, cost requirements etc.).
4. Because I need to reach the HIGH cutoff. 🙃



Examples of Hyperparameters

● Batch Size
● Learning Rate
● Scheduler Parameters
● Dropout Probability
● Context
● Size of layers/number of layers
● Optimizer
● Weight Initialization

For Convolutional Neural Networks (HW2P2)
● Kernel size
● Stride



● Another facet to improve your performance is using weight initialization for your 
hidden layers. This can result in faster convergence as well as finding better minima.

● There are a number of initializations you can try, ex. Xavier, Kaiming, Uniform, Gaussian, etc.
Depending on the type of activation function (ReLU, Sigmoid, etc.) and hidden layer 
(linear, CNN, RNN, etc.) the initialization strategy would vary.

● Initializations also sometimes help resolve the issue of vanishing or exploding gradients.
● Note: PyTorch uses some initialization techniques for all of its layers, read them before 

applying your own initialization strategies.

Ref: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf 
https://arxiv.org/pdf/1502.01852.pdf 
https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899

Weight Initialization

Xavier kaiming

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://medium.com/%40shoray.goel/kaiming-he-initialization-a8d9ed0b5899


Learning Rate
● LR is one of the most important 

hyperparameters while training models. It 
controls the weight update step taken by your 
model during gradient descent, which directly 
influences convergence of your model for a 
deep learning task.

● You can experiment with different learning rates 
(also depends on the optimizer you select) as 
well as use a LR scheduler.

● The LR scheduler effectively changes the 
LR across epochs based on a function or 
fixed schedule. You can also change the LR 
manually at certain epochs (but that may 
not be efficient in terms of resources spent 
monitoring training).

Ref for LR schedulers: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Optimizer 
- Gradient descent is the preferred way to optimize neural networks and many other machine learning 

algorithms but is often used as a black box. 

- How exactly do you train your model in practice? How do you change the parameters of your model, by 
how much, and when?

- Enter optimizers. They tie together the loss function and model parameters by updating the model in 
response to the output of the loss function. The loss function is the guide to the terrain, telling the 
optimizer when it’s moving in the right or wrong direction.

- More formally, Optimizers are algorithms or methods used to change the attributes of your neural network 
such as weights and hyperparameters such as learning rate to minimize loss during training. 

- Examples of Optimizer Methods - Stochastic Gradient Descent (SGD), Adam (Adaptive Moment 
Estimation), AdamW, Sharpness Aware Minimization (SAM), Adagrad, RMSProp, etc.

Resource to learn about Optimizers: https://ruder.io/optimizing-gradient-descent/

https://ruder.io/optimizing-gradient-descent/


Optimizer 
● Stochastic Gradient Descent (SGD) is one of the first 

and most heavily used optimizers. But now, there are 
many other optimizers such as Nesterov Accelerated 
Gradient (NAG), Adam, AdamW, Rmsprop, etc.

● Generally, Adam converges faster in most cases 
whereas SGD might converge slower but can find a 
better minima/generalize better.

● More theory on Optimizer Methods will be taught in 

a lecture by the Professor in the near future :)

● There is a suggested approach of initially
using Adam and then switching to SGD:
https://arxiv.org/abs/1712.07628.

https://arxiv.org/abs/1712.07628


Overfitting
When the model trains for too long on sample data or when the model is too complex, it can start to 
learn the “noise,” or irrelevant information, within the dataset. 

When the model memorizes the noise and fits too closely to the training set, the model becomes 
“overfitted,” and it is unable to generalize well to new data.

To combat overfitting, we use techniques to minimize the loss while also minimizing the weights. These 
techniques are often categorized under the name regularization.



L1/L2 Regularization
It involves adding an extra element to the loss function, which punishes our model for being too 
complex or, in simple words, for using too high values in the weight matrix (usually, lambda is 1e-4 
or 1e-5). Lambda is also known as weight decay, as you will find in Pytorch’s optimizers. 



Dropout
The term “dropout” refers to dropping out the 
neurons (input and hidden layer) in a neural network.

All the forward and backwards connections with a 
dropped node are temporarily removed, thus 
creating a new network architecture out of the 
parent network. 

Different nodes are dropped by a dropout 
probability of p during each forward pass.

This leads to complex co-adaptations, which in turn 
reduces the overfitting problem because of which 
the model generalises better on the unseen dataset.



Batch Normalization 
● Wildly successful and simple technique for accelerating training and learning better neural 

network representations

● The key motivation behind BatchNorm is internal covariate shift. It is defined as the change in the 
distribution of network activations due to the change in network parameters during training. 

● At every epoch of training, weights are updated and a different minibatch is being processed, which 
means that the inputs to a neuron is slightly different every time. 

● As these changes get passed on to the next neuron, it creates a situation where the input 
distribution of every neuron is different at every epoch. This co-adaptation problem, significantly 
slows learning. 

● Hence, these shifts in input distributions can be problematic for neural networks, especially deep 
neural networks that could have a large number of layers.



Batch Normalization

● Batch normalisation normalises a layer input by 
subtracting the mini-batch mean and dividing 
it by the mini-batch standard deviation.

● However, if each layer is normalised, the weight 
changes made by the previous layer and noise 
between data is partially lost, as some 
non-linear relationships are lost during 
normalisation. This can lead to suboptimal 
weights being passed on.

● To fix this, batch normalisation adds two 
learnable parameters, gamma γ and beta β, 
which can scale and shift the normalised value.



Batch Normalization

● During training, the mean and 
standard deviation are 
calculated using samples in 
the mini-batch. However, in 
testing, it does not make 
sense to calculate new 
values. 

● Hence, batch normalisation 
uses a running mean and 
running variance that is 
calculated during training. 



Batch Normalization



Other Techniques

• Early Stopping

Literally, just stop the training when you 
see the validation score decreasing, 
where overfitting is likely to begin.

• Gradient Clipping

Once the gradient is over the threshold, clip 
and keep them to the threshold value. This 
helps avoid exploding gradients, especially 
useful in recurrent networks as you will see 
later in the course.



Efficient Training and Logging



Mixed Precision Training 
• Mixed Precision Training (Pytorch > 1.6.0)

• combine FP32 and FP16 during training while 
achieving same accuracy as FP32 training

• Why use Mixed Precision?
• faster training (2-3x)
• less memory usage
• larger batch size, larger model, larger input

• How? What about loss of information?
• We keep a master copy of weights in FP32.

• This is converted into FP16 during part of each 
training iteration (one forward pass, 
back-propagation and weight update). 

• At the end of the iteration, the weight gradients 
are converted back to FP32 and used to update 
the master weights during the optimizer step.



Mixed Precision Training 

https://pytorch.org/docs/stable/notes/amp_examples.html

• Mixed Precision Training 
works only for some GPUs, 
including Tesla T4, V100 and 
A100 GPUs. It does not work 
with a P100 GPU. 

https://pytorch.org/docs/stable/notes/amp_examples.html


Tips for Weights and Biases
• You might already be familiar with weights and biases at this point, given we have provided you code to 

work with in the starter notebook for HW1P2. It is simple code to get you started, but you can do so much 
more with weights and biases such as hyperparameter sweeps. Please refer to Recitation 0H, to learn 
more about Wandb. We highly recommend using it, at least for logging metrics at the minimum.

• If you haven’t already - Use weights and biases as given in the starter notebook to log your experiments.

• Create a team in weights and biases and ask your study group members to join it, so that you can share 
ablation results with each other as you are conducting experiments as a group. This reduces anxiety in 
your architecture/hyperparameter search by a LOT and we highly recommend doing this.



Things to keep in mind for HWs
● DO NOT spend time exploring all possible architectural and hyperparameter variations yourself. This is 

where you make use of the course collaboration policy to take help of your study group to divide and 

conquer your HW ablation studies.

● Spend some time discussing possible variations together and divide it among each other, and log your 

experiments in your wandb team. Divide and Conquer is the way to succeed in HWs in this course.

● Spending time on a portion/sample of the dataset initially might help you make choices quicker on what 

works and doesn’t work. This can be very useful when exploring wildly different strategies at the 

beginning, and then filtering out variants that work and training them on the full dataset to eliminate 

further nuanced variations in the subset of architectures and hyperparameters.



Things to keep in mind for HWs

● A huge portion of your time might go into just monitoring your training on Colab/AWS and being 
anxious about your architecture’s performance. 

● We recommend starting early for this very reason so that you don’t have to worry about wasting too 
much time on architecture search to see what works well and doesn’t in the last minute, forcing you 
to keep your eyes glued to training and wasting time doing nothing else. 

● You will be provided with the medium cutoff architecture soon, look out for a post on Piazza regarding 
it in the coming week, and use it as a first step to ensure you get 70 points. 



Hints for HW1P2:

● Always keep this in mind: “Practice maketh a man perfect!” Besides the theory behind different 
algorithms and different tricks, Deep Learning is kind like an experimental topic. If you wonder what 
tricks can achieve best results or which parameters suit the model well, just give it try!

● Remember to shuffle the training data set. Note: Do not shuffle the test or validation set.

● Choose learning rate wisely: too large LR will result in the model taking huge steps in weight updates 
and diverging/not converging while too small can hardly get rid of local optima.

● Choose batch size: according to the property of SGD, smaller batch size leads to better convergence 
rate. But smaller batch size would deteriorate the performance of BatchNorm layer and running 
speed. In general, different batch size wouldn’t cause too much difference. Larger batch size tends to 
have better performance but will occupy more memory in GPU. 



Hints for HW1P2:

● Explore ensembling - some examples are (more on this will be explained in a future lecture and recitation)

○ Training multiple models and taking a majority vote during classification

○ self-ensemble: average the parameters of your model at different training epochs.

○ Remember, you are however limited to 20 million parameters in total for your final overall network. 

● Don’t forget optimize.zero_grad() while training, and torch.inference_mode() while evaluating.

● Experiment with LR schedulers, they are very crucial in improving model performance - CosineAnnealing, 

ExponentialLR, StepLR, MultiStepLR, ReduceLROnPlateau, etc are some examples to explore.

○ Learning rate must shrink with time for convergence!

● Try to use torch.cuda.empty_cache() and del to release all unoccupied cached memory.



More Hints for HW1P2:
● DataLoader has bad default settings, so remember to tune num_workers > 0 and default to pin_memory = 

True (Colab will gradually restrict the num_workers from 8 to 4 to 2 and then only 1, unfortunately ☹) 

● If you are getting CUDA related errors, switch your code to CPU and run it - more often than not, it will give 
you a better error output and point you towards what is wrong/buggy with your code. 

● Setting bias = False in weight layers before BatchNorms might be useful, as each BatchNorm layer will 
re-center the data anyway, removing the bias and making it a useless trainable parameter.

● Try possible tricks or models that you can find in the papers or posts online!

● Always Remember to checkpoint your model after each epoch
in your code! 





Thank you! :) Have fun!

Feel free to reach out to us if you have any questions.
vishhvak@cmu.edu | sjadav@andrew.cmu.edu

mailto:vishhvak@cmu.edu

