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Agenda

1. Problem statement:
a. Classification
b. Verification

2. Data description

3. Different types of convolution layers

a. Depthwise convolution
b. Pointwise convolution
c. Depthwise Separable convolution

4. Verification optimized 
approaches

5. Run through the 
starter notebook



1. Problem statement 

Face Classification

Given an image, figure out which person 
it is.

Face Verification

Determine if the person in a given 
“query” picture is also present in a given 
gallery of images or not, with no 
reference to their identity?



In General 

Classification

An N way classification task, predicting from 
a fixed set of possible output classes

Verification

It is a matching operation, where you match the 
given sample to the closest sample from a 
reference of N other samples

Can also be a 1 to 1 task, where we want to verify 
if the two embeddings are similar (belong to the 
same class)



Closed Set vs. Open Set
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Open Set vs Closed Set

Source: https://www.researchgate.net/figure/Comparison-of-open-set-and-closed-set-face-recognition_fig1_316505674 

https://www.researchgate.net/figure/Comparison-of-open-set-and-closed-set-face-recognition_fig1_316505674


1. Problem statement

Classification

This is a closed set problem, where the 
subjects in the test set have also been 
seen in the training set, although the 
precise pictures in the test set will not be 
in the training set.

Verification

This is an open set problem, where the 
subjects in the test data may not have 

been seen during training at all. 

Task: determine if the person in a given 
“query” picture is also present in a given 
gallery of images or not, with no 
reference to their identity



Training for classification

Task: Identify the person in a picture 
aka Multi-class classification
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Training for classification

Task: Identify the person in a picture 
aka Multi-class classification

Good for classification, Gives us separable features ! 

How can we use this network for verification?

Is separable good enough for verification?



What we need - Discriminative Features



How can we get discriminative features?



How can we get discriminative features?

Use a loss function which correlates to your evaluation criteria ! 

Train your network to generate 
discriminative embeddings

Enter Contrastive Losses



Training for verification - Metric Learning
Task: determine if the person in a given “query” picture is also present in a given gallery of 
images or not, with no reference to their identity

Triplet Loss setup



Contrastive Losses 

1. Centre Loss
2. Triplet Loss
3. Sphere Face (Angular Softmax)
4. CosFace Loss
5. ArcFace Loss



Contrastive Losses 

1. Centre Loss
2. Triplet Loss
3. Sphere Face (Angular Softmax)
4. CosFace Loss
5. ArcFace Loss

See discussion in HW2 bootcamp



1. Problem statement

Verification

This is an open set problem, where 
the subjects in the test data may not 
have been seen during training at 
all. 

Task: determine if the person in a 
given “query” picture is also present 
in a given gallery of images or not, 
with no reference to their identity

For this problem you will have to find the similarity between each unknown identity 
and all the known identities, and then predict the one with the highest similarity



Face Verification as image retrieval 



2. Data description- VGG Face2

● State of the art VGG Face2 Dataset 

● Largest in the world as of 2020

● 3.3 Million Face Images, ~362 samples per subject

● ~9130 identities, large variations in pose, age, demographics

● 7000 identities for classification, 1000 for verification

● Some demographics data also known (age, ethnicity)



Verification Task - Previous semesters

IMAGE 2

IMAGE 1

Are they the same person?

● Test set- pairs of images with labels about whether they belong to the same person 
● Task: calculate AUC using similarity scores



Verification Task - now 

● Test set- Balanced set of 1000 known 

identities and 1000 unknown identities

● Task: find the similarity between each unknown 

identity and all the known identities, and then 

predict the one with the highest similarity



3. Different types of convolutions



Conventional convolution



Conventional convolution

❏ Each layer of each filter scans its 
corresponding map to produce a convolved 
map

❏ N input channels will require a filter with 
N layers

❏ The independent convolutions of each 
layer of the filter result in N convolved 
maps

❏ The N convolved maps are added together 
to produce the final output map (or 
channel) for that filter



Conventional convolution

❏ M input channels, N output channels

❏ N independent MxKxK 3D filters 
which span all M input channels 

❏ Each filter produces one output 
channel 

Total : N*M*K2  parameters



Conventional convolution
❏ M input channels, N output channels

❏ N independent MxKxK 3D filters 
which span all M input channels 

❏ Each filter produces one output 
channel 

Total : N*M*K2  parameters



Depthwise separable convolution



Depthwise separable convolution
❏ Apply convolution step once

❏ Replace summation by a weighted 
sum across channels

Pytorch Docs: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html 

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html


Depthwise separable convolution
❏ M input channels, N output channels in 2 stages: 

❏ Stage 1: aka Filtering

❏ M independent KxK 2D filters, one per input 
channel

❏ Each filter applies to only one input channel
❏ # of output channels = # input channels

❏ Stage 2: aka Combining - Point-wise convolution

❏ N Mx1x1 1D filters
❏ Each applies to one 2D location across all M 

input channels 

Total NM + MK2 parameters 



Depthwise separable convolution: Combining stage
❏ M input channels, N output channels in 2 stages: 

❏ Stage 1: aka Filtering

❏ M independent KxK 2D filters, one per input 
channel

❏ Each filter applies to only one input channel
❏ # of output channels = # input channels

❏ Stage 2: aka Combining - Point-wise convolution

❏ N Mx1x1 1D filters
❏ Each applies to one 2D location across all M 

input channels 

Total NM + MK2 parameters 

Source: https://blog.csdn.net/shiner_chen/article/details/124319246 

Stage 2

https://blog.csdn.net/shiner_chen/article/details/124319246


Depthwise separable convolution
❏ Let out_channels = 256 (# of desired filters)

❏ With kernel_size = 5

❏ Using conventional convolution (5x5x3 kernel):

❏ Requires: 

(8x8)*(5x5x3)*(256) = 1, 228, 800 parameters

❏ Using Depthwise convolution

❏ Filtering stage : 3* (5x5x1) kernel

Requires: (8x8)*(5x5x1)*3 = 4, 800 parameters

❏ Combining stage: 256*(1x1x3)
Requires: (8x8)*(1x1x3)*(256) = 49, 152 parameters

In total: 53, 952 parameters

8x8x3 input image (in_channels = 3)

8

8
5x5x3 regular conv kernel

5x5x1 kernel

5x5x1 kernel

5x5x1 kernel

Depthwise conv

Filtering

Regular conv

Combining

1x1x3 regular conv kernel



Depthwise separable convolution

224

224



4. Verification optimized approaches





Approach 1: Joint loss optimization 

Model

E
m

beddings

Labels

E
m

beddings

Cross entropy Contrastive 
loss

L

E
m

beddings
E

m
beddings

logits= model(x, return_feats=False)  # -> 7_000 features 

# get anchor, positive and negative from TripletDataset
anchor_emb = model(anchor, return_feats=True)
positive_emb = model(positive, return_feats=True)
negative_emb = model(negative, return_feats=True) 

loss_1 = CrossEntropyLoss(logits, targets)
loss_2 = TripletLoss(anchor_emb, positive_emb, negative_emb)

L = w1*loss_1 + w2*loss_2 # e.g w1 = 0.7 and w2 = 0.3



Approach 2: Sequential



Approach 2: Sequential

Trained classifier



Approach 2: Sequential

Trained classifier

e.g: output from 
ArcMarginProduct

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/ 

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/


Approach 2: Sequential

Trained classifier

e.g: output from 
ArcMarginProduct

ArcFaceLoss 
or 

CrossEntropyLoss

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/ 

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/


Approach 2: Sequential

Trained classifier

e.g: output from 
ArcMarginProduct

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/ 

Ideally, ArcMarginProduct would be an additional layer to your classification 
network.

ArcFaceLoss 
or 

CrossEntropyLoss

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/


Approach 2: Sequential
Ideally, ArcMarginProduct would be an additional layer to your classification network.

class VerificationNetwork(torch.nn.Module):
    def __init__(self, num_classes=7000):
        super().__init__()
        self.backbone = model.load_state_dict(torch.load(# TODO))
        self.arcFaceLayer = ArcMarginProduct(

embedding_size=# TODO, 
n_classes=num_classes

  )
    
    def forward(self, x):
        feats = self.backbone(x, return_feats=True)
        out = self.arcFaceLayer(feats)

  return out





Student after HW2P2



Some tips: Normalization

BatchNorm paper:  https://arxiv.org/pdf/1502.03167.pdf 

https://arxiv.org/pdf/1502.03167.pdf


Some tips: Normalization

LayerNorm paper:  https://arxiv.org/pdf/1607.06450.pdf 

https://arxiv.org/pdf/1607.06450.pdf


Some tips: Normalization

LayerNorm paper:  https://arxiv.org/pdf/1607.06450.pdf 

❏ H denotes the number of hidden units in a layer

❏ No constraints on the size of the mini-batches

❏ All the hidden units in a layer share the same 

normalization terms 𝜇 and 𝝈

https://arxiv.org/pdf/1607.06450.pdf


Some tips: Normalization

GroupNorm paper:  https://arxiv.org/pdf/1803.08494.pdf 

https://arxiv.org/pdf/1803.08494.pdf


Some tips: Normalization

InstanceNorm paper:  https://arxiv.org/pdf/1607.08022.pdf  

❏ InstanceNorm removes the effect of contrast in images
❏ Much useful in stylization (image generation) 

❏ One can argue that the result of stylization should not, 
in general, depend on the contrast of the content 
image

https://arxiv.org/pdf/1607.08022.pdf


Label Smoothing

● Deep Learning Models undergo a problem of Overfitting and 
Overconfidence.

● Label Smoothing is a technique that can help us solve the problem of  
Overconfidence.

What is Overconfidence?
For each sample, the model predicts outcomes with higher probabilities than 
the  accuracy over the entire dataset.
This is a poorly calibrated model.
For example, it may predict 0.9 for inputs where the accuracy is only 0.6.



Example

Without Label Smoothing
Suppose we have K = 3 classes, and our label belongs to the 1st class.  Logit Vector 
z = [a, b, c]
Label vector y = [1, 0, 0] (one-hot encoded)

Gradient of Loss = softmax(z) – y
Our model will make a ≫ b and a ≫ c

z = [10, 0, 0]
softmax(z) =  [0.9999, 0, 0]



Label smoothing
y_ls = (1 - α) * y_hot + (α / K)

Example: With Label Smoothing (α = 0.1)

y_ls = [0.9333, 0.0333, 0.0333]

This would result into the logits z = [3.3332, 0, 0]

softmax(z) = [0.9333, 0.0333, 0.0333]

https://arxiv.org/pdf/1812.01187.pdf  
https://arxiv.org/abs/1812.01187  
https://github.com/ankandrew/online-label-smoothing-pt

https://arxiv.org/pdf/1812.01187.pdf
https://github.com/ankandrew/online-label-smoothing-pt


Some tips: DropBlock
• Dropout usually works better with Fully Connected Networks

• Dropout has not proven to be useful in CNNs because of the spatial  
correlation between the activation outputs

• DropBlock is a regularization technique that has proven to be useful for CNNs

• It is a structured form of dropout that drops contiguous regions and not just  
random pixels

Paper: https://arxiv.org/pdf/1810.12890.pdf 

Pytorch docs: https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html 

https://arxiv.org/pdf/1810.12890.pdf
https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html


Some tips: And…



5. Run through the starter notebook


