
11-785 - Introduction to Deep Learning
- Fall 22 -

Recitation 6: CNNs
(Classification & Verification)

By:
 Aditya Singh

Cedric Manouan

Agenda

1. Problem statement:
a. Classification
b. Verification

2. Data description

3. Different types of convolution layers

a. Depthwise convolution
b. Pointwise convolution
c. Depthwise Separable convolution

4. Verification optimized
approaches

5. Run through the
starter notebook

1. Problem statement

Face Classification

Given an image, figure out which person
it is.

Face Verification

Determine if the person in a given
“query” picture is also present in a given
gallery of images or not, with no
reference to their identity?

In General

Classification

An N way classification task, predicting from
a fixed set of possible output classes

Verification

It is a matching operation, where you match the
given sample to the closest sample from a
reference of N other samples

Can also be a 1 to 1 task, where we want to verify
if the two embeddings are similar (belong to the
same class)

Closed Set vs. Open Set

Closed Set or Open Set?

Classification

Verification

Open set

Closed set

Closed Set or Open Set?

Classification

Verification

Open set

Closed set

Open Set vs Closed Set

Source: https://www.researchgate.net/figure/Comparison-of-open-set-and-closed-set-face-recognition_fig1_316505674

https://www.researchgate.net/figure/Comparison-of-open-set-and-closed-set-face-recognition_fig1_316505674

1. Problem statement

Classification

This is a closed set problem, where the
subjects in the test set have also been
seen in the training set, although the
precise pictures in the test set will not be
in the training set.

Verification

This is an open set problem, where the
subjects in the test data may not have

been seen during training at all.

Task: determine if the person in a given
“query” picture is also present in a given
gallery of images or not, with no
reference to their identity

Training for classification

Task: Identify the person in a picture
aka Multi-class classification

Training for classification

Task: Identify the person in a picture
aka Multi-class classification

Good for classification, Gives us separable features !

Training for classification

Task: Identify the person in a picture
aka Multi-class classification

Good for classification, Gives us separable features !

How can we use this network for verification?

Training for classification

Task: Identify the person in a picture
aka Multi-class classification

Good for classification, Gives us separable features !

How can we use this network for verification?

Is separable good enough for verification?

What we need - Discriminative Features

How can we get discriminative features?

How can we get discriminative features?

Use a loss function which correlates to your evaluation criteria !

Train your network to generate
discriminative embeddings

Enter Contrastive Losses

Training for verification - Metric Learning
Task: determine if the person in a given “query” picture is also present in a given gallery of
images or not, with no reference to their identity

Triplet Loss setup

Contrastive Losses

1. Centre Loss
2. Triplet Loss
3. Sphere Face (Angular Softmax)
4. CosFace Loss
5. ArcFace Loss

Contrastive Losses

1. Centre Loss
2. Triplet Loss
3. Sphere Face (Angular Softmax)
4. CosFace Loss
5. ArcFace Loss

See discussion in HW2 bootcamp

1. Problem statement

Verification

This is an open set problem, where
the subjects in the test data may not
have been seen during training at
all.

Task: determine if the person in a
given “query” picture is also present
in a given gallery of images or not,
with no reference to their identity

For this problem you will have to find the similarity between each unknown identity
and all the known identities, and then predict the one with the highest similarity

Face Verification as image retrieval

2. Data description- VGG Face2

● State of the art VGG Face2 Dataset

● Largest in the world as of 2020

● 3.3 Million Face Images, ~362 samples per subject

● ~9130 identities, large variations in pose, age, demographics

● 7000 identities for classification, 1000 for verification

● Some demographics data also known (age, ethnicity)

Verification Task - Previous semesters

IMAGE 2

IMAGE 1

Are they the same person?

● Test set- pairs of images with labels about whether they belong to the same person
● Task: calculate AUC using similarity scores

Verification Task - now

● Test set- Balanced set of 1000 known

identities and 1000 unknown identities

● Task: find the similarity between each unknown

identity and all the known identities, and then

predict the one with the highest similarity

3. Different types of convolutions

Conventional convolution

Conventional convolution

❏ Each layer of each filter scans its
corresponding map to produce a convolved
map

❏ N input channels will require a filter with
N layers

❏ The independent convolutions of each
layer of the filter result in N convolved
maps

❏ The N convolved maps are added together
to produce the final output map (or
channel) for that filter

Conventional convolution

❏ M input channels, N output channels

❏ N independent MxKxK 3D filters
which span all M input channels

❏ Each filter produces one output
channel

Total : N*M*K2 parameters

Conventional convolution
❏ M input channels, N output channels

❏ N independent MxKxK 3D filters
which span all M input channels

❏ Each filter produces one output
channel

Total : N*M*K2 parameters

Depthwise separable convolution

Depthwise separable convolution
❏ Apply convolution step once

❏ Replace summation by a weighted
sum across channels

Pytorch Docs: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Depthwise separable convolution
❏ M input channels, N output channels in 2 stages:

❏ Stage 1: aka Filtering

❏ M independent KxK 2D filters, one per input
channel

❏ Each filter applies to only one input channel
❏ # of output channels = # input channels

❏ Stage 2: aka Combining - Point-wise convolution

❏ N Mx1x1 1D filters
❏ Each applies to one 2D location across all M

input channels

Total NM + MK2 parameters

Depthwise separable convolution: Combining stage
❏ M input channels, N output channels in 2 stages:

❏ Stage 1: aka Filtering

❏ M independent KxK 2D filters, one per input
channel

❏ Each filter applies to only one input channel
❏ # of output channels = # input channels

❏ Stage 2: aka Combining - Point-wise convolution

❏ N Mx1x1 1D filters
❏ Each applies to one 2D location across all M

input channels

Total NM + MK2 parameters

Source: https://blog.csdn.net/shiner_chen/article/details/124319246

Stage 2

https://blog.csdn.net/shiner_chen/article/details/124319246

Depthwise separable convolution
❏ Let out_channels = 256 (# of desired filters)

❏ With kernel_size = 5

❏ Using conventional convolution (5x5x3 kernel):

❏ Requires:

(8x8)*(5x5x3)*(256) = 1, 228, 800 parameters

❏ Using Depthwise convolution

❏ Filtering stage : 3* (5x5x1) kernel

Requires: (8x8)*(5x5x1)*3 = 4, 800 parameters

❏ Combining stage: 256*(1x1x3)
Requires: (8x8)*(1x1x3)*(256) = 49, 152 parameters

In total: 53, 952 parameters

8x8x3 input image (in_channels = 3)

8

8
5x5x3 regular conv kernel

5x5x1 kernel

5x5x1 kernel

5x5x1 kernel

Depthwise conv

Filtering

Regular conv

Combining

1x1x3 regular conv kernel

Depthwise separable convolution

224

224

4. Verification optimized approaches

Approach 1: Joint loss optimization

Model

E
m

beddings

Labels

E
m

beddings

Cross entropy Contrastive
loss

L

E
m

beddings
E

m
beddings

logits= model(x, return_feats=False) # -> 7_000 features

get anchor, positive and negative from TripletDataset
anchor_emb = model(anchor, return_feats=True)
positive_emb = model(positive, return_feats=True)
negative_emb = model(negative, return_feats=True)

loss_1 = CrossEntropyLoss(logits, targets)
loss_2 = TripletLoss(anchor_emb, positive_emb, negative_emb)

L = w1*loss_1 + w2*loss_2 # e.g w1 = 0.7 and w2 = 0.3

Approach 2: Sequential

Approach 2: Sequential

Trained classifier

Approach 2: Sequential

Trained classifier

e.g: output from
ArcMarginProduct

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Approach 2: Sequential

Trained classifier

e.g: output from
ArcMarginProduct

ArcFaceLoss
or

CrossEntropyLoss

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Approach 2: Sequential

Trained classifier

e.g: output from
ArcMarginProduct

Some contrastive losses and more: https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Ideally, ArcMarginProduct would be an additional layer to your classification
network.

ArcFaceLoss
or

CrossEntropyLoss

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

Approach 2: Sequential
Ideally, ArcMarginProduct would be an additional layer to your classification network.

class VerificationNetwork(torch.nn.Module):
 def __init__(self, num_classes=7000):
 super().__init__()
 self.backbone = model.load_state_dict(torch.load(# TODO))
 self.arcFaceLayer = ArcMarginProduct(

embedding_size=# TODO,
n_classes=num_classes

)

 def forward(self, x):
 feats = self.backbone(x, return_feats=True)
 out = self.arcFaceLayer(feats)

 return out

Student after HW2P2

Some tips: Normalization

BatchNorm paper: https://arxiv.org/pdf/1502.03167.pdf

https://arxiv.org/pdf/1502.03167.pdf

Some tips: Normalization

LayerNorm paper: https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf

Some tips: Normalization

LayerNorm paper: https://arxiv.org/pdf/1607.06450.pdf

❏ H denotes the number of hidden units in a layer

❏ No constraints on the size of the mini-batches

❏ All the hidden units in a layer share the same

normalization terms 𝜇 and 𝝈

https://arxiv.org/pdf/1607.06450.pdf

Some tips: Normalization

GroupNorm paper: https://arxiv.org/pdf/1803.08494.pdf

https://arxiv.org/pdf/1803.08494.pdf

Some tips: Normalization

InstanceNorm paper: https://arxiv.org/pdf/1607.08022.pdf

❏ InstanceNorm removes the effect of contrast in images
❏ Much useful in stylization (image generation)

❏ One can argue that the result of stylization should not,
in general, depend on the contrast of the content
image

https://arxiv.org/pdf/1607.08022.pdf

Label Smoothing

● Deep Learning Models undergo a problem of Overfitting and
Overconfidence.

● Label Smoothing is a technique that can help us solve the problem of
Overconfidence.

What is Overconfidence?
For each sample, the model predicts outcomes with higher probabilities than
the accuracy over the entire dataset.
This is a poorly calibrated model.
For example, it may predict 0.9 for inputs where the accuracy is only 0.6.

Example

Without Label Smoothing
Suppose we have K = 3 classes, and our label belongs to the 1st class. Logit Vector
z = [a, b, c]
Label vector y = [1, 0, 0] (one-hot encoded)

Gradient of Loss = softmax(z) – y
Our model will make a ≫ b and a ≫ c

z = [10, 0, 0]
softmax(z) = [0.9999, 0, 0]

Label smoothing
y_ls = (1 - α) * y_hot + (α / K)

Example: With Label Smoothing (α = 0.1)

y_ls = [0.9333, 0.0333, 0.0333]

This would result into the logits z = [3.3332, 0, 0]

softmax(z) = [0.9333, 0.0333, 0.0333]

https://arxiv.org/pdf/1812.01187.pdf
https://arxiv.org/abs/1812.01187
https://github.com/ankandrew/online-label-smoothing-pt

https://arxiv.org/pdf/1812.01187.pdf
https://github.com/ankandrew/online-label-smoothing-pt

Some tips: DropBlock
• Dropout usually works better with Fully Connected Networks

• Dropout has not proven to be useful in CNNs because of the spatial
correlation between the activation outputs

• DropBlock is a regularization technique that has proven to be useful for CNNs

• It is a structured form of dropout that drops contiguous regions and not just
random pixels

Paper: https://arxiv.org/pdf/1810.12890.pdf

Pytorch docs: https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html

https://arxiv.org/pdf/1810.12890.pdf
https://pytorch.org/vision/main/generated/torchvision.ops.drop_block2d.html

Some tips: And…

5. Run through the starter notebook

