Deep Learning
Recurrent Networks : 1
Fall 2022

Instructor: Bhiksha Raj

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
i S
current = blocked;

}

ru->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Related math. What is it talking
about?

Proof. Omitted. [N |

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on X, we
have

Ox(F) = {morphy xoy (G, F)}
where G defines an isomorphism F — F of O-modules. 0
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, O
Lemma 0.3. Let 5 be a scheme. Let X be a scheme and X is an affine open

covering. Let i C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X=2Y' 2YaYaY xxY = X.
be o morphism of algebrate spaces over § and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering,

Consider a common structure on X and X the functor Ox(U7) which is locally of
finite type. 0

This since F € F and r € § the diagram

S —

l

£

O

™\

L
= ——a=

Bor,

= ——=n X

l

Spec(iy) Morges d(Qx,,.G)

i5 @& limit. Then @ s o finite type and assume S 5 a fat and F oand ¢ s a finite
type f.. This is of finite type diagrams, amnd
& the composition of G is a regular sequence,
o My is a sheal of rings.
(I

FProof. We hive see that X = Spec(H) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks, Then the
cohomology of X is an open neighbourhood of [, m|

Proof. This is elear that § is a Anite presentation, see Lemmas 77,
A reduced above we conclude that [7 is an open covering of C. The functor F is a
“fielil

Oy — Fr "”o-\'uul.-l B I:’I:.G‘l{cj‘:'u]
is an isomorphism of covering of Oy, . I F is the unigque element of F such that X
is an somorphism.
The property JF is a disjoint union of Proposition 77 and we can fltered set of
presentations of a scheme O y-algebra with F are opens of finiwe type over S.
If F is a scheme theoretic image points, a

If F is o finite direct sum Oy, is a closed immersion, see Lemma 77, Thisis a
sequence of F is a similar morphism.

And a Wikipedia page explaining it all

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(P3JS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

The unreasonable effectiveness of
recurrent neural networks..

* All previous examples were generated blindly
by a recurrent neural network..

— With simple architectures

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Modern text generation is a lot more
sophisticated that that

* One of the many sages of the time, the Bodhisattva Bodhisattva
Sakyamuni (1575-1611) was a popular religious figure in India and
around the world. This Bodhisattva Buddha was said to have passed
his life peacefully and joyfully, without passion and anger. For over
twenty years he lived as a lay man and dedicated himself toward
the welfare, prosperity, and welfare of others. Among the many
spiritual and philosophical teachings he wrote, three are most
important; the first, titled the "Three Treatises of Avalokitesvara";
the second, the teachings of the "Ten Questions;" and the third,
"The Eightfold Path of Discipline.”

— Entirely randomly generated

Modelling Series

* |[n many situations one must consider a series
of inputs to produce an output

— Outputs too may be a series

* Examples: ..

What did | say?

“To be” or not “to be”??

o

il
+
Ik
il

g RN WEGOO 0D
]

[
L]
=
=
=
i
] e

o

* Speech Recognition
— Analyze a series of spectral vectors, determine what was said

* Note: Inputs are sequences of vectors. Output is a
classification result

What is he talking about?

“Football” or “basketball”?

S
(7\
0o)

&

The Steelers, meanwhile, continue to struggle to make stops on
defense. They ve allowed, on average, 30 points a game, and have
shown no signs of improving anytime soon.

* Text analysis
— E.g. analyze document, identify topic
* Input series of words, output classification output

— E.g. read English, output French

* Input series of words, output series of words

Should | invest..

To invest or not to invest?

L
-3
o
O

5

HANEEEEEN

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

stocks

Note: Inputs are sequences of vectors. Output may be
scalar or vector

— Should | invest, vs. should | not invest in X?

— Decision must be taken considering how things have fared over
time

10

These are classification and
prediction problems

* Consider a sequence of inputs

— Input vectors

* Produce one or more outputs

 This can be done with neural networks
— Obviously

Representational shortcut

A
A

* |nput at each time is a vector
* Each layer has many neurons
— OQOutput layer too may have many neurons

* But will represent everything by simple boxes
— Each box actually represents an entire layer with many units

Representational shortcut

* |nput at each time is a vector
* Each layer has many neurons
— OQOutput layer too may have many neurons

* But will represent everything by simple boxes
— Each box actually represents an entire layer with many units

Representational shortcut

* |nput at each time is a vector
* Each layer has many neurons
— OQOutput layer too may have many neurons

 But will represent everything as simple boxes
— Each box actually represents an entire layer with many units

The stock prediction problem...

To invest or not to invest?

HANEEEEEN

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

stocks

e Stock market

— Must consider the series of stock values in the past
several days to decide if it is wise to invest today

15

The stock predictor network

Y(t+3)

;

A

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

16

The stock predictor network

Y(t+4)
Stock T
vector
X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]

* The sliding predictor
— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

17

The stock predictor network

Y(t+5)
Stock T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

18

The stock predictor network

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

19

The stock predictor network

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

20

Finite-response model

* This is a finite response system

— Something that happens today only affects the
output of the system for N days into the future

* N is the width of the system
Vi = f(Xe, Xe—1s s Xen)

The stock predictor

Y(t-1)

:

A

xm/i'f.

vector
X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N isthe width of the system
Vi = F(Xe, Xe—1) oo Xe—n)

The stock predictor

Y(T)

.

A

Stock
vector
X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N isthe width of the system
Vi = F(Xe, Xe—1) oo Xe—n)

The stock predictor

Y(T+1)

.

A

Stock r 1

vector
X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N isthe width of the system
Vi = F(Xe, Xe—1) oo Xe—n)

The stock predictor

Y(T+2)
Stock T
vector

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N isthe width of the system
Vi = F(Xe, Xe—1) oo Xe—n)

25

The stock predictor

Y(T+3)

+

A

Stock ./ T

vector
X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N isthe width of the system
Vi = F(Xe, Xe—1) oo Xe—n)

26

The stock predictor

Y(T+4)
Stock . T
vector

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
* Thisis a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N isthe width of the system
Vi = F(Xe, Xe—1) oo Xe—n)

27

Finite-response model

Y(T+3)

;

A

vector

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Time
 Something that happens today only affects the output of the
system for N days into the future
— Predictions consider N days of history

* To consider more of the past to make predictions, you must

increase the “history” considered by the system .

Finite-response

Y(t+6)

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* Problem: Increasing the “history” makes the
network more complex

— No worries, we have the CPU and memory

e Or do we?

Systems often have long-term
dependencnes

AToCkL L0
222222222 Low 0.447 Close 0.453 Velume 0 Chg +0.005 (+1.02%) &

/ Typical seasonal pattern of
relative rally into Thanksgiving

R L
5 & & £ B
;o 8 & O m

* Longer-term trends —
— Weekly trends in the market
— Monthly trends in the market
— Annual trends

— Though longer historic tends to affect us less than more
recent events..

30

We want infinite memory

:

Time

* Required: Infinite response systems

— What happens today can continue to affect the output
forever

* Possibly with weaker and weaker influence

Yt — f(Xt'Xt—l' ""Xt—oo)

31

Poll 1

* @364, @865

Slide 32: Finite response system vs infinite response system

Convolutional neural networks are finite response systems, true or false

e True
e False

An input at time T affects the output of the convolutional layers of the
network for all time, true or false

e True
e False

Convolutional neural networks are finite response systems, true or false

e True
e False

An input at time T affects the output of the convolutional layers of the network for all time, true or

false
e True
e False

33

Examples of infinite response systems

Vi = f(Xe, Yeo1)
— Required: Define initial state: Y_; fort = 0

— Aninput at Xy att = 0 produces Y,

— Y, produces Y; which produces Y, and so on until Y, even if
X1 ..Xe are0

* ji.e.even if there are no further inputs!

— A single input influences the output for the rest of time!

e Thisis an instance of a NARX network

— “nonlinear autoregressive network with exogenous inputs”

— Y = f(Xo:t, Yot —1)
* Qutput contains information about the entire past

34

A one-tap NARX network

Y(t)

X(t)

Time

A NARX net with recursion from the output

35

A one-tap NARX network

Y(t) Y

n

T

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

f

Y(t)

X(t)

Time

A NARX net with recursion from the output

37

A one-tap NARX network

f

Y(t)

X(t)

Time

A NARX net with recursion from the output

38

A one-tap NARX network

f

Y(t)

X(t)

Time

A NARX net with recursion from the output

39

A one-tap NARX network

n

T

Y(t)

X(t)

Time

A NARX net with recursion from the output

40

A one-tap NARX network

n

T

Y(t)

X(t)

Time

A NARX net with recursion from the output

41

A one-tap NARX network

Y(t)

X(t)

Time

A NARX net with recursion from the output

42

Y(t-1) —

A more complete representation

X(t)

\ 4

"

"

\ 4

"

v

‘A

A 4
v
v
A 4
l

Time
Brown boxes show output layers

Yellow boxes are outputs

A NARX net with recursion from the output

Showing all computations

All columns are identical

An input at t=0 affects outputs forever

43

Same figure redrawn

Y(t)

ik akaka

v
\ 4
v
\ 4

-1k 24

\ 4
v
\ 4
\ 4

X(t)

* Showing all computations
e All columns are identical

Time
Brown boxes show output layers

All outgoing arrows are the same output
A NARX net with recursion from the output

* Aninput at t=0 affects outputs forever

44

A more generic NARX network

e

X(t)

Time

* The output Y; at time t is computed from the
past K outputs Y;_1, ..., Ys_r and the current
and past L inputs X, ..., X¢_;

45

NARX Networks

* Very popular for time-series prediction
— Weather

— Stock markets
— As alternate system models in tracking systems

* Any phenomena with distinct “innovations” that
“drive” an output

* Note: here the “memory” of the past is in the
output itself, and not in the network

Let’s make memory more explicit

* Task is to “remember” the past

Introduce an explicit memory variable whose job it is to
remember

me =1 (YVe—1, Re—1, Me—1)
he = f(xe, me)
ye = g(he)

* m;isa “memory” variable

— Generally stored in a “memory” unit
— Used to “remember” the past

Jordan Network

Fixed Fixed
weights weights

~

v

X(t) X(t+1)

v

Time

 Memory unit simply retains a running average of past outputs

— “Serial order: A parallel distributed processing approach”, M.l.Jordan, 1986
* Inputis constant (called a “plan”)
* Objective is to train net to produce a specific output, given an input plan

— Memory has fixed structure; does not “learn” to remember
* The running average of outputs considers entire past, rather than immediate past,

Elman Networks

Y(t) Y(t+1)

Cloned state Cloned state
1 1

[[[' [
> » > > »

X(t) X(t+1)

Time

v

 Separate memory state from output
— “Context” units that carry historical state

— “Finding structure in time”, Jeffrey Elman, Cognitive Science, 1990

* For the purpose of training, this was approximated as a set of T independent 1-step
history nets

* Only the weight from the memory unit to the hidden unit is learned

— But during training no gradient is backpropagated over the “1” link
49

Story so far

In time series analysis, models must look at past inputs along with current
input
— Looking at a finite horizon of past inputs gives us a convolutional network

Looking into the infinite past requires recursion

NARX networks recurse by feeding back the output to the input
— May feed back a finite horizon of outputs

“Simple” recurrent networks:
— Jordon networks maintain a running average of outputs in a “memory” unit
— Elman networks store hidden unit values for one time instant in a “context” unit

— “Simple” (or partially recurrent) because during learning current error does not
actually propagate to the past
* “Blocked” at the memory units in Jordan networks
* “Blocked” at the “context” unit in EIman networks

Poll 2

* @366, @867

Memory neuron models have true recurrence, true or false

e True
e False

Memory neuron networks dedicate neurons specifically to store past history,
true or false

e True
e False

Memory neuron models have true recurrence, true or false

e True
e False

Memory neuron networks dedicate neurons specifically to store past history, true or false

e True
e False

52

An alternate model for infinite response
systems: the state-space model

he = f(x¢, heoq)
Ve = g(he)

* h; is the state of the network

— State summarizes information about the entire past
* Model directly embeds the memory in the state

* Need to define initial state h_,

* This is a fully recurrent neural network
— Or simply a recurrent neural network

53

The simple state-space model

»

hi_q —hy
1
Xt
I B B B B
ey o r 1 1 r
X(t)
t=0
Time

 The state (green) at any time is determined by the input at
that time, and the state at the previous time

* Aninput at t=0 affects outputs forever
* Also known as a recurrent neural net

An alternate model for infinite response
systems: the state-space model

he = f(xe, heoq)
Ve = g(ht)

* h; is the state of the network
* Need to define initial state h_4

* The state an be arbitrarily complex

55

Single hidden layer RNN

: * * * * * * *

X(t)

h(-1)

t=0

Time

e Recurrent neural network
e All columns are identical

* An input at t=0 affects outputs forever

56

Multiple recurrent layer RNN

‘S @ 2 oEEEE
@ (1) J—— - :

A A A A
ho(-1) [—— - . . .
A A A A A A A

X(t)

—_—

t=0

Time

e Recurrent neural network
e All columns are identical

* An input at t=0 affects outputs forever

57

Multiple recurrent layer RNN

LSS NN
)) 1 t
he) (-1) l—— ‘ ‘ ‘

ol L A A A A

NI ARG SN S N

X(t)

t=0

Time

* We can also have skips..

58

A more complex state

gzg " 9
::}X PEP ::%

X(t)

Y(t)

Time

e All columns are identical

* An input at t=0 affects outputs forever

59

Or the network may be even more
complicated

Y(t)

N/

A"A
"‘v

7"

A"A
'v‘v

X(t)
Time

e Shades of NARX

e All columns are identical

* An input at t=0 affects outputs forever

60

Generalization with other recurrences

i » I
.M |
h(2) (-1) > > > - .

h(l)(-l) . > > > > _—
A A A A A A A

X(t)

t=0

Time

e All columns (including incoming edges) are

identical

61

The simplest structures are most
popular

BB EEEE.

—_—

s

Time

e Recurrent neural network
e All columns are identical

* An input at t=0 affects outputs forever

62

A Recurrent Neural Network

e Simplified models often drawn
 The loops imply recurrence

63

The detailed version of the simplified

representation

"

3D

Y(t)
T EEEEEE.
. > X X > X X > X > X X

X(t)

t=0

Time

64

Multiple recurrent layer RNN

!

D

Y(t)
S EEEEE
A “ > “ “ > “ > “ “
.—> . > > > >
h(-1)
X(t)
t=0

Time

65

Multiple recurrent layer RNN

3

"
SRS

5.
i
N

Time

Equations

Current weights Recurrent weights
* Y W(-1) = part of network paW
B O V() = fi (Z WX +) wiPD (e - 1) + bf”)
J J
X

Y(t) =/ (Z Wj(kz)hjgl)(t) +bP k= 1--M>
J

* Note superscript in indexing, which indicates layer of
network from which inputs are obtained

* Assuming vector function at output, e.g. softmax
* The state node activation, f;() is typically tanh()
* Every neuron also has a bias input

Equations

* Y Y(t)

WEBEE
h(l) = >

5D s s

X t=0

i
~H-l-

g

Time
hV(—1) = part of network parameters

* Computation:
AV () = F(IWDX() + WEDRD (¢ — 1) + bD)
Y(t) = L(WPRD (1) + bP)

* The recurrent state activation f; () is typically tanh()

68

.
<

X

Current weights = part of network parameters

Y(t)
h(-1)

Equations

L

* Computatey:

X(t)

L

t=0

3

ot

~H-l-

Time

Recurrent weights

/

AV () = F(IWDX() + WEDRD (¢ — 1) + bD)
Y(t) = L(WPRD (1) + bP)

* The recurrent state activation f; () is typically tanh()

69

Equations

* Y hgl)(—l) = part of network parameters

hgz)(—l) = part of network parameters

h(2)

D R = fi (Z w X () + z wit PR (- 1) + bf”)
e S

X

2 = £, (Z w PP (6) + Z wiPhP (- 1) + bf”)
J J
Y =fs (Z Wi b (0 + bk = 1., M>
J

* Assuming vector function at output, e.g. softmax f3()
* The state node activations, f; () are typically tanh()

* Every neuron also has a bias input

70

h@)(-1)

Y(t)

h(2) .
.

(D htt(-1)
D

X(t)

t=0

Time

hW(=1) and h®(—1) = part of network parameters

* Computation:
V() = F(WDX() + WEDRD (¢ — 1) + bD)
hD(6) = fLAIWDRD (6) + WEDRP) (¢ — 1) + b))
Y(t) = f5(WOhD(t) + b®)

* The recurrent state activation is typically tanh()

»

Equations

h(Y(—=1) = part of network parameters

h(®?)(—1) = part of network parameters

D) = F(WOVX() + WEIDRD (¢ — 1) + bD)
hD(t) = fL(WDRD () + w02 X(t) + WEDRP) (£ — 1) + b@)

Y(t) = (WORA () + WEDRD () + b))

72

Variants on recurrent nets

one to one one to many many to one

Images from
Karpathy

 1: Conventional MLP
* 2:Sequence generation, e.g.image to caption
* 3:Sequence based prediction or classification, e.g. Speech recognition,

text classification 73

Variants

many to many many to many

Images from
Karpathy

 1: Delayed sequence to sequence, e.g. machine translation
* 2: Sequence to sequence, e.g. stock problem, label prediction
* Etc..

74

Story so far

Time series analysis must consider past inputs along with current input
Looking into the infinite past requires recursion

NARX networks achieve this by feeding back the output to the input

“Simple” recurrent networks maintain separate “memory” or “context”
units to retain some information about the past

— But during learning the current error does not influence the past

State-space models retain information about the past through recurrent
hidden states

— These are “fully recurrent” networks
— The initial values of the hidden states are generally learnable parameters as well

State-space models enable current error to update parameters in the past

How do we train the network

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

A 4

—> o000 —>

\ 4
v

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

A 4

t

Back propagation through time (BPTT)

Given a collection of sequence inputs

— (X;,D;), where

— X;=Xig ., XiT

— D;=D;g, ... Dir
Train network parameters to minimize the error between the output of the
network Y; =Y, ..., Y; 7 and the desired outputs

— This is the most generic setting. In other settings we just “remove” some of the input or
output entries

76

Training the RNN

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENREE

> > —> o000 —>
A A A

[

[
|

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

[
»

t

The “unrolled” computation is just a giant shared-parameter neural network
— All columns are identical and share parameters

 Network parameters can be trained via gradient-descent (or its variants)
using shared-parameter gradient descent rules
— Gradient computation requires a forward pass, back propagation, and pooling of
gradients (for parameter sharing)

77

Training: Forward pass

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

SEENREE

> > —> o000 —>
A A A

[

[
|

A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

[
»

* For each training input:

Forward pass: pass the entire data sequence through the network,
generate outputs

78

Recurrent Neural Net
Assuming time-synchronous output

Assuming h(-1,*) is known

Assuming L hidden-state layers and an output layer
W.(*) and W_.(*) are matrics, b(*) are vectors

W, are weights for inputs from current time

W, is recurrent weight applied to the previous time

H H H F H I+

W, are output layre weights

for t = 0:T-1 # Including both ends of the index
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L. # hidden layers operate at time t
z(t,1) = W, (1)h(t,1-1) + W, (1)h(t-1,1) + b(1)
h(t,1l) = tanh(z(t,1l)) # Assuming tanh activ.

Z, (t) = Woh (¢, L) + b° SUbSCI"ipT “c" - current

Y(t) = softmax(z,(t)) Subscript “r" - recurrent

Training: Computing gradients

Y(0) Y(1)

Y(2) Y(T-2)

A A

X(0) X(1)

[
>

. ® B

A

A

X(2)

"

—> o000 —>

Y(T-1) Y(T)

' ¥

A

X(T-2)

[
|

A A

X(T-1) X(T)

* For each training input:

* Backward pass: Compute gradients via backpropagation

— Back Propagation Through Time

80

Back Propagation Through Time

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y@

SRR

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

Will only focus on one training instance

All subscripts represent components and not training instance index

81

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

SEEIEEE

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

* The divergence computed is between the sequence of outputs

by the network and the desired sequence of outputs
* DIV is a scalar function of a series of vectors!

* This is not just the sum of the divergences at individual times
= Unless we explicitly define it that way 82

Notation

DIV

I 7
t

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

* i i ﬁ«/Z(Z)(T)
At AL At L
N N | N A "z

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

 Y(t)isthe outputattimet
— Y;(t) is the ith output
. Z(Z)(t) is the pre-activation value of the neurons at the output layer at time t

* h(t) is the output of the hidden layer at time ¢t
— Assuming only one hidden layer in this example

« Z(t) is the pre-activation value of the hidden layer at time t .

Notation

DIV

I 7
t

Y(0)

S Ay
A
X(0)
. — | ®]
w@ = i
. _ (2)
w @ = Wi
layer

Y(1) Y(2) Y(T-2) Y(T-1) Y

‘o i
cooe - w b
/\/T 1 /TV\/T-\W(Q

X(1) X(2) X(T-2) X(T-1 X(T)

is the matrix of current weights from the input to the hidden layer.

is the matrix of current weights from the hidden layer to the output

« wab = [Wl.(jll)] is the matrix of recurrent weights from the hidden layer to itself

84

Back Propagation Through Time

DIV

D(1..T)

Y(0) Y(1) Y(2) Y(T—-2) Y(T-1) YT
h-l ‘\ /\ XXX
N N 1 N
X(0) X(1) X(2) X(T-2) X(T-1 X
First step of backprop: Compute Vy DIV (Compute ddyD-Z) for all i)

Note: DIV is a function of all outputs Y(0) ... Y(T)

dDIV
ay;(t)
be a source of significant difficulty in many scenarios. -

for alli and t as we will see. This can

In general we will be required to compute

DIV

t t t t t t
Div(0) Div(1) Div(2) Div(T — 2) Div(T — 1) Div(T)
’ . . N ’ B0
Y (0) Y(1) Y(Z) Y(T—2) Y(T—-1) Y(T)
h-l ‘\ /\ eoooe
1 N N
X(©0) X1 X(2) X(T—2) X(T-1) X(T)

Special case, when the overall divergence is a simple sum of local
divergences at each time: DIV =), Div(t)

Must compute Py DIV Will get " 7y Div(t)

oDIV dDIV _ dDiv(t)
v, e aY,() __ v, (D)

86

Back Propagation Through Time

DIV

D(1..T)

Y(0) Y(1) Y(2) Y(T—-2) Y(T-1) YT
h-l ‘\W\+ XXX
N N 1 N
X(0) X(1) X(2) X(T-2) X(T-1 X
First step of backprop: Compute ddYD_Z) forall i

Vs 0y DIV = Vyy DIV 2y ¥ (T)

Vector output activation
dDIV dDIV dY,(T) dDIvV z dDIV dY;(T)

— OR
az?y (D) az?(T) dzP(r) &4 dz?(T)

87

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

ahEY e

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

dDIV Z dp1v dz;(T) z 2y dDIV
= w
]

dhi(T) £ qz® (1) dhy(T) 7 az®(m)

J

VnyDIV = V) oy DIV WP

88

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

Ahhg - R

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

Vw@DIV = h(T)V;@ 1) DIV -

89

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y (1) Y(2) Y(T—2) YT-1) YT
h-l ‘\W\+ R *
N N i N
X0) X1) X2 X(T—-2) XT-1) XT)
Jacobian dDIV _ dDIV _dh,(T)

V@ yDIV = VyryDIV V1) oy h(T)

azP(m (M) az™ (1)

90

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

ahdhg - hhg

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

VDIV = X(T)V) DIV _

w

91

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

ahihg - hide

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

ViyanDIV = h(T — 1)VZ(1)(T)DIV

_92

Back Propagation Through Time

Y (0) Y(1) Y(2)

ahEE L

X(0) X(1) X(2)

DIV

D(1..T)

Y(T-2) Y(T-1) Y

X(T-2) X(T-1 X(T)

v

Z(z)(T_l)DIV — Vy(T_l)DIV VZ(Z)(T_I)Y(T — 1)

dDlv._ dDIv dv(T — 1)
dazPT -1) T =D az® T —1)

OR

Vector output activation

dDIV dplv~ dY;(T — 1)

dzP@ -1 &dGT-Ddaz DT - 1)

93

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

R

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

dDIV » dDIV 11y dDIV
Z W@ n Z D
dh;(T — 1) 7 dzP(r - 1) dz™(T)

Vir-1DIV = Vy) oy DIV W® + V1) DIV WAD

94

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

aREE L

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

N

W, + W
dh,(T—1) 7V az®(T - 1) dzZ:)(T)

Note the addition ‘

W(Z)DIV += h(T — 1) (2)(T 1) 92

Back Propagation Through Time

DIV

D(1..T)

Y(0) Y(1) Y(2) Y(T —-2) Y(T-1) Y(T)
h-l ‘\W\+ XXX *
N N
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
dDIV dDIV dh;(T — 1)

dzM (T —1) AT =D azM (T - 1)

V@ 7—1yPIV = Vner—1yDIV Uy gy (T — 1)

96

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T -2) Y(T-1) Y(T)
h-l ‘\w\+ XXX *

N N

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

Note the addition

V

DIV += X(T — 1)V

zZW(r-1)

DIV
9

7

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

R

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

Note the addition ‘ ViyanDIV += h(T — 2)V 7 (r—1)D

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y (1) Y(2) Y(T—2) Y(T-1) Y(T)
h., ‘\w\+ XXX *
A N 1 Wl
X(0) X(1) X(2) X(T-2) X(T-1) X(T)
Continue computing derivatives aDiv— _ z GO
going backward through time until.. | dh,(—1)] Uoog Zj(l) (0)

Vn_ DIV = V)) DIVIW D

99

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

R

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

Initialize all derivatives to O

Fort=T downto O

Vy@6PIV = Vy(y DIV V), Y (t) Vw@DIV += h(t)V, @) DIV
VaeyDIV = V@) DIV w® + Ve PIV wan Vwan DIV += h(t — DV, DIV
V@ (yDIV = VpyDIV V51 1y h(E) Vw@DIV += X()V,a) DIV

Vi_ DIV = V)) DIVIW D

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

RS LUTEE

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

dDIV _ z W(k+1) dDIV + z W(k’k) dDIV
= - .
dhi9@) &Y Az Ydz e+ 1)

J

Not showing derivatives
at output neurons

dDIV._ dDIV
G0
dz® @) dh)

(2 ®)

101

Back Propagation Through Time

DIV

D(1..T)

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y

RS LUTEE

X(0) X(1) X(2) X(T-2) X(T-1 X(T)

dDIV _Z a1 dDIV
—= w
]

dh,(—1 Lj (1)

(=1) dz;” (0)

dDIV _ 3 div_ dDIV DV
1~ (1) L (1) z 1) AU

dWij t dZJ (t) dWij > dZ]((t) o

BPTT

Assuming forward pass has been completed

Jacobian(x,y) is the jacobian of x w.r.t. y

Assuming dY(t) = gradient(div,Y¥(t)) available for all t
Assuming all dz, dh, dW and db are initialized to O

for t = T-1l:downto:0 # Backward through time
dz_(t) = dY(t)Jacobian(Y(t),z_(t))
dw, += h(t,L)dz_(t)
db, += dz_(t)
dh(t,L) += dz_(t)W,

for 1 = L:1 # Reverse through layers
dz(t,l) = dh(t,l)Jacobian(h(t,1),z(t,1))
dh(t,1-1) += dz(t,1) W_(1)
dh(t-1,1) = dz(t,1) W_(1)

“w_nu

¢ - current

w_nu

r- - recurrent

Subscript
dw_ (1) += h(t,1-1)dz(t,1) Subscript
dw_(1) += h(t-1,1)dz(t,1)
db(l) += dz(t,1)

103

BPTT

"I 100§

. | I

D l I DOD
&P

“20&> = =

D0000 0O

UL i

* Can be generalized to any architecture

104

Poll 3

* @368, @869

SGD trains neural networks one input at a time, rather than over batches of inputs. The
corresponding equivalent for RNNs would be to update the network after each input
vector: True or False

e True
e False

Select all that are true:

e |n RNNs the divergence we minimize is the sum of the divergences for the individual
inputs in the time series

e The divergence is the divergence between the actual sequence of outputs and the
desired sequence of outputs and cannot always be decomposed into the sum of
divergences at individual time steps.

Poll 3

SGD trains neural networks one input at a time, rather than over batches of inputs. The
corresponding equivalent for RNNs would be to update the network after each input vector: True or

False

e True
e False

Select all that are true:

e In RNNs the divergence we minimize is the sum of the divergences for the individual inputs in

the time series

e The divergence is the divergence between the actual sequence of outputs and the desired
sequence of outputs and cannot always be decomposed into the sum of divergences at
individual time steps.

106

Extensions to the RNN: Bidirectional
RNN

Bidirectional RNN (BRNN)
Output Layer f

Backward Layer .
Must learn weights w2,

w3, wd & w5; in addition to
wil & wB.

Forward Layer

Proposed by Schuster and Paliwal

W Lo 1997

Alex Graves, “Supernvised Sequence Labelling with Recurrent Meural Metworks”

In problems where the entire input sequence is available before we compute the output, RNNs can
be bidirectional

RNN with both forward and backward recursion

— Explicitly models the fact that just as the future can be predicted from the past, the past can be deduced
from the future 107

Bidirectional RNN

h(0) h(1) h(T - 1)

/Thf(o) /Thf(l)

h(T)

X(0) X(1)

“Block” performs bidirectional inference on input

— “Input” could be input series X(0)...X(T) or the output of a previous layer (or block)

The Block has two components
— A forward net process the data from t=0 to t=T
— A backward net processes it backward from t=T down to t=0

108

Bidirectional RNN block

Thf(O) Thf(n Thf(T - 1) Thf(T)

B > S S coce —
A A A

he(=1)

X(0) X(1) X(T — 1) X(T)
. t

 The forward net process the data from t=0 to t=T

— Only computing the hidden state values.

109

Bidirectional RNN block

h,(0) hy(1) hy(T — 1) hy(T)

< coece — <_.

]] e

X(0) X(1) X(T -1) X(T)

A

» {

 The backward nets processes the input data in reverse time, end to beginning
— Initially only the hidden state values are computed

* Clearly, this is not an online process and requires the entire input data
— Note: This is not the backward pass of backprop.
110

[-

Bidirectional RNN block

h(0) h(1) h(T — 1) h(T)

h+(0) he(1) he(T — 1)

. > > > o000

he(=1)
hy(0) hy(1) hy(T 7 1)

X(0) X(1) X(T-1) X(T)
» T

 The computed states of both networks are combined to give
you the output of the bidirectional block

— Typically just concatenate them
h(t) = [he(2); hy ()]

Bidirectional RNN

Y(0) ¥(1) Y(T —1) Y (T)

Y(0) Y(1) Y(T —1) Y(T)

[l 2
hy(=1)
1,(0) hy(1)
LA]

" 3 5
/ hy(0) / k(1)
. Bl Bl CHOHCTO

hy (0) hy(1)

o 3
/ hy(0) / hy(1)
| |——| o A

hy(0) (1)

X(0) X1 X(T-1) XM

Actual network may be formed by stacking many independent bidirectional blocks followed by an
output layer

— Forward and backward nets in each block are a single layer

Or by a single bidirectional block followed by an output layer
— The forward and backward nets may have several layers

In either case, it’s sufficient to understand forward inference and backprop rules for a single block
— Full forward or backprop computation simply requires repeated application of these rules 112

Poll 4

* @370

A day trader in the stock exchange uses RNNs to make predictions from historical

market data to decide which stocks to buy. He can use a bidirectional RNN for his
task.

e True
e False

A day trader in the stock exchange uses RNNs to make predictions from historical market data to
decide which stocks to buy. He can use a bidirectional RNN for his task.

e True
e False

114

Bidirectional RNN block: inference

Subscript f represents forward net, b is backward net
Assuming h.(-1,*) and h, (inf,*) are known
x(t) is the input to the block (which could be from a lower layer)

#forward recurrence
for t = 0:T-1 # Going forward in time
h.(t,0) = x(t) # Vectors. Initialize h.(0) to input
for 1 = 1:1L, # L, is depth of forward network hidden layers
z.(t,1) Wee()he(t,1-1) + We (1)he(t-1,1) + b,(1)
h.(t,1) = tanh(z,(t,1l)) # Assuming tanh activ.

#backward recurrence
h (T,:,:) = hy(inf,:,:) # Just the initial value
for t = T-1l:downto:0 # Going backward in time
h (t,0) = x(t) # Vectors. Initialize h, (0) to input
for 1 = 1:1, # L, is depth of backward network hidden layers
z, (t,1) = W.(1)h (t,1-1) + W, (1)h (t+1,1) + b, (1)
h (t,1) = tanh(z,(t,1l)) # Assuming tanh activ.

for t = 0:T-1 # The output combines forward and backward
h(t) = [he(t,Ls); hy(t,Ly)] 115

Bidirectional RNN: Simplified code

* Code can be made modular and simplified for
better interpretability...

First: Define forward recurrence

Inputs:
L : Number of hidden layers
W_,W.,b: current weights, recurrent weights, biases
hinit: initial value of h(representing h(-1,%*))
x: input vector sequence
T: Length of input vector sequence
Output:

h, z: sequence of pre-and post activation hidden
representations from all layers of the RNN

HH H H H H H H H

function RNN forward(L, W_,, W,, b, hinit, x, T)
h(-1,:) = hinit # hinit is the initial value for all layers

r/

for t = 0:T-1 # Going forward in time
h(t,0) = x(t) # Vectors. Initialize h(0) to input
for 1 = 1:L
z(t,1) = W (1)h(t,1-1) + W.(1)h(t-1,1) + b(1)
h(t,1)

return h 117

tanh(z(t,1l)) # Assuming tanh activ.

Bidirectional RNN block

Subscript f represents forward net, b is backward net
Assuming h;(-1,*) and h, (inf,*) are known

#forward pass
h, = RNN forward(L;, W¢,, W, bg, h.(-1,:), x, T)

#backward pass
X, = fliplr(x) # Flip it in time
h .., = RNN forward(L,, W,., W, b,, h(inf,:), x ., T)

h, = fliplr(h, # Flip back to straighten time

rev)

#combine the two for the output
for t = 0:T-1 # The output combines forward and backward

h(t) = [he(t,Ls); hy(t,Ly)]

118

[-

Backpropagation in BRNNs

h(0) h(1) h(T — 1) h(T)
----------------- SR VRSB SO
h+(0) he(1) he(T — 1)

. > > > o000

he(=1)
,(0) hy(1) ho(T 4 1)

X(0) X(1) X(T - 1) X(T)
. t

* Forward pass: Compute both forward and

oackward networks and final output

[-

Backpropagation in BRNNs

I b S S S ,
h,(0) h(D) ;
ho(~1) |
(0 e |
X(0) X(1) X(T —1) X(T)

> t
 Backward pass: Assume gradients of the divergence are available
for the block outputs h(t)

— Obtained via backpropagation from network output

— Will have the same dimension (length) as h(t)
* Which is the sum of the dimensions of h¢(t) and hy,(t)

S S b e S S .
:

. . |

Vhf(O)Dlv Vhf(l)DlU :

|

he(=1) !
| I

Vhb(O)Dlv Vth(l)Dl i

:

1

|

|

1

|

1

[-

Backpropagation in BRNNs

X(0) X(1)

» Separate gradient into forward and backward components
Vh(t)DiU = [Vhf(t)DiU; Vhb(t)Div]
— Extract Vhf(t)Div and Vp, (yDiv from V) Div.

* Separately perform backprop on the forward and backward nets

121

Backpropagation in BRNNs

thf(O)Dl.U thf(l)Dl'U thf(T—l)Div Vhf(T)DiU
X(0) X(1) X(T - 1) X(T)

» {
Backprop for forward net:
— Backpropagate Vhf(t)Div fromt =T downtot = 0 in the usual way

— Will obtain derivatives for all the parameters of the forward net
— Will also get Vy) Divsorwara
* Partial derivative of the gradient for X(t) computed through the forward net
122

Backpropagation in BRNNs

® ® o ®
A A A A
Vhb(o)Div Vth(l)Div Vhb(T_l)Div Vhb(T)DiU
< < coece — 4_.
A A A A
hp, ()
X(0) X(1) X(T — 1) X(T)

Backprop for backward net:
— Backpropagate Vy,)Div forward fromt = Quptot =T
— Will obtain derivatives for all the parameters of the forward net
— Will also get Vy) Divpgckward

* Partial derivative of the gradient for X (t) computed through the backward net 123

[-

Backpropagation in BRNNs

=N
\"
T
—_
N/
(\
=
A S
S
S
L 4
(\ >¢.
\ﬁ
@
A N
S
v
o
o
o
o
A
o
h
>
o
<

X(0) X(1) X(T - 1) X(T)
. t

* Finally add up the forward and backward partial
derivatives to get the full gradient for X (t)

Vx (t) Div = Vy () Divyackwara + Vx () D ivf orward

Backpropagation: Pseudocode

* As before we will use a 2-step code:

— A basic backprop routine that we will call

— Two calls to the routine within a higher-level
wrapper

First: backprop through a recurrent net

Inputs:

#
(In addition to inputs used by L : Number of hidden layers
dhuW: derivatives ddiv/dh,(t,L) at each time (* may be f or b)
h, z: h and z values returned by the forward pass

T: Length of input vector sequence

Output:

#

#

#

dWw.,, dW,, db dh; ;,: derivatives w.r.t current and recurrent weights,
biases, and initial h.

Assuming all dz, dh, dW,, dW, and db are initialized to 0

function RNN_bptt(L, W,, W,, b, hinit, x, T, dh.,, h, z)
dh = zeros
for t = T-1l:downto:0 # Backward through time
dh(t,L) += dh,(t)
h(t,0) = x(t)
for 1 = L:1 # Reverse through layers
dz(t,1l) = dh(t,1l)Jacobian(h(t,1),z(t,1))
dh(t,1-1) += dz(t,1) W_(1)
dh(t-1,1) += dz(t,1) W_(1)

dw_(l) += h(t,1-1)dz(t,1)
dw,(1l) += h(t-1,1)dz(t,1)
db(l) += dz(t,1)

dx(t)= dh(t,0)

return dx, dWc, dWr, db, dh(-1) # dh(-1) is actually dh(-1,1:L,:)
126

BRNN block: gradient computation

Subscript f represents forward net, b is backward net

Given dh(t), t=0..T-1 : The sequence of gradients from the upper layer

Also assumed available:

x(t), t=0.T-1 : the input to the BRNN block

z:(t), he(t) : Complete forward-computation outputs for all layers of the forward net
z,(t), hy(t) : Complete backward-computation outputs for all layers of the backward net
L; and L, are the number of components in h.(t) and h,(t)

for t = 0:T-1 # Separate out forward and backward net gradients
dh, (t) dh(t,1:L;)
dh, (t) = dh(t,L+1:L+L,)

#forward net
[de deC’der’dbf’ dhf(_l)] - RNN_tht(L, ch, Wfr’ bfl hf(_l) 7 x, T, dhf, hfl Zf)

#tbackward net

X,., = fliplr(x) # Flip it in time
dhbrev = fllplr (dhb)
h,.., = fliplr(h,)

Z, .., = £liplr(z,)
l:dxbrev/ dec'der'dbb'dhb(inf)] = RNN_bptt(L' Wbc/ Wbr' bb/ hb(inf)/ xrev/ T' dhbrev/ hbrev/ zbrev)
dx, = fliplr(dx,.)

for t = 0:T-1 # Add the partials
dx(t) = dx.(t) + dx,(t)

127

Story so far

Time series analysis must consider past inputs along with current input

Recurrent networks look into the infinite past through a state-space framework
— Hidden states that recurse on themselves

Training recurrent networks requires
— Defining a divergence between the actual and desired output sequences

— Backpropagating gradients over the entire chain of recursion
* Backpropagation through time

— Pooling gradients with respect to individual parameters over time

Bidirectional networks analyze data both ways, begin=>end and
end—>beginning to make predictions

— In these networks, backprop must follow the chain of recursion (and gradient
pooling) separately in the forward and reverse nets

RNNs..

* Excellent models for series data analysis tasks
— Time-series prediction
— Time-series classification
— Sequence generation..

So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(P3JS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

130

So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(P3JS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

More on this later..
131

RNNs..

* Excellent models for series data analysis tasks
— Time-series prediction
— Time-series classification
— Sequence generation..

— They can even simplify some problems that are
difficult for MLPs

 Next class..

