
Deep Learning
Sequence to Sequence models: 

Attention Models
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Sequence to sequence models

• Sequence goes in,  sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g.   “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”
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Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple
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Modelling the problem

• Delayed sequence to sequence
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Modelling the problem

• Delayed sequence to sequence
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First process the input
and generate a hidden
representation for it



Modelling the problem

• Delayed sequence to sequence
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Then use it to generate
an output

First process the input
and generate a hidden
representation for it



Modelling the problem

• Problem: Each word that is output depends only on 
current hidden state, and not on previous outputs
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Then use it to generate
an output

First process the input
and generate a hidden
representation for it



Modelling the problem

• Delayed sequence to sequence
– Delayed self-referencing sequence-to-sequence 7



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

8

I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and 
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced
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I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
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Ich

I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced
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Ich habe

Ich<sos>I ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced
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<sos>

Ich habe einen

Ich habeI ate an apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced
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<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>



The “simple” translation model

• The recurrent structure that extracts the hidden 
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation 
to produce the output sequence is the decoder
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ENCODER

DECODER
<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>



A problem with this framework

• All the information about the input sequence is 
embedded into a single vector
– The “hidden” node layer at the end of the input sequence

– This one node is “overloaded” with information
• Particularly if the input is long
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Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

<sos>I ate an apple <eos>



A problem with this framework
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I ate an apple <eos>

• In reality: All hidden values carry information
– Some of which may be diluted by the time we get to the final state of the 

encoder

• Every output is related to the input directly
– Not sufficient to have the encoder hidden state to only the initial state of the 

decoder
– Misses the direct relation of the outputs to the inputs



A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted by the time we get to the final state of the 

encoder

• Every output is related to the input directly
– Not sufficient to have the encoder hidden state to only the initial state of the 

decoder
– Misses the direct relation of the outputs to the inputs

17

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>



Using all input hidden states

• Simple solution: Compute the average of all encoder hidden states
• Input this average to every stage of the decoder
• The initial decoder hidden state is now separate from the encoder

– And may be a learnable parameter
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos>

<sos>

Average = ଵ

ே ௜
ே
௜



Using all input hidden states

• Problem: The average applies the same weight to every input
• It supplies the same average to every output word
• In practice, different outputs may be related to different inputs

– E.g. “Ich” is most related to “I”, and “habe” and “gegessen” are both 
most related to “ate”
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos>

<sos>

Average = ଵ

ே ௜
ே
௜



ହସଶ଴ ଵ ଷ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

௧ ௜ ௜

ே

௜
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>



଴

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

଴ ௜ ௜

ே

௜
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Ich

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ



଴

ଵ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ଵ ௜ ௜

ே

௜
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Ich

Ich habe

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ



ଵ
଴

ଶ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ଶ ௜ ௜

ே

௜
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Ich habe

Ich habe einen

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ



ଶଵ
଴

ଷ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ଷ ௜ ௜

ே

௜
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Ich habe einen

Ich habe einen apfel

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ



ଷଶଵ
଴

ସ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ସ ௜ ௜

ே

௜
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Ich habe einen apfel

Ich habe einen apfel gegessen

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ



ସ

଴

ହ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ହ ௜ ௜

ே

௜
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ଷଶଵ



ହସଶ଴ ଵ ଷ

Using all input hidden states

௧ ௜ ௜

ே

௜

• This solution will work if the weights ௞௜ can somehow be made to “focus” on the 
right input word

– E.g., when predicting the word “apfel”, 𝑤ଷ(4), the weight for “apple” must be high while the 
rest must be low

• How do we generate such weights?? 27

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ



ହସଶ଴ ଵ ଷ

Attention Models

௧ ௜ ௜

ே

௜

• Attention weights: The weights ௜ are dynamically computed as functions of 
decoder state

– Expectation: if the model is well-trained, this will automatically “highlight” the correct input

• But how are these computed?
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ ହ



ଷ

Attention weights at time 

• The “attention” weights ௜ at time must be computed from available 
information at time 

• The primary information is ௧ିଵ (the state at time time )
– Also, the input word at time 𝑡, but generally not used for simplicity

௜ ௜ ௧ିଵ
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Ich habe einen

Ich habe einen

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

𝑐௧ =
1

𝑁
෍ 𝑤௜(𝑡)ℎ௜

ே

௜



ଷ

Requirement on attention weights

• The weights ௜ must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution:  A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 30

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜



ଷ

Requirement on attention weights

• The weights ௜ must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution:  A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 31

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ



Poll 1

• @, @, @

32

The attention framework computes a different “context” vector at each 
output step (T/F)
• True
• False

The context vector is chosen as the hidden (encoder) representation of 
the input word that is assigned the highest attention weight (T/F)
• True
• False

The attention weight to any input word is a function of the hidden 
encoder representation of the word and the most recent decoder state 
(T/F)
• True
• False



Poll 1
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The attention framework computes a different “context” vector at each output step (T/F) 

 True 
 False 

 

The context vector is chosen as the hidden (encoder) representation of the input word that is assigned 
the highest attention weight (T/F) 

 True 
 False 

 

The attention weight to any input word is a function of the hidden encoder representation of the 
word and the most recent decoder state (T/F) 

 True 
 False 



ଷ

Requirement on attention weights

• The weights ௜ must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution:  A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 34

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

What is this function?



ଷ

Attention weights

• Typical options for (variables in red must learned)
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Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

௜ ௧ିଵ ௜
்

௧ିଵ

௜ ௧ିଵ ௜
்

௚ ௧ିଵ

௜ ௧ିଵ ௚
்

௚
௜

௧ିଵ

௜ ௧ିଵ ௜ ௧ିଵ



ଷ

Attention weights

• Typical options for (variables in red must learned)
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Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

௜ ௧ିଵ ௜
்

௧ିଵ

௜ ௧ିଵ ௜
்

௚ ௧ିଵ

௜ ௧ିଵ ௚
்

௚
௜

௧ିଵ

௜ ௧ିଵ ௜ ௧ିଵ

Let’s consider a typical conversion process 
assuming this model as an example



Converting an input: Inference

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

• Pass the input through the encoder to 
produce hidden representations 



Converting an input: Inference

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

• Pass the input through the encoder to 
produce hidden representations 

This may be 
• a learned parameter, or 
• Or just set to some fixed value, 

e.g. a vector of 1s or 0s, or 
• Or the average of all the encoder 

embeddings: ଴ ସ

• Or ௜௡௜௧ ଴ ସ where
௜௡௜௧ is a learned parameter



଴

Converting an input: Inference
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I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

଴ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ିଵ

௜ ିଵ ௜
்

௚ ିଵ

• Compute the attention weights 𝑤௜ 0 for the first 
output using 𝑠ିଵ

– Will be a distribution over the input words

• Compute “context” 𝑐଴

– Weighted sum of input word hidden states

• Input 𝑐଴ and <sos> to the decoder at time 0
– <sos> because we are starting a new sequence
– In practice we will enter the embedding of <sos>



଴

Converting an input: Inference

40

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

௜
௜

௝௝

௜ ௜ ିଵ

௜ ିଵ ௜
்

௚ ିଵ

଴

଴
௜௖௛

଴
ௗ௨

଴
௛௔௧

଴

଴

଴ ௜ ௜

ே

௜

• The decoder computes
–

– A probability distribution over 
the output vocabulary

• Output of softmax output layer



଴

Converting an input: Inference
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I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

௜
௜

௝௝

௜ ௜ ିଵ

௜ ିଵ ௜
்

௚ ିଵ

଴

଴
௜௖௛

଴
ௗ௨

଴
௛௔௧

଴

଴

Ich
଴ ௜ ௜

ே

௜

• Sample a word from the 
output distribution



଴

ଵ

Converting an input: Inference
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Ich

Ich

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴

ଵ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଴

଴

௜ ଴ ௜
்

௚ ଴• Compute the attention weights 𝑤௜ 1 over
all inputs for the second output using 𝑠଴

– Compute raw weights, followed by softmax

• Compute “context” 𝑐ଵ

– Weighted sum of input hidden representations

• Input 𝑐ଵ and first output word to the 
decoder

– In practice we enter the embedding of the word



଴

ଵ

Converting an input: Inference
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Ich

Ich

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴

ଵ
௜௖௛

ଵ
ௗ௨

ଵ
௛௔௧

ଵ

ଵ

௜
௜

௝௝

௜ ௜ ଴

௜ ଴ ௜
்

௚ ଴

ଵ ௜ ௜

ே

௜

• The decoder computes
– ଵ

– A probability distribution over 
the output vocabulary



଴

ଵ

Converting an input: Inference
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Ich

Ich

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴

ଵ ௜ ௜

ே

௜

ଵ

଴

௜
௜

௝௝

௜ ௜ ଴

௜ ଴ ௜
்

௚ ଴

ଵ
௜௖௛

ଵ
ௗ௨

ଵ
௛௔௧

ଵ

ଵ

habe

ଵ ௜ ௜

ே

௜

• Sample the second
word from the output 
distribution



ଵ
଴

ଶ

Converting an input: Inference
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Ich habe

Ich habe

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴ ଵ

௜
௜

௝௝

௜ ௜ ଵ

௜ ଵ ௜
்

௚ ଵ

ଶ ௜ ௜

ே

௜



ଵ
଴
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Converting an input: Inference
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Ich habe

Ich habe

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴ ଵ ଶ

ଶ

ଶ
௜௖௛

ଶ
ௗ௨

ଶ
௛௔௧

ଶ

௜
௜

௝௝

௜ ௜ ଵ

௜ ଵ ௜
்

௚ ଵ

ଶ ௜ ௜

ே

௜



ଵ
଴
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Converting an input: Inference
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Ich habe

Ich habe

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴ ଵ ଶ

ଶ

ଶ
௜௖௛

ଶ
ௗ௨

ଶ
௛௔௧

ଶ

௜
௜

௝௝

௜ ௜ ଵ

௜ ଵ ௜
்

௚ ଵ

ଶ ௜ ௜

ே

௜

einen



ଶଵ
଴

ଷ

Converting an input: Inference
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Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

ଷ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଶ

଴ ଵ ଶ



ଶଵ
଴

ଷ

Converting an input: Inference
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Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

ଷ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଶ

଴ ଵ ଶ ଷ

ଷ

ଷ
௜௖௛

ଷ
ௗ௨

ଷ
௛௔௧

ଷ



ଶଵ
଴
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Converting an input: Inference
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Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

ଷ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଶ

଴ ଵ ଶ ଷ

ଷ

ଷ
௜௖௛

ଷ
ௗ௨

ଷ
௛௔௧

ଷ

apfel



ଷଶଵ
଴

ସ

Converting an input: Inference
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Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ

ସ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଷ

଴ ଵ ଶ ଷ



ଷଶଵ
଴
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Converting an input: Inference
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Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ

ସ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଷ

଴ ଵ ଶ ଷ ସ

ସ

ସ
௜௖௛

ସ
ௗ௨

ସ
௛௔௧

ସ



ଷଶଵ
଴

ସ

Converting an input: Inference
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Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ

ସ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଷ

଴ ଵ ଶ ଷ ସ

ସ

ସ
௜௖௛

ସ
ௗ௨

ସ
௛௔௧

ସ

gegessen



ସ

଴
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Converting an input: Inference
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen

<sos>

ଷଶଵ

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ

ହ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ସ

଴ ଵ ଶ ଷ ସ
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Converting an input: Inference
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen

<sos>

ଷଶଵ

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ ହ

ହ

ହ
௜௖௛

ହ
ௗ௨

ହ
௛௔௧

ହ

ହ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ସ



ସ

଴

ହ

Converting an input: Inference
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Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>

ଷଶଵ

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ
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ହ

ହ
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ହ
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ହ
௛௔௧

ହ

ହ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ସ
Continue this process until
<eos> is drawn



Attention-based decoding
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Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 58
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Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 59
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Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 60
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Input to hidden decoder
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Special case:  

We will continue using this assumption in the following slides
but in practice the query-key-value format is used



Pseudocode
# Assuming encoded input 
#      (K,V) = [kenc[0]… kenc[T]], [venc[0]… venc[T]] 
# is available

t = -1
hout[-1] = 0   # Initial Decoder hidden state
q[0] = 0      # Initial query

# Note: begins with a “start of sentence” symbol
#       <sos> and <eos> may be identical
Yout[0] = <sos>
do

t = t+1
C = compute_context_with_attention(q[t], K, V)
y[t],hout[t],q[t+1] = RNN_decode_step(hout[t-1], yout[t-1], C)
yout[t] = generate(y[t]) # Random, or greedy

until yout[t] == <eos>
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Pseudocode : Computing context with 
attention

# Takes in previous state, encoder states, outputs attention-weighted context
function compute_context_with_attention(q, K, V)

# First compute attention
e = []
for t = 1:T  # Length of input

e[t] = raw_attention(q, K[t])
end
maxe = max(e) # subtract max(e) from everything to prevent underflow
a[1..T] = exp(e[1..T] - maxe)   # Component-wise exponentiation
suma = sum(a)  # Add all elements of a
a[1..T] = a[1..T]/suma

C = 0    
for t = 1..T

C += a[t] * V[t]
end

return C
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I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴

଴

Ich

ଵ
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ଵ

ଵ

ଶ

habe

ଶ

habe einen

ଶ

ଷ

einen

ଷ

apfel gegessen <eos>

ସ

apfel

ସ

ହ

gegessen

ହ

ଷ ସ ହ

• As before, the objective of drawing:  Produce the most likely output (that ends in an <eos>)

argmax
ைభ,…,ைಽ

𝑦ଵ
ைభ𝑦ଵ

ைమ … 𝑦ଵ
ைಽ

• Simply selecting the most likely symbol at each time may result in suboptimal output

<sos>

଴



Solution: Multiple choices

• Retain all choices and fork the network
– With every possible word as input
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To prevent blowup: Prune

• Prune
– At each time, retain only the top K scoring forks
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Decoding

• At each time, retain only the top K scoring forks
66
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Decoding

• At each time, retain only the top K scoring forks
67
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Decoding

• At each time, retain only the top K scoring forks



Terminate

• Terminate
– When the current most likely path overall ends in <eos>

• Or continue producing more outputs (each of which terminates in <eos>) to 
get N-best outputs 72
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Termination: <eos>

• Terminate
– Paths cannot continue once the output an <eos>

• So paths may be different lengths
– Select the most likely sequence ending in <eos> across all terminating sequences 73
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<eos>
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<eos>

<eos>

Example has K = 2



Pseudocode: Beam search
# Assuming encoder output H = hin[1]… hin[T] is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0]  # initial state (computed using your favorite method)
do  # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
for path in beam:

cfin = path[end]
hpath = state[path]
C = compute_context_with_attention(hpath, H)
y,h = RNN_decode_step(hpath, cfin, C)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, bestpath = prune(nextstate,nextpathscore,nextbeam)

until bestpath[end] = <eos>
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Pseudocode: Beam search
# Assuming encoder output H = hin[1]… hin[T] is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0]  # computed using your favorite method
context[path] = compute_context_with_attention(h[0], H)
do  # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
nextcontext = {}
for path in beam:

cfin = path[end]
hpath = state[path]
C = context[path]
y,h = RNN_decode_step(hpath, cfin, C)
nextC = compute_context_with_attention(h, H)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextcontext[newpath] = nextC
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, context, bestpath = 

prune (nextstate, nextpathscore, nextbeam, nextcontext)
until bestpath[end] = <eos>
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Slightly more efficient.

Does not perform redundant
context computation



• The key component of this model is the attention weight
– It captures the relative importance of each position in the input 

to the current output 76

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴
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ଵ ௜ ௜

௜

ଵ
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ଵ
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௜ ଴ ௜
்
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“Alignments” example: Bahdanau et al.
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t

t

Plot of 𝒊

Color shows value (white
is larger)

Note how most important
input words for any output
word get automatically
highlighted

The general trend is 
somewhat linear because
word order is roughly
similar in both languages

i



Translation Examples

• Bahdanau et al. 2016
78



Training the network

• We have seen how a trained network can be 
used to compute outputs
– Convert one sequence to another

• Lets consider training..

79



• Given training input (source sequence, target sequence) pairs
• Forward pass:  Pass the actual Pass the input sequence through the encoder

– At each time the output is a probability distribution over words 80
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• Backward pass:  Compute a divergence between target 
output and output distributions
– Backpropagate derivatives through the network 81
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<sos>

• Backward pass:  Compute a divergence between target 
output and output distributions
– Backpropagate derivatives through the network 82
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Back propagation also 
updates parameters of 
the “attention” function 



• Backward pass:  Compute a divergence between target 
output and output distributions
– Backpropagate derivatives through the network 83
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Occasionally pass drawn output
instead of ground truth, as input

Some tricks of the trade
ein



Gumbel Noise trick

• Sampling is not differentiable

• The “Gumbel noise” trick:  
– “Reparametrization” :  

𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 𝑌 =  argmax
௜

(𝐺௜ + log (𝑌))

– 𝐺௜ is drawn from the standard Gumbel distribution 𝐺𝑢𝑚𝑏𝑒𝑙(0,1) 

• The “argmax” can be replaced by a “softmax”, making the process differentiable w.r.t. network 
outputs

– 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺௜ + log(𝑌 𝑡 ))

• ∇௒ ௧ 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑜𝑢𝑝𝑢𝑡(𝑡) is employed in the chain rule to pass derivatives from t+1 back to 𝑌(𝑡)
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Tricks of the trade…
• Teacher forcing:

– Ideally we would only use the decoder output
during inference

– This will not be stable
– Passing in ground truth instead is “teacher forcing”

• Sampling the output: 
– Sample the system output and 
– as input during training for only some of the time

• The “Gumbel noise” trick:  
– Sampling is not differentiable, and gradients cannot be passed through it
– The “Gumbel noise” approach recasts sampling as computing the argmax of a 

Gumbel distribution, with the network output as parameters
– The “argmax” can be replaced by a “softmax”, making the process 

differentiable w.r.t. network outputs
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Various extensions

• Bidirectional processing of input sequence
– Bidirectional networks in encoder

– E.g. “Neural Machine Translation by Jointly Learning 
to Align and Translate”, Bahdanau et al. 2016

• Attention:  Local attention vs global attention
– E.g. “Effective Approaches to Attention-based Neural 

Machine Translation”,  Luong et al., 2015

– Other variants
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Extensions: Multihead attention

• Have multiple query/key/value sets.
– Each attention “head” uses one of these sets
– The combined contexts from all heads are passed to the decoder

• Each “attender” focuses on a different aspect of the input that’s 
important for the decode 87
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Poll 2

• @, @

88

Which of the following will give you the optimal decode with an attention-based 
decoder? 

 Full tree search
 Beam search

Mark all that are true

 In a query-key-value based attention mechanism, the key and value are used to 
compute attention weights

 Multi-head attention computes a separate set of keys and values for each head, at 
each input

 Multi-head attention computes a separate query for each head, at each output
 Training with teacher forcing computes the theoretically correct loss and minimizes 

it
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Some impressive results..

• Attention-based models are currently 
responsible for the state of the art in many 
sequence-conversion systems
– Machine translation

• Input: Text in source language
• Output: Text in target language

– Speech recognition
• Input: Speech audio feature vector sequence
• Output: Transcribed word or character sequence
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Attention models in image captioning

• “Show attend and tell: Neural image caption generation with visual 
attention”, Xu et al., 2016

• Encoder network is a convolutional neural network
– Filter outputs at each location are the equivalent of 𝑖 in the regular 

sequence-to-sequence model 
91



Recap

• Have looked at various forms of sequence-to-sequence 
models

• Generalizations of recurrent neural network formalisms

• For more details, please refer to papers
– Post on piazza if you have questions

• Will appear in HW4:  Speech recognition with 
attention models
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Recap: Seq2Seq models

93

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to 
produce a sequence of outputs

93
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Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>



ହସଶ଴ ଵ ଷ

Recap: Attention Models

• Encoder recurrently produces hidden representations of input word 
sequence

• Decoder recurrently generates output word sequence
– For each output word the decoder uses a weighted average of the 

hidden input representations as input “context”, along with the 
recurrent hidden state and the previous output word
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ହସଶ଴ ଵ ଷ

Recap: Attention Models

• Problem: Because of the recurrence, the hidden representation for any word is 
also influenced by all preceding words

– The decoder is actually paying attention to the sequence, and not just the word

• If the decoder is automatically figuring out which words of the input to attend to 
at each time, is recurrence in the input even necessary?
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ହସଶ଴ ଵ ଷ

Non-recurrent encoder

• Modification: Let us eliminate the recurrence 
in the encoder

96

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ



ହସଶ଴ ଵ ଷ

Non-recurrent encoder

• But this will eliminate context-specificity in the encoder embeddings
– The embedding for “an” must really depend on the remaining words

• It could be translated to “ein”, “einer”, or “eines” depending on the context.

• Solution:  Use the attention framework itself to introduce context-
specificity in embeddings
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ହସଶ଴ ଵ ଷ

Recap: Non-recurrent encoder

• The encoder in a sequence-to-sequence model can be composed 
without recurrence.

• Use the attention framework itself to introduce context-specificity 
in embeddings
– “Self” attention 98
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Self attention

• First, for every word in the input sequence we 
compute an initial representation
– E.g. using a single MLP layer
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Self attention

• Then, from each of the hidden representations, we 
compute a query, a key, and a value.
– Using separate linear transforms
– The weight matrices , and are learnable parameters  
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Self Attention

• For each word, we compute an attention weight between that word 
and all other words
– The raw attention of the th word to the th word is a function of 

query ௜ and key ௝

– The raw attention values are put through a softmax to get the final 
attention weights
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• The updated representation for the word is 
the attention-weighted sum of the values for 
all words
– Including itself 102
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• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words 103
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• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words 
using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words
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using their keys

– Compute updated representation for the word as attention-weighted 
sum of values of all words
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• We can have multiple such attention “heads”
– Each will have an independent set of queries, keys and values
– Each will obtain an independent set of attention weights

• Potentially focusing on a different aspect of the input than other heads

– Each computes an independent output

• The final output is the concatenation of the outputs of these attention heads
• “MULTI-HEAD ATTENTION” (actually Multi-head self attention) 110
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• Multi-head self attention
– Multiple self-attention modules in parallel

111
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• Typically, the output of the multi-head self attention is 
passed through one or more regular feedforward layers
– Affine layer followed by a non-linear activation such as 

ReLU
112
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• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block
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• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block
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• The encoder can include many layers of such 
blocks

• No need for recurrence…
115
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• Recap: The encoder in a sequence-to-sequence model can replace 
recurrence through a series of “multi-head self attention” blocksBut this 
still ignores relative position
– A context word one word away is different from one 10 words away
– The attention framework does not take distance into context

116
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• Recap: The encoder in a sequence-to-sequence model can replace 
recurrence through a series of “multi-head self attention” blocks

• But this still ignores relative position
– A context word one word away is different from one 10 words away
– The attention framework does not take distance into consideration
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• Note that the inputs are actually word
embeddings

• We add a “positional” encoding to them to 
capture the relative distance from one another

118
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• Note that the inputs are actually word
embeddings

• We add a “positional” encoding to them to 
capture the relative distance from one another



• Positional Encoding: A sequence of vectors ଴ ே, to encode position
– Every vector is unique (and uniquely represents time)
– Relationship between ௧ and ௧ାఛ only depends on the distance between 

them

௧ାఛ ఛ ௧

• The linear relationship between ௧ and ௧ାఛ enables the net to learn shift-
invariant “gap” dependent relationships 120
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Positional Encoding

• A vector of sines and cosines of a harmonic series of frequencies
– Every 2𝑙-th component of 𝑃௧ is sin 𝜔௟𝑡

– Every 2𝑙 + 1-th component of 𝑃௧ is cos 𝜔௟𝑡

• Never repeats
• Has the linearity property required

121
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• The linear relationship between and enables the 
net to learn shift-invariant “gap” dependent relationships
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• The self-attending encoder!!
123
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• The self-attending encoder!!
124
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Self attention and masked self 
attention

• Self attention in encoder: Can use input 
embedding at time t+1 and further to compute 
output at time t, because all inputs are available
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Self attention and masked self 
attention

• Self attention in decoder: Decoder is sequential
– Each word is produced using the previous word as input
– Only embeddings until time t are available to compute the 

output at time t

• The attention will have to be “masked”, forcing attention 
weights for t+1 and later to 0
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Masked self-attention block

• The “masked self attention block” includes an MLP after the 
masked self attention
– Like in the encoder
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Masked self-attention block

• The “masked self attention block” sequentially computes outputs begin to 
end
– Sequential nature of decoding prevents outputs from being computed in 

parallel
– Unlike in an encoder
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Masked multi-head self-attention

• The “masked multi-head self attention block” includes multiple 
masked attention heads
– Like in the encoder
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Masked multi-head self-attention 
block

• The “masked multi-head self attention block” includes multiple 
masked attention heads
– Like in the encoder
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Masked multi-head self-attention 
block

• The “masked multi-head self attention block” includes multiple 
masked attention heads, followed by an MLP
– Like in the encoder

131

Masked Multi-head Self Attention block
௜௝
௔

௜
௔

଴:௜ିଵ
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜



132

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Multi-head 
Attention

Encoder Decoder

Masked Multi-head Self Attention Block

Masked Multi-head Self Attention Block



Poll 3

• @

133

Mark all that are true

 Self attention computed for an N-length input requires the computation of 
an N x N attention weight matrix for each head

 Masked self attention is only required in the first layer of the decoder. 
Subsequent layers see the entire output of the previous layers and can use 
full self attention

 We cannot combine recurrent layers with self attention layers
 Positional encodings are different in the encoder and decoder because the 

self attention in the decoder is masked.



Poll 3

• @
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Mark all that are true

 Self attention computed for an N-length input requires the computation 
of an N x N attention weight matrix for each head

 Masked self attention is only required in the first layer of the decoder. 
Subsequent layers see the entire output of the previous layers and can use 
full self attention

 We cannot combine recurrent layers with self attention layers
 Positional encodings are different in the encoder and decoder because the 

self attention in the decoder is masked.



Transformer: Attention is all you need

• Transformer: A sequence-to-sequence model that replaces 
recurrence with positional encoding and multi-head self attention
– “Attention is all you need”

135

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information 
processing systems. 2017.



Transformer

• Transformer: tremendous decrease in model computation for similar 
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 136

From “Attention is all you need”



Transformer

• Transformer: tremendous decrease in model computation for similar 
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 137

From “Attention is all you need”

Why so good? Why so fast?



Recap: Vanishing/exploding gradients

138

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• RNNs are just very deep networks
• LSTMs mitigate the problem at the cost of 3x more matrix 

multiplications
• Transformers get rid of it! To encode a full sentence, they have way 

fewer layers than an unrolled RNN.
• The same goes with the vanishing memory issue to an extent.



Processing order

• Computing requires  …
• Which requires , etc…
• RNN inputs must be processed in order 

slow implementation

139
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Processing order

• can be computed separately.
• dot products to compute.
• Self attention is easy to compute in parallel 

Faster implementations 140
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Transformer

• Transformer: tremendous decrease in model computation for similar 
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 141

From “Attention is all you need”



GPT

• GPT uses only the decoder of the transformer as an LM
– “Transformer w/o aux LM”

• Large performance improvement in many tasks 
142

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training



GPT

• Add Task conditioning: put the nature of your task in the input (not just 
LM)

• Parameters x1000
 GPT-3 : Generalizes to more tasks, not just more inputs! 143

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training



BERT

• Bert: Only uses encoder of transformer to derive word and sentence 
embeddings

• Trained to “fill in the blanks”
• This is representation learning (more next lecture) 144



Attention is all you need

• Self-attention can effectively replace recurrence in 
sequence-to-sequence models
– “Transformers”
– Requires “positional encoding” to capture positional 

information

• Can also be used in regular sequence analysis settings as a 
substitute for recurrence

• Currently the state of the art in most sequence 
analysis/prediction…

145



Attention is all you need

• Self-attention can effectively replace recurrence in 
sequence-to-sequence models
– “Transformers”
– Requires “positional encoding” to capture positional 

information

• Can also be used in regular sequence analysis settings as a 
substitute for recurrence

• Currently the state of the art in most sequence 
analysis/prediction… and even computer vison problems!

146



Poll 4

• @

147

Mark all that are true

 BERT is essentially the encoder of a transformer model
 GPT is essentially the encoder of a transformer model
 BERT is essentially the decoder of a transformer model
 GPT is essentially the decoder of a transformer model



Poll 4

• @
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Mark all that are true

 BERT is essentially the encoder of a transformer model
 GPT is essentially the encoder of a transformer model
 BERT is essentially the decoder of a transformer model
 GPT is essentially the decoder of a transformer model



Vision Transformers

• Divide your image in patches with pos. encodings
• Apply Self-Attention!
 Sequential and image problems are similar when using 
transformers 149

Dosovitskiy et al, An 
Image is Worth 16x16 
Words: Transformers 
for Image Recognition 
at Scale, 2020



Impact of Transformers

• Transformers have played a major role in the 
“uniformization” of DL-based tasks:
– Find a pretrained “BERT-like” transformer (Text, Image, Speech)
– Fine-tune on your task – or not! (Prompting…)

• This has helped democratize Deep Learning considerably

• But…

150



Caveat 1

• Not all transformers are the same: Big/small, 
fast/slow, mono-/multilingual, contrastive/ 
generative, regressive/autoencoding…

• Pick the right one!
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Caveat 2

• Transformers are not always the right choice.

• They often require more parameters than 
LSTMs at equal performance

 Tricky on small hardware (phones, IoT, etc)
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