
Deep Learning
Sequence to Sequence models:

Attention Models

1

Sequence to sequence models

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

2

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

Modelling the problem

• Delayed sequence to sequence

3

Modelling the problem

• Delayed sequence to sequence

4

First process the input
and generate a hidden
representation for it

Modelling the problem

• Delayed sequence to sequence

5

Then use it to generate
an output

First process the input
and generate a hidden
representation for it

Modelling the problem

• Problem: Each word that is output depends only on
current hidden state, and not on previous outputs

6

Then use it to generate
an output

First process the input
and generate a hidden
representation for it

Modelling the problem

• Delayed sequence to sequence
– Delayed self-referencing sequence-to-sequence 7

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

8

I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

9

I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

10

<sos>

Ich

I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

11

Ich habe

Ich<sos>I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

12

<sos>

Ich habe einen

Ich habeI ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

13

<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

The “simple” translation model

• The recurrent structure that extracts the hidden
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation
to produce the output sequence is the decoder

14

ENCODER

DECODER
<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

A problem with this framework

• All the information about the input sequence is
embedded into a single vector
– The “hidden” node layer at the end of the input sequence

– This one node is “overloaded” with information
• Particularly if the input is long

15

Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

<sos>I ate an apple <eos>

A problem with this framework

16

I ate an apple <eos>

• In reality: All hidden values carry information
– Some of which may be diluted by the time we get to the final state of the

encoder

• Every output is related to the input directly
– Not sufficient to have the encoder hidden state to only the initial state of the

decoder
– Misses the direct relation of the outputs to the inputs

A problem with this framework

• In reality: All hidden values carry information
– Some of which may be diluted by the time we get to the final state of the

encoder

• Every output is related to the input directly
– Not sufficient to have the encoder hidden state to only the initial state of the

decoder
– Misses the direct relation of the outputs to the inputs

17

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

Using all input hidden states

• Simple solution: Compute the average of all encoder hidden states
• Input this average to every stage of the decoder
• The initial decoder hidden state is now separate from the encoder

– And may be a learnable parameter

18

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos>

<sos>

Average = ଵ

ே ௜
ே
௜

Using all input hidden states

• Problem: The average applies the same weight to every input
• It supplies the same average to every output word
• In practice, different outputs may be related to different inputs

– E.g. “Ich” is most related to “I”, and “habe” and “gegessen” are both
most related to “ate”

19

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos>

<sos>

Average = ଵ

ே ௜
ே
௜

ହସଶ଴ ଵ ଷ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

௧ ௜ ௜

ே

௜

20

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

଴ ௜ ௜

ே

௜

21

Ich

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

଴

ଵ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ଵ ௜ ௜

ே

௜

22

Ich

Ich habe

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ଵ
଴

ଶ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ଶ ௜ ௜

ே

௜

23

Ich habe

Ich habe einen

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ଶଵ
଴

ଷ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ଷ ௜ ௜

ே

௜

24

Ich habe einen

Ich habe einen apfel

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ଷଶଵ
଴

ସ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ସ ௜ ௜

ே

௜

25

Ich habe einen apfel

Ich habe einen apfel gegessen

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ସ

଴

ହ

Using all input hidden states

• Solution: Use a different weighted average for each output word
– The weighted average provided for the kth output word is:

ହ ௜ ௜

ே

௜

26

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ଷଶଵ

ହସଶ଴ ଵ ଷ

Using all input hidden states

௧ ௜ ௜

ே

௜

• This solution will work if the weights ௞௜ can somehow be made to “focus” on the
right input word

– E.g., when predicting the word “apfel”, 𝑤ଷ(4), the weight for “apple” must be high while the
rest must be low

• How do we generate such weights?? 27

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ହସଶ଴ ଵ ଷ

Attention Models

௧ ௜ ௜

ே

௜

• Attention weights: The weights ௜ are dynamically computed as functions of
decoder state

– Expectation: if the model is well-trained, this will automatically “highlight” the correct input

• But how are these computed?
28

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ଷ

Attention weights at time

• The “attention” weights ௜ at time must be computed from available
information at time

• The primary information is ௧ିଵ (the state at time time)
– Also, the input word at time 𝑡, but generally not used for simplicity

௜ ௜ ௧ିଵ

29

Ich habe einen

Ich habe einen

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

𝑐௧ =
1

𝑁
෍ 𝑤௜(𝑡)ℎ௜

ே

௜

ଷ

Requirement on attention weights

• The weights ௜ must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution: A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 30

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

ଷ

Requirement on attention weights

• The weights ௜ must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution: A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 31

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

Poll 1

• @, @, @

32

The attention framework computes a different “context” vector at each
output step (T/F)
• True
• False

The context vector is chosen as the hidden (encoder) representation of
the input word that is assigned the highest attention weight (T/F)
• True
• False

The attention weight to any input word is a function of the hidden
encoder representation of the word and the most recent decoder state
(T/F)
• True
• False

Poll 1

33

The attention framework computes a different “context” vector at each output step (T/F)

 True
 False

The context vector is chosen as the hidden (encoder) representation of the input word that is assigned
the highest attention weight (T/F)

 True
 False

The attention weight to any input word is a function of the hidden encoder representation of the
word and the most recent decoder state (T/F)

 True
 False

ଷ

Requirement on attention weights

• The weights ௜ must be positive and sum to 1.0
– I.e. be a distribution
– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution: A two step weight computation
– First compute raw weights (which could be +ve or –ve)
– Then softmax them to convert them to a distribution 34

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

What is this function?

ଷ

Attention weights

• Typical options for (variables in red must learned)

35

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

௜ ௧ିଵ ௜
்

௧ିଵ

௜ ௧ିଵ ௜
்

௚ ௧ିଵ

௜ ௧ିଵ ௚
்

௚
௜

௧ିଵ

௜ ௧ିଵ ௜ ௧ିଵ

ଷ

Attention weights

• Typical options for (variables in red must learned)

36

Ich habe einen

Ich habe einen

I ate an apple <eos>
<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

௜ Sum to 1.0

௜ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ௧ିଵ

௜ ௧ିଵ ௜
்

௧ିଵ

௜ ௧ିଵ ௜
்

௚ ௧ିଵ

௜ ௧ିଵ ௚
்

௚
௜

௧ିଵ

௜ ௧ିଵ ௜ ௧ିଵ

Let’s consider a typical conversion process
assuming this model as an example

Converting an input: Inference

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

• Pass the input through the encoder to
produce hidden representations

Converting an input: Inference

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

• Pass the input through the encoder to
produce hidden representations

This may be
• a learned parameter, or
• Or just set to some fixed value,

e.g. a vector of 1s or 0s, or
• Or the average of all the encoder

embeddings: ଴ ସ

• Or ௜௡௜௧ ଴ ସ where
௜௡௜௧ is a learned parameter

଴

Converting an input: Inference

39

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

଴ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ିଵ

௜ ିଵ ௜
்

௚ ିଵ

• Compute the attention weights 𝑤௜ 0 for the first
output using 𝑠ିଵ

– Will be a distribution over the input words

• Compute “context” 𝑐଴

– Weighted sum of input word hidden states

• Input 𝑐଴ and <sos> to the decoder at time 0
– <sos> because we are starting a new sequence
– In practice we will enter the embedding of <sos>

଴

Converting an input: Inference

40

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

௜
௜

௝௝

௜ ௜ ିଵ

௜ ିଵ ௜
்

௚ ିଵ

଴

଴
௜௖௛

଴
ௗ௨

଴
௛௔௧

଴

଴

଴ ௜ ௜

ே

௜

• The decoder computes
–

– A probability distribution over
the output vocabulary

• Output of softmax output layer

଴

Converting an input: Inference

41

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ

௜
௜

௝௝

௜ ௜ ିଵ

௜ ିଵ ௜
்

௚ ିଵ

଴

଴
௜௖௛

଴
ௗ௨

଴
௛௔௧

଴

଴

Ich
଴ ௜ ௜

ே

௜

• Sample a word from the
output distribution

଴

ଵ

Converting an input: Inference

42

Ich

Ich

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴

ଵ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଴

଴

௜ ଴ ௜
்

௚ ଴• Compute the attention weights 𝑤௜ 1 over
all inputs for the second output using 𝑠଴

– Compute raw weights, followed by softmax

• Compute “context” 𝑐ଵ

– Weighted sum of input hidden representations

• Input 𝑐ଵ and first output word to the
decoder

– In practice we enter the embedding of the word

଴

ଵ

Converting an input: Inference

43

Ich

Ich

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴

ଵ
௜௖௛

ଵ
ௗ௨

ଵ
௛௔௧

ଵ

ଵ

௜
௜

௝௝

௜ ௜ ଴

௜ ଴ ௜
்

௚ ଴

ଵ ௜ ௜

ே

௜

• The decoder computes
– ଵ

– A probability distribution over
the output vocabulary

଴

ଵ

Converting an input: Inference

44

Ich

Ich

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴

ଵ ௜ ௜

ே

௜

ଵ

଴

௜
௜

௝௝

௜ ௜ ଴

௜ ଴ ௜
்

௚ ଴

ଵ
௜௖௛

ଵ
ௗ௨

ଵ
௛௔௧

ଵ

ଵ

habe

ଵ ௜ ௜

ே

௜

• Sample the second
word from the output
distribution

ଵ
଴

ଶ

Converting an input: Inference

45

Ich habe

Ich habe

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴ ଵ

௜
௜

௝௝

௜ ௜ ଵ

௜ ଵ ௜
்

௚ ଵ

ଶ ௜ ௜

ே

௜

ଵ
଴

ଶ

Converting an input: Inference

46

Ich habe

Ich habe

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴ ଵ ଶ

ଶ

ଶ
௜௖௛

ଶ
ௗ௨

ଶ
௛௔௧

ଶ

௜
௜

௝௝

௜ ௜ ଵ

௜ ଵ ௜
்

௚ ଵ

ଶ ௜ ௜

ே

௜

ଵ
଴

ଶ

Converting an input: Inference

47

Ich habe

Ich habe

I ate an apple <eos>

<sos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ

଴ ଵ ଶ

ଶ

ଶ
௜௖௛

ଶ
ௗ௨

ଶ
௛௔௧

ଶ

௜
௜

௝௝

௜ ௜ ଵ

௜ ଵ ௜
்

௚ ଵ

ଶ ௜ ௜

ே

௜

einen

ଶଵ
଴

ଷ

Converting an input: Inference

48

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

ଷ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଶ

଴ ଵ ଶ

ଶଵ
଴

ଷ

Converting an input: Inference

49

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

ଷ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଶ

଴ ଵ ଶ ଷ

ଷ

ଷ
௜௖௛

ଷ
ௗ௨

ଷ
௛௔௧

ଷ

ଶଵ
଴

ଷ

Converting an input: Inference

50

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ

ଷ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଶ

଴ ଵ ଶ ଷ

ଷ

ଷ
௜௖௛

ଷ
ௗ௨

ଷ
௛௔௧

ଷ

apfel

ଷଶଵ
଴

ସ

Converting an input: Inference

51

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ

ସ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଷ

଴ ଵ ଶ ଷ

ଷଶଵ
଴

ସ

Converting an input: Inference

52

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ

ସ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଷ

଴ ଵ ଶ ଷ ସ

ସ

ସ
௜௖௛

ସ
ௗ௨

ସ
௛௔௧

ସ

ଷଶଵ
଴

ସ

Converting an input: Inference

53

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ

ସ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ଷ

଴ ଵ ଶ ଷ ସ

ସ

ସ
௜௖௛

ସ
ௗ௨

ସ
௛௔௧

ସ

gegessen

ସ

଴

ହ

Converting an input: Inference

54

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen

<sos>

ଷଶଵ

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ

ହ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ସ

଴ ଵ ଶ ଷ ସ

ସ

଴

ହ

Converting an input: Inference

55

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen

<sos>

ଷଶଵ

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ ହ

ହ

ହ
௜௖௛

ହ
ௗ௨

ହ
௛௔௧

ହ

ହ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ସ

ସ

଴

ହ

Converting an input: Inference

56

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>

ଷଶଵ

I ate an apple <eos>

଴ ଵ ଶ ଷିଵ ସ

ିଵ ଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ ହ

ହ

ହ
௜௖௛

ହ
ௗ௨

ହ
௛௔௧

ହ

ହ ௜ ௜

ே

௜

௜
௜

௝௝

௜ ௜ ସ
Continue this process until
<eos> is drawn

Attention-based decoding

57

௧ ௜ ௜

ே

௜௜
௜

௝௝

௜ ௜ ௧ିଵ

ହସଶ଴ ଵ ଷ

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ

Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 58

ିଵ ଵ

Ich

Ich habe

<sos>

଴

଴ ଵ ଶ

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

଴଴ ଵଵ ଶଶ ଷଷ ସସ

௝ ௤ ௝ିଵ

௜ ௞ ௜

௜ ௩ ௜

Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 59

ିଵ ଵ

Ich

Ich habe

<sos>

଴

଴ ଵ ଶ

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

଴଴ ଵଵ ଶଶ ଷଷ ସସ

௜ ௜ ௧

௜ ௜

Input to hidden decoder
layer: ௜ ௜௜

௜ ௤ ௜ିଵ

௜ ௞ ௜

௜ ௩ ௜

Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time
– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time
– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query
• The actual context is a weighted sum of value 60

ିଵ ଵ

Ich

Ich habe

<sos>

଴

଴ ଵ ଶ

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

଴଴ ଵଵ ଶଶ ଷଷ ସସ

௜ ௜ ௧

௜ ௜

Input to hidden decoder
layer: ௜ ௜௜

Special case:

We will continue using this assumption in the following slides
but in practice the query-key-value format is used

Pseudocode
Assuming encoded input
(K,V) = [kenc[0]… kenc[T]], [venc[0]… venc[T]]
is available

t = -1
hout[-1] = 0 # Initial Decoder hidden state
q[0] = 0 # Initial query

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
Yout[0] = <sos>
do

t = t+1
C = compute_context_with_attention(q[t], K, V)
y[t],hout[t],q[t+1] = RNN_decode_step(hout[t-1], yout[t-1], C)
yout[t] = generate(y[t]) # Random, or greedy

until yout[t] == <eos>

61

Pseudocode : Computing context with
attention

Takes in previous state, encoder states, outputs attention-weighted context
function compute_context_with_attention(q, K, V)

First compute attention
e = []
for t = 1:T # Length of input

e[t] = raw_attention(q, K[t])
end
maxe = max(e) # subtract max(e) from everything to prevent underflow
a[1..T] = exp(e[1..T] - maxe) # Component-wise exponentiation
suma = sum(a) # Add all elements of a
a[1..T] = a[1..T]/suma

C = 0
for t = 1..T

C += a[t] * V[t]
end

return C

62

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴

଴

Ich

ଵ

Ich

ଵ

ଵ

ଶ

habe

ଶ

habe einen

ଶ

ଷ

einen

ଷ

apfel gegessen <eos>

ସ

apfel

ସ

ହ

gegessen

ହ

ଷ ସ ହ

• As before, the objective of drawing: Produce the most likely output (that ends in an <eos>)

argmax
ைభ,…,ைಽ

𝑦ଵ
ைభ𝑦ଵ

ைమ … 𝑦ଵ
ைಽ

• Simply selecting the most likely symbol at each time may result in suboptimal output

<sos>

଴

Solution: Multiple choices

• Retain all choices and fork the network
– With every possible word as input

64

I

He

We

The

<sos>

To prevent blowup: Prune

• Prune
– At each time, retain only the top K scoring forks

65

I

He

We

The

௄ ଵ ଵ ே

Decoding

• At each time, retain only the top K scoring forks
66

He

The

Decoding

• At each time, retain only the top K scoring forks
67

He

The

௄ ଶ ଵ ଵ ே

Note: based on product

௄ ଶ ଵ ଵ ே ଵ ଵ ே

I

Knows

…

I

Nose

…

68

He

The

௄ ଶ ଵ ଵ ே

Note: based on product

௄ ଶ ଵ ଵ ே ଵ ଵ ே

I

Knows

…

I

Nose

…

Decoding

• At each time, retain only the top K scoring forks

69

He

The

௄ ଶ ଵ ଵ ே

ଶ ଵ ଵ ே

ଵ ଵ ே

Knows

Nose

…

Decoding

• At each time, retain only the top K scoring forks

70

He

The

௄ ଶ ଵ ଵ ே

ଶ ଵ ଵ ே

ଵ ଵ ே

Knows

Nose

…

Decoding

• At each time, retain only the top K scoring forks

71

He

The

௄ ௡ ଵ ௡ିଵ ଵ ே

௡

௧ୀଵ

Knows

Nose

Decoding

• At each time, retain only the top K scoring forks

Terminate

• Terminate
– When the current most likely path overall ends in <eos>

• Or continue producing more outputs (each of which terminates in <eos>) to
get N-best outputs 72

He

The

Knows

<eos>

Nose

Termination: <eos>

• Terminate
– Paths cannot continue once the output an <eos>

• So paths may be different lengths
– Select the most likely sequence ending in <eos> across all terminating sequences 73

He

The

Knows

<eos>

Nose

<eos>

<eos>

Example has K = 2

Pseudocode: Beam search
Assuming encoder output H = hin[1]… hin[T] is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0] # initial state (computed using your favorite method)
do # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
for path in beam:

cfin = path[end]
hpath = state[path]
C = compute_context_with_attention(hpath, H)
y,h = RNN_decode_step(hpath, cfin, C)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, bestpath = prune(nextstate,nextpathscore,nextbeam)

until bestpath[end] = <eos>

74

Pseudocode: Beam search
Assuming encoder output H = hin[1]… hin[T] is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0] # computed using your favorite method
context[path] = compute_context_with_attention(h[0], H)
do # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
nextcontext = {}
for path in beam:

cfin = path[end]
hpath = state[path]
C = context[path]
y,h = RNN_decode_step(hpath, cfin, C)
nextC = compute_context_with_attention(h, H)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextcontext[newpath] = nextC
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, context, bestpath =

prune (nextstate, nextpathscore, nextbeam, nextcontext)
until bestpath[end] = <eos>

75

Slightly more efficient.

Does not perform redundant
context computation

• The key component of this model is the attention weight
– It captures the relative importance of each position in the input

to the current output 76

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴

଴

Ich

ଵ ௜ ௜

௜

ଵ

Ich

ଵ

What does the attention learn?

௜ ଴ ௜
்

௚ ଴<sos>

଴

“Alignments” example: Bahdanau et al.

77i

t

t

Plot of 𝒊

Color shows value (white
is larger)

Note how most important
input words for any output
word get automatically
highlighted

The general trend is
somewhat linear because
word order is roughly
similar in both languages

i

Translation Examples

• Bahdanau et al. 2016
78

Training the network

• We have seen how a trained network can be
used to compute outputs
– Convert one sequence to another

• Lets consider training..

79

• Given training input (source sequence, target sequence) pairs
• Forward pass: Pass the actual Pass the input sequence through the encoder

– At each time the output is a probability distribution over words 80

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen

𝑦଴
௜௖௛

𝑦଴
ௗ௨

𝑦଴
௛௔௧

…

𝑦ଵ
௜௖௛

𝑦ଵ
ௗ௨

𝑦ଵ
௛௔௧

…

𝑦ଶ
௜௖௛

𝑦ଶ
ௗ௨

𝑦ଶ
௛௔௧

…

𝑦ଷ
௜௖௛

𝑦ଷ
ௗ௨

𝑦ଷ
௛௔௧

…

𝑦ସ
௜௖௛

𝑦ସ
ௗ௨

𝑦ସ
௛௔௧

…

𝑦ହ
௜௖௛

𝑦ହ
ௗ௨

𝑦ହ
௛௔௧

…

<sos>

• Backward pass: Compute a divergence between target
output and output distributions
– Backpropagate derivatives through the network 81

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen

𝑦଴
௜௖௛

𝑦଴
ௗ௨

𝑦଴
௛௔௧

…

𝑦ଵ
௜௖௛

𝑦ଵ
ௗ௨

𝑦ଵ
௛௔௧

…

𝑦ଶ
௜௖௛

𝑦ଶ
ௗ௨

𝑦ଶ
௛௔௧

…

𝑦ଷ
௜௖௛

𝑦ଷ
ௗ௨

𝑦ଷ
௛௔௧

…

𝑦ସ
௜௖௛

𝑦ସ
ௗ௨

𝑦ସ
௛௔௧

…

𝑦ହ
௜௖௛

𝑦ହ
ௗ௨

𝑦ହ
௛௔௧

…

Ich habe einen apfel gegessen<eos>
Div Div Div Div Div Div

<sos>

<sos>

• Backward pass: Compute a divergence between target
output and output distributions
– Backpropagate derivatives through the network 82

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen

𝑦଴
௜௖௛

𝑦଴
ௗ௨

𝑦଴
௛௔௧

…

𝑦ଵ
௜௖௛

𝑦ଵ
ௗ௨

𝑦ଵ
௛௔௧

…

𝑦ଶ
௜௖௛

𝑦ଶ
ௗ௨

𝑦ଶ
௛௔௧

…

𝑦ଷ
௜௖௛

𝑦ଷ
ௗ௨

𝑦ଷ
௛௔௧

…

𝑦ସ
௜௖௛

𝑦ସ
ௗ௨

𝑦ସ
௛௔௧

…

𝑦ହ
௜௖௛

𝑦ହ
ௗ௨

𝑦ହ
௛௔௧

…

Ich habe einen apfel gegessen<eos>
Div Div Div Div Div Div

Back propagation also
updates parameters of
the “attention” function

• Backward pass: Compute a divergence between target
output and output distributions
– Backpropagate derivatives through the network 83

I ate an apple <eos>

଴ ଵ ଶ ଷ ସିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Ich habe apfel gegessen

𝑦଴
௜௖௛

𝑦଴
ௗ௨

𝑦଴
௛௔௧

…

𝑦ଵ
௜௖௛

𝑦ଵ
ௗ௨

𝑦ଵ
௛௔௧

…

𝑦ଶ
௜௖௛

𝑦ଶ
ௗ௨

𝑦ଶ
௛௔௧

…

𝑦ଷ
௜௖௛

𝑦ଷ
ௗ௨

𝑦ଷ
௛௔௧

…

𝑦ସ
௜௖௛

𝑦ସ
ௗ௨

𝑦ସ
௛௔௧

…

𝑦ହ
௜௖௛

𝑦ହ
ௗ௨

𝑦ହ
௛௔௧

…

Ich habe einen apfel gegessen<eos>
Div Div Div Div Div Div

***<sos>

Occasionally pass drawn output
instead of ground truth, as input

Some tricks of the trade
ein

Gumbel Noise trick

• Sampling is not differentiable

• The “Gumbel noise” trick:
– “Reparametrization” :

𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 𝑌 = argmax
௜

(𝐺௜ + log (𝑌))

– 𝐺௜ is drawn from the standard Gumbel distribution 𝐺𝑢𝑚𝑏𝑒𝑙(0,1)

• The “argmax” can be replaced by a “softmax”, making the process differentiable w.r.t. network
outputs

– 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑜𝑢𝑡𝑝𝑢𝑡 𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺௜ + log(𝑌 𝑡))

• ∇௒ ௧ 𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑜𝑢𝑝𝑢𝑡(𝑡) is employed in the chain rule to pass derivatives from t+1 back to 𝑌(𝑡)

84

Tricks of the trade…
• Teacher forcing:

– Ideally we would only use the decoder output
during inference

– This will not be stable
– Passing in ground truth instead is “teacher forcing”

• Sampling the output:
– Sample the system output and
– as input during training for only some of the time

• The “Gumbel noise” trick:
– Sampling is not differentiable, and gradients cannot be passed through it
– The “Gumbel noise” approach recasts sampling as computing the argmax of a

Gumbel distribution, with the network output as parameters
– The “argmax” can be replaced by a “softmax”, making the process

differentiable w.r.t. network outputs

85

Various extensions

• Bidirectional processing of input sequence
– Bidirectional networks in encoder

– E.g. “Neural Machine Translation by Jointly Learning
to Align and Translate”, Bahdanau et al. 2016

• Attention: Local attention vs global attention
– E.g. “Effective Approaches to Attention-based Neural

Machine Translation”, Luong et al., 2015

– Other variants

86

Extensions: Multihead attention

• Have multiple query/key/value sets.
– Each attention “head” uses one of these sets
– The combined contexts from all heads are passed to the decoder

• Each “attender” focuses on a different aspect of the input that’s
important for the decode 87

ିଵ

Ich

<sos>

଴

଴
ଵ

ଵ
଴

I ate

଴ ଵିଵ

ଵ
ଵ

ଵ
ଵ

଴
଴

ଵ
ଵ

ଵ
଴

ଵ
଴

଴
ଵ

଴
ଵ

଴
଴

଴
଴

𝑒௜
௟ 𝑡 = 𝑔 𝒌௜

௟, 𝒒௧
௟

𝑤௜
௟ 𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒௜

௟ 𝑡)

௧
௟

௜
௟

௜
𝒍

௜

௝
௟

௤
௟

௝ିଵ

௜
௟

௞
௟

௜

௜
௟

௩
௟

௜

Poll 2

• @, @

88

Which of the following will give you the optimal decode with an attention-based
decoder?

 Full tree search
 Beam search

Mark all that are true

 In a query-key-value based attention mechanism, the key and value are used to
compute attention weights

 Multi-head attention computes a separate set of keys and values for each head, at
each input

 Multi-head attention computes a separate query for each head, at each output
 Training with teacher forcing computes the theoretically correct loss and minimizes

it

Poll 2

• @, @

89

Which of the following will give you the optimal decode with an attention-based
decoder?

 Full tree search
 Beam search

Mark all that are true

 In a query-key-value based attention mechanism, the key and value are used to
compute attention weights

 Multi-head attention computes a separate set of keys and values for each head, at
each input

 Multi-head attention computes a separate query for each head, at each output
 Training with teacher forcing computes the theoretically correct loss and minimizes

it

Some impressive results..

• Attention-based models are currently
responsible for the state of the art in many
sequence-conversion systems
– Machine translation

• Input: Text in source language
• Output: Text in target language

– Speech recognition
• Input: Speech audio feature vector sequence
• Output: Transcribed word or character sequence

90

Attention models in image captioning

• “Show attend and tell: Neural image caption generation with visual
attention”, Xu et al., 2016

• Encoder network is a convolutional neural network
– Filter outputs at each location are the equivalent of 𝑖 in the regular

sequence-to-sequence model
91

Recap

• Have looked at various forms of sequence-to-sequence
models

• Generalizations of recurrent neural network formalisms

• For more details, please refer to papers
– Post on piazza if you have questions

• Will appear in HW4: Speech recognition with
attention models

92

Recap: Seq2Seq models

93

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

93

<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

ହସଶ଴ ଵ ଷ

Recap: Attention Models

• Encoder recurrently produces hidden representations of input word
sequence

• Decoder recurrently generates output word sequence
– For each output word the decoder uses a weighted average of the

hidden input representations as input “context”, along with the
recurrent hidden state and the previous output word

94

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ

ହସଶ଴ ଵ ଷ

Recap: Attention Models

• Problem: Because of the recurrence, the hidden representation for any word is
also influenced by all preceding words

– The decoder is actually paying attention to the sequence, and not just the word

• If the decoder is automatically figuring out which words of the input to attend to
at each time, is recurrence in the input even necessary?

95

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷିଵ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ

ହସଶ଴ ଵ ଷ

Non-recurrent encoder

• Modification: Let us eliminate the recurrence
in the encoder

96

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ

ହସଶ଴ ଵ ଷ

Non-recurrent encoder

• But this will eliminate context-specificity in the encoder embeddings
– The embedding for “an” must really depend on the remaining words

• It could be translated to “ein”, “einer”, or “eines” depending on the context.

• Solution: Use the attention framework itself to introduce context-
specificity in embeddings

97

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ

ହସଶ଴ ଵ ଷ

Recap: Non-recurrent encoder

• The encoder in a sequence-to-sequence model can be composed
without recurrence.

• Use the attention framework itself to introduce context-specificity
in embeddings
– “Self” attention 98

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

଴ ଵ ଶ ଷ

ିଵ ଴ ଵ ଶ ଷ ସ ହ

ସ

Self attention

• First, for every word in the input sequence we
compute an initial representation
– E.g. using a single MLP layer

99

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Self attention

• Then, from each of the hidden representations, we
compute a query, a key, and a value.
– Using separate linear transforms
– The weight matrices , and are learnable parameters

100

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜

Self Attention

• For each word, we compute an attention weight between that word
and all other words
– The raw attention of the th word to the th word is a function of

query ௜ and key ௝

– The raw attention values are put through a softmax to get the final
attention weights

101

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

௜௝ ௜ ଴:ே

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

௜௝ ௜
்

௝

௜଴ ௜ே ௜଴ ௜ே

• The updated representation for the word is
the attention-weighted sum of the values for
all words
– Including itself 102

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

௜௝ ௜ ଴:ே

௜ ௜௝ ௝

௝

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

଴

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words 103

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

଴௝ ଴ ଴:ே ଴ ଴௝ ௝

௝

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

଴

104

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

ଵ௝ ଵ ଴:ே ଵ ଵ௝ ௝

௝

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

଴

Self Attention

ଵ

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

105

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

ଶ௝ ଶ ଴:ே ଶ ଶ௝ ௝

௝

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

଴

Self Attention

ଵ ଶ

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

106

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

଴

Self Attention

ଵ ଶ

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

ଷ

107

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜ Softmax

଴

Self Attention

ଵ ଶ

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

ଷ ସ

108

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

௜௝ ௜ ଴:ே

௜ ௜௝ ௝

௝

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜

଴

Self Attention

ଵ ଶ ଷ ସ

• Compute query-key-value sets for every word
• For each word

– Using the query for that word, compute attention weights for all words
using their keys

– Compute updated representation for the word as attention-weighted
sum of values of all words

109

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

௜௝ ௜ ଴:ே

௜ ௜௝ ௝

௝

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜

଴

Self Attention

ଵ ଶ ଷ ସ

This is a “single-head” self-attention block

• We can have multiple such attention “heads”
– Each will have an independent set of queries, keys and values
– Each will obtain an independent set of attention weights

• Potentially focusing on a different aspect of the input than other heads

– Each computes an independent output

• The final output is the concatenation of the outputs of these attention heads
• “MULTI-HEAD ATTENTION” (actually Multi-head self attention) 110

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ

௜௝
௔

௜
௔

଴:ே
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

௜ ௜
ଵ

௜
ଶ

௜
ଷ

௜
ு

Concatenate

Attention head 0: (௜
଴

௜
଴

௜
଴

௤
଴

௞
଴

௩
଴

• Multi-head self attention
– Multiple self-attention modules in parallel

111

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ

௜௝
௔

௜
௔

଴:ே
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

௜ ௜
ଵ

௜
ଶ

௜
ଷ

௜
ு

Multi-head Self Attention

• Typically, the output of the multi-head self attention is
passed through one or more regular feedforward layers
– Affine layer followed by a non-linear activation such as

ReLU
112

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ

௜௝
௔

௜
௔

଴:ே
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

௜ ௜
ଵ

௜
ଶ

௜
ଷ

௜
ு

Multi-head Self Attention

଴ ଵ ଶ ଷ ସ

MLP

௜ ௜

• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

113

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଵ ଶ ଷ ସ

௜௝
௔

௜
௔

଴:ே
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

௜ ௜
ଵ

௜
ଶ

௜
ଷ

௜
ு

Multi-head Self Attention

଴ ଵ ଶ ଷ ସ

MLP

௜ ௜

MULTI-HEAD SELF ATTENTION BLOCK

• The entire unit, including multi-head self-
attention module followed by MLP is a multi-
head self-attention block

114

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

௜௝
௔

௜
௔

଴:ே
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

௜ ௜
ଵ

௜
ଶ

௜
ଷ

௜
ு

Multi-head Self Attention Block

௜ ௜

MULTI-HEAD SELF ATTENTION BLOCK

• The encoder can include many layers of such
blocks

• No need for recurrence…
115

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

• Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocksBut this
still ignores relative position
– A context word one word away is different from one 10 words away
– The attention framework does not take distance into context

116

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

• Recap: The encoder in a sequence-to-sequence model can replace
recurrence through a series of “multi-head self attention” blocks

• But this still ignores relative position
– A context word one word away is different from one 10 words away
– The attention framework does not take distance into consideration

117

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

• Note that the inputs are actually word
embeddings

• We add a “positional” encoding to them to
capture the relative distance from one another

118

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Word
Embeddings

119

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Word
Embeddings

Positional Encoding

• Note that the inputs are actually word
embeddings

• We add a “positional” encoding to them to
capture the relative distance from one another

• Positional Encoding: A sequence of vectors ଴ ே, to encode position
– Every vector is unique (and uniquely represents time)
– Relationship between ௧ and ௧ାఛ only depends on the distance between

them

௧ାఛ ఛ ௧

• The linear relationship between ௧ and ௧ାఛ enables the net to learn shift-
invariant “gap” dependent relationships 120

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Word
Embeddings

Positional Encoding

Positional Encoding

• A vector of sines and cosines of a harmonic series of frequencies
– Every 2𝑙-th component of 𝑃௧ is sin 𝜔௟𝑡

– Every 2𝑙 + 1-th component of 𝑃௧ is cos 𝜔௟𝑡

• Never repeats
• Has the linearity property required

121

regenerate

௧

ଵ

ଵ

ଶ

ଶ

ௗ/ଶ

ௗ/ଶ

௟ ଶ௟/ௗ

௧ାఛ ఛ ௧

ఛ
௟ ௟

௟ ௟

• The linear relationship between and enables the
net to learn shift-invariant “gap” dependent relationships

122

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Multi-head
Attention

Encoder Decoder

• The self-attending encoder!!
123

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Multi-head
Attention

Encoder Decoder

• The self-attending encoder!!
124

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Multi-head
Attention

Encoder Decoder

Can we use self attention to replace
recurrence in the decoder?

Self attention and masked self
attention

• Self attention in encoder: Can use input
embedding at time t+1 and further to compute
output at time t, because all inputs are available

125

xt

st

yt

Xt-1

St-1

Xt-2

St-1

Xt-3

St-3

Xt-4

St-4

wt-4
wt-3

wt-2

wt-1

xt+1

wt+1wt

Self attention and masked self
attention

• Self attention in decoder: Decoder is sequential
– Each word is produced using the previous word as input
– Only embeddings until time t are available to compute the

output at time t

• The attention will have to be “masked”, forcing attention
weights for t+1 and later to 0

126

xt

st

yt

Xt-1

St-1

Xt-2

St-1

Xt-3

St-3

Xt-4

St-4

wt-4
wt-3

wt-2

wt-1

xt+1

wt+1wt

Masked self-attention block

• The “masked self attention block” includes an MLP after the
masked self attention
– Like in the encoder

127

଴ ଵ ଶ ଷ ସ

Masked Self Attention

MLP

௜ ௜௝ ௝

௜ିଵ

௝ୀ଴

௜௝ ௜
்

௝

௜଴ ௜௜ ௜଴ ௜௜

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜

Masked self-attention block

• The “masked self attention block” sequentially computes outputs begin to
end
– Sequential nature of decoding prevents outputs from being computed in

parallel
– Unlike in an encoder

128

Masked Self Attention block

௜ ௜௝ ௝

௜ିଵ

௝ୀ଴

௜௝ ௜
்

௝

௜଴ ௜௜ ௜଴ ௜௜

௜ ௤ ௜

௜ ௞ ௜

௜ ௩ ௜

Masked multi-head self-attention

• The “masked multi-head self attention block” includes multiple
masked attention heads
– Like in the encoder

129

௜௝
௔

௜
௔

଴:௜ିଵ
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

଴ ଵ ଶ ଷ ସ

Masked attention head 0: (௜
଴

௜
଴

௜
଴

௤
଴

௞
଴

௩
଴

Masked multi-head self-attention
block

• The “masked multi-head self attention block” includes multiple
masked attention heads
– Like in the encoder

130

௜௝
௔

௜
௔

଴:௜ିଵ
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

଴ ଵ ଶ ଷ ସ

Masked attention head 0: (௜
଴

௜
଴

௜
଴

௤
଴

௞
଴

௩
଴

MLP

Masked multi-head self-attention
block

• The “masked multi-head self attention block” includes multiple
masked attention heads, followed by an MLP
– Like in the encoder

131

Masked Multi-head Self Attention block
௜௝
௔

௜
௔

଴:௜ିଵ
௔

௜
௔

௜௝
௔

௝
௔

௝

௜
௔

௤
௔

௜

௜
௔

௞
௔

௜

௜
௔

௩
௔

௜

132

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

Multi-head Self Attention Block

Multi-head Self Attention Block

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen<eos>

<sos>

ିଵ ଴ ଵ ଶ ଷ ସ ହ

Multi-head
Attention

Encoder Decoder

Masked Multi-head Self Attention Block

Masked Multi-head Self Attention Block

Poll 3

• @

133

Mark all that are true

 Self attention computed for an N-length input requires the computation of
an N x N attention weight matrix for each head

 Masked self attention is only required in the first layer of the decoder.
Subsequent layers see the entire output of the previous layers and can use
full self attention

 We cannot combine recurrent layers with self attention layers
 Positional encodings are different in the encoder and decoder because the

self attention in the decoder is masked.

Poll 3

• @

134

Mark all that are true

 Self attention computed for an N-length input requires the computation
of an N x N attention weight matrix for each head

 Masked self attention is only required in the first layer of the decoder.
Subsequent layers see the entire output of the previous layers and can use
full self attention

 We cannot combine recurrent layers with self attention layers
 Positional encodings are different in the encoder and decoder because the

self attention in the decoder is masked.

Transformer: Attention is all you need

• Transformer: A sequence-to-sequence model that replaces
recurrence with positional encoding and multi-head self attention
– “Attention is all you need”

135

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information
processing systems. 2017.

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 136

From “Attention is all you need”

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 137

From “Attention is all you need”

Why so good? Why so fast?

Recap: Vanishing/exploding gradients

138

௙ೖ ே ே ேିଵ ேିଵ ௞ାଵ ௞ାଵ

• RNNs are just very deep networks
• LSTMs mitigate the problem at the cost of 3x more matrix

multiplications
• Transformers get rid of it! To encode a full sentence, they have way

fewer layers than an unrolled RNN.
• The same goes with the vanishing memory issue to an extent.

Processing order

• Computing requires …
• Which requires , etc…
• RNN inputs must be processed in order 

slow implementation

139

h-1

Processing order

• can be computed separately.
• dot products to compute.
• Self attention is easy to compute in parallel 

Faster implementations 140

I ate an apple <eos>

଴ ଵ ଶ ଷ ସ

଴ ଴଴ ଵ ଵଵ ଶ ଶଶ ଷ ଷଷ ସ ସସ

Softmax

Transformer

• Transformer: tremendous decrease in model computation for similar
performance as state-of-art translation models

• The last row in the table shows transformer performance
• The final two columns show computational cost. 141

From “Attention is all you need”

GPT

• GPT uses only the decoder of the transformer as an LM
– “Transformer w/o aux LM”

• Large performance improvement in many tasks
142

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

GPT

• Add Task conditioning: put the nature of your task in the input (not just
LM)

• Parameters x1000
 GPT-3 : Generalizes to more tasks, not just more inputs! 143

Alec Radford et. al., Improving Language Understanding by Generative Pre-
Training

BERT

• Bert: Only uses encoder of transformer to derive word and sentence
embeddings

• Trained to “fill in the blanks”
• This is representation learning (more next lecture) 144

Attention is all you need

• Self-attention can effectively replace recurrence in
sequence-to-sequence models
– “Transformers”
– Requires “positional encoding” to capture positional

information

• Can also be used in regular sequence analysis settings as a
substitute for recurrence

• Currently the state of the art in most sequence
analysis/prediction…

145

Attention is all you need

• Self-attention can effectively replace recurrence in
sequence-to-sequence models
– “Transformers”
– Requires “positional encoding” to capture positional

information

• Can also be used in regular sequence analysis settings as a
substitute for recurrence

• Currently the state of the art in most sequence
analysis/prediction… and even computer vison problems!

146

Poll 4

• @

147

Mark all that are true

 BERT is essentially the encoder of a transformer model
 GPT is essentially the encoder of a transformer model
 BERT is essentially the decoder of a transformer model
 GPT is essentially the decoder of a transformer model

Poll 4

• @

148

Mark all that are true

 BERT is essentially the encoder of a transformer model
 GPT is essentially the encoder of a transformer model
 BERT is essentially the decoder of a transformer model
 GPT is essentially the decoder of a transformer model

Vision Transformers

• Divide your image in patches with pos. encodings
• Apply Self-Attention!
 Sequential and image problems are similar when using
transformers 149

Dosovitskiy et al, An
Image is Worth 16x16
Words: Transformers
for Image Recognition
at Scale, 2020

Impact of Transformers

• Transformers have played a major role in the
“uniformization” of DL-based tasks:
– Find a pretrained “BERT-like” transformer (Text, Image, Speech)
– Fine-tune on your task – or not! (Prompting…)

• This has helped democratize Deep Learning considerably

• But…

150

Caveat 1

• Not all transformers are the same: Big/small,
fast/slow, mono-/multilingual, contrastive/
generative, regressive/autoencoding…

• Pick the right one!

151

Caveat 2

• Transformers are not always the right choice.

• They often require more parameters than
LSTMs at equal performance

 Tricky on small hardware (phones, IoT, etc)

152

