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Topics	for	the	week

• Transformers
• GNNs
• VAEs
• GANs
• Connecting	the	dots
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The	problem

• From	a	large	collection	of	images	of	faces,	can	a	
network	learn	to	generate	new	portrait
– Generate	samples	from	the	distribution	of	“face”	
images

• How	do	we	even	characterize	this	distribution?
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The	problem

• https://thispersondoesnotexist.com
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Discriminative vs Generative Models

• Discriminative models learn 
conditional distribution P(Y | X)

• Learns	decision	boundary	between	
classes.

• Limited scope. Can only be used for 
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the joint 
distribution P(Y, X)

• Learns actual probability distribution of 
data.

• Can do both generative and 
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture 
Model etc.

• Harder problem, requires a deeper 
understanding of the distribution than 
discriminative models.
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The	problem

• From	a	large	collection	of	images	of	faces,	can	a	
network	learn	to	generate	new	portrait
– Generate	samples	from	the	distribution	of	“face”	
images

• How	do	we	even	characterize	this	distribution?
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What	we	have	seen:	VAE

• The	decoder	of	a	VAE	is	a	generator

12

𝑍~𝑃(𝑍) Generator
𝐺(𝑍)

Generated
data
𝑋(



What	we	have	seen:	VAE

• The	decoder	of	a	VAE	is	a	generator
• Trained	by	maximizing	the	likelihood	of	the	data

– Likelihood	maximization	does	not	actually	relate	to	
whether	the	output	actually	looks	like	a	face
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What	we	have	seen:	VAE

• The	decoder	of	a	VAE	is	a	generator
• Trained	by	maximizing	the	likelihood	of	the	data

– Likelihood	maximization	does	not	actually	relate	to	
whether	the	output	actually	looks	like	a	face

• Can	we	make	the	training	criterion	more	direct?
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What	we	have	seen:	VAE
• What	is	the	simplest	way	to	evaluate	a	VAE?
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What	we	have	seen:	VAE
• What	is	the	simplest	way	to	evaluate	a	VAE?

• You	eyeball	the	result	👀 and	predict	if	its		
Fake/Real
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What	we	have	seen:	VAE
• What	is	the	simplest	way	to	evaluate	a	VAE?

• You	eyeball	the	result	👀 and	predict	if	its		
Fake/Real

• But	YOU	are	not	differentiable
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What	are	GANs
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What	are	GANs
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What	are	GANs
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What	are	GANs
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Generative Adversarial Networks

Generative Models which generate
data similar to the training data .
E.g. Variational Autoencoders (VAE)

Adversarial Training
GANS are made up of two competing networks (adversaries)
that are trying beat each other. 
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Generative	Adversarial	Networks

• Introduced	in	2014

• Goal	is	to	model	𝑃(𝑋),	the	distribution	of	training	
data
– Model	can	generate	samples	from	𝑃(𝑋)

• Trained	using	a	pair	of	models	acting	as	“adversaries”
– A	“Generator”	that	generates	data

– A	“Discriminator”	that	evaluates	it

22



What	are	GANs?
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What	are	GANs?

24

𝑍~𝑃(𝑍) Generator
𝐺(𝑍)

Discriminator
𝐷(𝑋)

Generated
data
𝑋(

Real	data
𝑋

Real/Fake?



The	Generator

• The	generator produces	realistic	looking	𝑋	 = 	𝐺(𝑧) from	a	latent	vector	𝑍

• Generator	input	𝑍 can	be	sampled	from	a	known	prior,	e.g.	standard	Gaussian

• Goal:	generated	distribution,	𝑃.(𝑋) matches	the	true	data	distribution	𝑃/(𝑋)

– 𝑃. 𝑋 is	the	more	“memorable”	notation	for	𝑃𝑿1(𝑋),	the	probability	that	a	generated	
sample	𝑋( takes	the	value	𝑋
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The	Discriminator

• Discriminator	𝐷(𝑋) is	trained	to	tell	the	difference	between	real	
and	generated	(fake)	data

– Specifically,	data	produced	by	the	generator

– If	a	perfect	discriminator	is	fooled,	the	generated	data	cannot	be	
distinguished	from	real	data
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The	perfect	discriminator

• The	a	posteriori	probability	of	the	classes	for	any	instance	𝑥 = 𝑋 is	

𝑃 𝑦4 𝑋 = 	
𝑃 𝑋, 𝑦4

𝑃 𝑋, 𝑦6 + 𝑃 𝑋, 𝑦8

• The	perfect	decision	boundary	is	where	𝑃 𝑦6 𝑋 = 𝑃 𝑦8 𝑋
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The	perfect	discriminator

• The	a	posteriori	probability	of	the	classes	for	any	instance	𝑥 = 𝑋 is	

𝑃 𝑦4 𝑋 = 	
𝑃 𝑋, 𝑦4

𝑃 𝑋, 𝑦6 + 𝑃 𝑋, 𝑦8

• The	perfect	decision	boundary	is	where	𝑃 𝑦6 𝑋 = 𝑃 𝑦8 𝑋
– The	perfect	discriminator	will	compute	𝑃 𝑦4 𝑋 for	each	class
– It	will	assign	any	𝑋 to	the	class	with	the	higher	𝑃 𝑦4 𝑋
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Fooling	the	perfect	discriminator

• Relearn	generator	parameters	so	that	the	new	
distribution	of	generated	data	“fools”	the	discriminator
– By	moving	it	into	the	region	assigned	to	the	other	class	by	
the	(perfect)	discriminator
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Training	the	discriminator

• Training	the	discriminator:
– The	discriminator	is	provided	training	examples	of	real	and	

synthetic	faces
– The	discriminator	is	trained	to	minimize	its	classification	loss

• Minimize	error	between	actual	and	predicted	labels
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Training	the	generator

• Training	the	generator:
– The	discriminator’s	loss	is	backpropagated	to	the	
generator

– The	generator	is	trained	to	maximize	the	discriminator	loss
• It	is	trained	to	“fool”	the	discriminator
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The	GAN	formulation

• For	real	data	𝑋,	the	desired	output	of	the	discriminator	is	𝐷(𝑋) = 1
– The	log	probability	that	the	instance	is	real,	as	computed	by	the	discriminator	

is	log	𝐷(𝑋)

• For	synthetic	data	𝑋(,	the	desired	output	of	the	discriminator	is	𝐷(𝑋() = 0
– The	log	probability	that	the	instance	is	synthetic,	as	computed	by	the	

discriminator,	is	log	(1 − 𝐷 𝑋( )
• = 	log	(1	 − 𝐺(𝑍))
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Poll

@1681
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Detour:	Information

𝑰 𝒙 	= 	−log(𝑷 𝒙 )	

Information	is	more	where	probability	is	low

“Today	I	didn’t	see	a	tornado”	– low	information

“Today	I	saw	a	tornado”	– high	information
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Detour:	Entropy

𝑯 𝒙 	= 	−∑𝑷 𝒙 log 𝑷 𝒙
𝑯(𝒙) = 	𝔼𝒙	~	𝑿[−	log	(𝑷(𝒙))]
	
Measure	of	uncertainty	– weighted	average	of	
information
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Detour	on	a	Detour:	Softmax

𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝒙 	=
𝒆𝒙𝒑 𝒙
∑𝒆𝒙𝒑 𝒙

Gives	a	probability	distribution.
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Detour	on	a	Detour:	Softmax

𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝒙 	=
𝒆𝒙𝒑 𝒙
∑𝒆𝒙𝒑 𝒙

𝑩𝒐𝒍𝒕𝒛𝒎𝒂𝒏𝒏 𝒙, 𝝉 =
𝒆𝒙𝒑 𝒙

𝝉
∑𝒆𝒙𝒑 𝒙

𝝉

𝝉 is	called	a	‘temperature’	parameter.
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Detour	on	a	Detour:	Softmax

𝑩𝒐𝒍𝒕𝒛𝒎𝒂𝒏𝒏 𝒙, 𝝉 =
𝒆𝒙𝒑 𝒙

𝝉
∑𝒆𝒙𝒑 𝒙

𝝉

High	value	of	𝝉 causes	distribution	to	be	more	
uniform	– high	entropy	– “hot”

Low	value	“cools”	the	distribution	– low	entropy
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Detour	on	a	Detour:	Softmax

𝑩𝒐𝒍𝒕𝒛𝒎𝒂𝒏𝒏 𝒙, 𝝉 =
𝒆𝒙𝒑 𝒙

𝝉
∑𝒆𝒙𝒑 𝒙

𝝉

Try	plotting	using	numpy and	matplotlib	for	
various	values	of	𝝉 [1e-3, 1e-2,1e-1,1,10,100]!

You	might	want	to	use	stable-softmax.
(look	it	up!)
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Detour:	Entropy

𝑯 𝒙 	= 	−∑𝑷 𝒙 log 𝑷 𝒙
𝑯(𝒙) = 	𝔼𝒙	~	𝑿[−	log	(𝑷(𝒙))]
	
Measure	of	uncertainty	– weighted	average	of	
information
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Detour:	Cross	Entropy

Information	of	event	under	some	distribution	𝑄
measured	over	another	distribution	𝑃

𝑿𝑬𝒏𝒕 𝒙; 𝑷, 𝑸 	= 	−∑𝑷 𝒙 log 𝑸 𝒙

𝑿𝑬𝒏𝒕(𝒙; 𝑷, 𝑸) = 	𝔼𝒙	~	𝑷(𝑿)[−	log	(𝑸(𝒙))]
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Detour:	Binary	Cross	Entropy

Information	of	event	under	some	distribution	𝑄
measured	over	another	distribution	𝑃
When	𝑃(𝑥) can	be	0 or	1

𝑩𝑪𝑬 𝒙;𝑷,𝑸 	
= 	−∑𝑷 𝒙 log 𝑸 𝒙 + 𝟏	 − 𝑷 𝒙 log(𝟏 − 𝑸 𝒙 )

𝑩𝑪𝑬 𝒙;𝑷,𝑸 =	
−	{𝔼𝒙	~	𝑷 𝑿 log 𝑸 𝒙 + 𝔼𝒙	~	𝑷[ 𝑿 log 𝟏	 − 𝑸 𝒙 }
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Coming	back:	Discriminator

BCE𝑫 𝒙;𝑫	 =	
−	{𝔼𝒙	~	𝑷𝑫𝒂𝒕𝒂 log 𝑫 𝒙 + 𝔼𝒙	~	𝑷[𝑫𝒂𝒕𝒂 log 𝟏	 − 𝑫 𝒙 }
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Discriminator

BCE𝑫 𝒙	; 𝑫, 𝑮 =	
−	{𝔼𝒙	~	𝑷𝒅𝒂𝒕𝒂 log 𝑫 𝒙 + 𝔼𝒛	~	𝑷𝒛 log 𝟏	 − 𝑫 	𝑮(𝒛 ) }
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True Generated

Going	forward	we	will	use	𝑷𝑿	for	𝑷𝒅𝒂𝒕𝒂



Discriminator

BCE𝑫 𝒙	; 𝑫, 𝑮 =	
−	{𝔼𝒙	~	𝑷𝑿 log 𝑫 𝒙 + 𝔼𝒙	~	𝑷𝑮 log 𝟏	 − 𝑫(𝒙)) }

Minimizing	this	is	the	same	as	maximizing
	

𝔼𝒙	~	𝑷𝑿 log 𝑫 𝒙 + 𝔼𝒙	~	𝑷𝑮 log 𝟏	 − 𝑫(𝒙))
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Generator

But	the	generator	wants	to	fool	the	
Discriminator,	so	it	wants	tominimize

	
𝔼𝒙	~	𝑷𝑿 log 𝑫 𝒙 + 𝔼𝒙	~	𝑷𝑮 log 𝟏	 − 𝑫(𝒙))
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The	GAN	formulation

• Can	be	written	as

min
.
max
h

			𝐸𝒙	~	𝑷𝑿log𝐷(𝑥) + 𝐸𝒙	~	𝑷𝑮 log 1 − 𝐷(𝑥)
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The	GAN	formulation

• The	original	GAN	formulation	is	the	following	min-max	optimization

min
.
max
h

			𝐸/log𝐷(𝑥) + 𝐸j log 1 − 𝐷(𝐺 𝑧 )

• Objective	of	𝐷:			𝐷(𝑥) 	= 	1	and	𝐷(𝐺(𝑧)) 	= 	0
• Objective	of	𝐺:		𝐷(𝐺(𝑧)) 	= 	1
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The	iterated	learning

• Discriminator	learns	perfect	boundary
• Generator	moves	its	distribution	past	the	boundary	“into”	the	real	distribution
• Discriminator	relearns	new	“perfect”	boundary
• Generator	shifts	distribution	past	new	boundary
• …
• In	the	limit	Generator’s	distribution	sits	perfectly	on	“real”	distribution	and	the	

perfect	discriminator	is	still	random

49
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Analysis	of	optimal	behavior:	
The	optimal	discriminator

• The	optimal	discriminator	would	be	a	
Bayesian	classifier

𝐷 𝑥 =
𝑃/(𝑥)

𝑃/(𝑥) + 𝑃.(𝑥)
– Assuming	uniform	prior
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Black	Board!

• Math	at	the	end	of	the	slide-deck
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Analysis	of	optimal	behavior:	
The	optimal	generator

min
.
max
h

𝔼k log𝐷(𝑥) + 𝔼j log 1 − 𝐷(𝐺 𝑧 )

• With	a	perfect	discriminator:

𝐿 = 𝔼k~mn(k) log𝐷(𝑥) + 𝔼k~mo(k)	 log 1 − 𝐷(𝑥)

= 𝔼k~mn(k) log
𝑃/ 𝑥

𝑃/ 𝑥 + 𝑃. 𝑥
+ 𝔼/~mo / log

𝑃. 𝑥
𝑃/ 𝑥 + 𝑃. 𝑥

• This	is	just	the	Jensen-Shannon	divergence	between	𝑃/(𝑥) and	𝑃.(𝑥) to	within	a	
scaling	factor	and	a	constant

𝐿 = 2𝐷qrh 𝑃/ 𝑥 , 𝑃. 𝑥 − log 4 52

𝐷 𝑥 =
𝑃/(𝑥)

𝑃/(𝑥) + 𝑃.(𝑥)



The	Jensen	Shannon	Divergence

𝐷qrh	(𝑃, 𝑄) 	=
𝐷tu 𝑃, 𝑃 + 𝑄2 + 𝐷tu 𝑄, 𝑃 + 𝑄2

2
• A	symmetric	variant	of	KL	that	does	not	
exaggerate	instances	to	which	one	of	the	
distributions	assigns	0	probability

– 𝐷tu 𝑃, 𝑄 = 	∑ 𝑃(𝑥)�
/ log	(m k

w k
) blows	up	the	

contributions	of	𝑥 with	𝑄(𝑥) 	= 	0
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Analysis	of	optimal	behavior:	
The	optimal	generator

• The	optimal	generator:

min
.
2𝐷qrh 𝑃/ 𝑥 , 𝑃. 𝑥 − log 4

• The	optimal	generator	minimizes	the	Jensen	Shannon	
divergence	between	the	distributions	of	the	actual	and	
synthetic	data!
– Tries	to	make	the	two	distributions	maximally	similar
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• There	exists	a	stationary	point:
– If	the	generated	data	exactly	matches	the	real	data,	the	discriminator	

outputs	0.5	for	all	inputs

– If	discriminator	outputs	0.5,	the	gradients	for	the	generator	is	flat,	so	
generator	does	not	learn

– Unfortunately,	this	is	also	true	of	a	random	discriminator

• Stationary	points	need	not	be	stable	(depends	on	the	exact	GANs	
formulation	and	other	factors)
– Generator	may	overshoot	some	values	or	oscillate	around	the	optimum

– A	discriminator	with	unlimited	capacity	can	still	assign	an	arbitrarily	
large	distance	to	2	similar	distributions

55

Min-Max	Stationary	Point



Min-Max	Optimization
• Generator	and	the	discriminator	need	to	be	trained	

simultaneously

– If	discriminator	is	undertrained,	it	provides	sub-optimal	feedback	to	the	
generator

– If	the	discriminator	is	overtrained,	there	is	no	local	feedback	for	marginal	
improvements	
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How	to	Train	a	GAN?

Step 1:
Train the Discriminator
using the current Generator

Step 2:
Train the Generator
to beat the Discriminator

57

Generator
𝐺(𝑧)

Discriminator
𝐷(𝑥)

Optimize: min
.
max
h

𝔼k log𝐷(𝑥) + 𝔼j log 1 − 𝐷(𝐺 𝑧 )

The	discriminator	is	not	needed	after	convergence



Features	and	Challenges

• GANs	can	produce	clear	crisp	results	for	many	
problems

• But	they	also	have	stability	issues	and	are	hard	
to	train
– Problems	such	as	“mode	collapse”	are	frequent

• Producing	outputs	with	very	low	variability
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Variants	and	updates

• A	number	of	variations	have	been	proposed	to	
improve	the	stability	and	outputs	of	GANs
– LAPGAN	
– Wasserstein	GAN
– C-GAN	
– DCGAN	
– CycleGAN
– StarGAN
– …
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Evaluate	with	Discriminative	Network

• Inception	Score

– Use	the	Inception	V3	image	classifier	to	classify	generated	
images

– Inception	should	produce	a	variety	of	labels

• As	measured	by	the	entropy	of	the	average	label	distribution

– Each	label	should	have	high	confidence	(low	entropy)

• As	measured	by	the	average	entropy	of	the	Inception	outputs	for	
individual	instances

– The	two	scores	are	combined	into	a	single	“inception”	score
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VAEs	vs	GANs

• Minimizing	the	KL divergence between	
distributions	of	synthetic	and	true	data

• Uses	an	encoder	to	predict	latent	
distributions	to	optimize	generator

• More	complex	formulation

• Simpler	optimization.	Trains	faster	and	
more	reliably	

• Results	are	blurry

• Minimizing	the	Jenson-Shannon	
divergence between	distributions	of	
synthetic	and	true	data

• Use	a	discriminator	to	optimize	
generator

• Simpler	formulation

• Noisy	and	difficult	optimization

• Sharper	results

VAEs GANs
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Original	paper	(GAN,	2014)
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GANs	with	time

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

•Better	quality
•High	Resolution
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StarGAN(2018)
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Progressive	growing	of	
GANs (2018)
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High	fidelity	natural	images	
(2019)

66



Appendix
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Math:	Optimum	Discriminator
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Math:	Optimum	Discriminator
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Math:	Optimum	Generator
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Math:	Optimum	Generator
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Math:	Optimum	Generator
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