! MachineLeamning For SignalProcaging‘ Group

Generative Adversarial Networks

11785 Deep Learning
Fall 2022

Shreyas Piplani, Aditya Singh, Talha Faiz

Topics for the week

 Transformers
* GNNs
 VVAES

* GANS

* Connecting the dots

Agenda

e Recap of GANs

* GAN Training

* |[ssues with GAN Training

 Remedies for GAN Training Issues

* GAN Architectures and Recent Progress

Recap

Given a distribution of inputs X and labels Y.

Discriminative models

Discriminative models learn
conditional distribution P(Y | X)

Learns decision boundary between
classes.

Limited scope. Can only be used for
classification tasks.

E.g. Logistic regression, SVM etc.

Generative models

Generative models learn the joint
distribution P(Y, X)

Learns actual probability distribution of
data P(X)

Can do both generative and
discriminative tasks.

E.g. Naive Bayes, Gaussian Mixture
Model etc.

Harder problem, requires a deeper
understanding of the distribution than
discriminative models.

The problem

* From a large collection of images of faces, can a
network learn to generate new portrait

— Can we generate new samples from the distribution of
“face” images

Recap

Given a dataset how can we generate more points like it?

Recap

Given a dataset how can we generate more points like it?

1. Approximately model P(x) and sample from it - VAE (explicit models)

Recap

Given a dataset how can we generate more points like it?
1. Approximately model P(x) and sample from it - VAE (explicit models)

2. Model an approximate sampling function of x, but not P(x) itself - GANs
(implicit models)

Recap

Given a dataset how can we generate more points like it?
Approximately model P(x) and sample from it - VAE (explicit models)

Model an approximate sampling function of x, but not P(x) itself - GANs
(implicit models)

Learn how changing a datapoint x changes its likelihood of being
observed P(x) [V P(x)] - Diffusion Models

GANs

Generated

Generator
G(Z)

data

— X

Discriminator
D(X)

— Real/Fake?

Real data

X

10

Training set

Generator

GANs

>
>

¢

Fake image

Discriminator

Real

E’#Fake

11

GANs

\
-m

E_'
NWN ..

o
—- ‘ .“r
. Bn.l /

.iOD12' i

. -—
_

.)..a A

Ve |
L K N

12

http://www.youtube.com/watch?v=p5U4NgVGAwg

GAN Training - Notation

Generated

Generator
G(Z)

data
—p X

N\

Discriminator - Real/Fake

D(X)

?

Real data /

Description

X

Notation

Training samples

xr

Latent noise vector

z

Discriminator

D(x;04)

Generator

G(z;0,)

Probability distribution of real data

Pdata

Probability distribution of fake data

Py

Probability distribution of latent noise vector

F. — N(0,1) or U(-1,1)

Generator output - generated fake data

Gz(z)

Discriminator output for fake data

D(G(z))

Discriminator output for real data

D(x)

13

The GAN formulation

Generated
data

Generator 5
Z~P(2) 6(2) —>X\

Discriminator 5 Real/Fake
/ D(X) 2
Real data

X

mGin max Ey-pJogD(x)+E, _p_.log(1l—D(x))- @

14

The GAN formulation

Generated
data

Generator 5
Z~P(2) 6(2) —>X\

Discriminator 5 Real/Fake
D(X) ?

Real data /

X

m(ip max FEyp,log D(z)

Ezwpz log(l N D(G(

A/«’

)

15

The GAN formulation

Generated
data

Generator &
—— 6@ *X\

Discriminator 5 Real/Fake
/ D(X) 2
Real data

X

m(ip mDaX Egp, log D(x) E. . p, log(l — D(G(E))

True Generated

16

GAN Training

Description Notation
Training samples T
Latent noise vector z
Discriminator D(x;04)
Generator G(z;0,)
Probability distribution of real data Piata
Probability distribution of fake data P,
Probability distribution of latent noise vector | P,
Generator output - generated fake data G(2)
Discriminator output for fake data D(G(z))
Discriminator output for real data D(z)

Discriminator objective:

e maximize output for real data D(x)

e minimize output for fake data D(G(z))
OR

e maximize output for real data D(z)

e maximize output for 1 — D(G(z2))
Generator objective:

e minimize output for fake data 1 — D(G(2))

Since log is a monotonically increasing function:
Discriminator objective:

e maximize output for real data log (D(x))

e maximize output for log (1 — D(G(2)))

Generator objective:

e minimize output for fake data log (1 — D(G(2)))

17

GAN Training

Description Notation
Training samples T
Latent noise vector z
Discriminator D(x;04)
Generator G(z;0,)
Probability distribution of real data Piata
Probability distribution of fake data P,
Probability distribution of latent noise vector | P,
Generator output - generated fake data G(2)
Discriminator output for fake data D(G(z))
Discriminator output for real data D(z)

For one data point:

Discriminator objective:
e maxp(log (D(x)) +log (1 — D(G(2))))
Generator objective:

e ming(log (1 — D(G(2))))

For the entire distribution:

Discriminator objective:

e maxp E,p,,..x) 08 D(z)] + E;p.(z)[1 — log D(G(2))]
Generator objective:

e ming E,p,(»)[1 — log D(G(2))]

Which stays same after adding a constant,

e ming E;p,,,.(x)[l0g D(z)] + E.p, ()1 — log D(G(2))]

18

GAN Training

GAN objective:
e ming maxp E;p,,,.(2) 108 D(z)] + E.p,()[1 — log D(G(2))]

e ming maxp Pyaea(z)(log D(z)) + Py(z)(1 — log D(x))

Description Notation
Training samples T
Latent noise vector z
Discriminator D(x;04)
Generator G(z;0,)
Probability distribution of real data Piata
Probability distribution of fake data P,
Probability distribution of latent noise vector | P,
Generator output - generated fake data G(z)
Discriminator output for fake data D(G(z))
Discriminator output for real data D(x)

Jointly optimizing min-max is complicated, so we first find the current best
D by taking the derivative of GAN objective:

P _l,datu(I) + 1P (’) =()

D(x) D(x)
1 data ('t)
* D(z) = p PP

Substituting this value in the GAN objective for Generator loss:

® Iypy,n(x)log 1%] + E.p,(z)[log rroiea® 19 Jog2

Pdata (I)) ‘(l datn(x)"'” (17))

Kullback-Leibler(KL) and Jensen-Shannon(JS) divergences are given by:

@ KL(P]”PQ) INI’ (I)[l()g P,]

o JSD(P\||P;) = AKL(P || B2 + LK L(Py| | Bdt2)

This makes the Generator loss:

o 2.JSD(Pyatal||Py) — 2.log2

19

GAN Training Routine ...ccovea;

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ..., (™} from noise prior p,(z).
e Sample minibatch of m examples {z("),..., (™)} from data generating distribution
Pdata ({1))

e Update the discriminator by ascending its stochastic gradient:

Vo2 3 [log D () +10g (1~ b (c (=)

1=

end for
e Sample minibatch of m noise samples {z1), ..., z(™)} from noise prior Pg(2).
e Update the generator by descending its stochastic gradient:

Vo, o108 (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

20

Poll 1

@1717

Once we have the optimal discriminator D*, which options are true at global
minimum of the resultant Generator loss L (Hint: JSD)

* Achievediff P.=P_
e Value of L at global min. is -log4
* At global min. D(x)=)%

Poll 1

@

Once we have the optimal discriminator D*, which options are true at global
minimum of the resultant Generator loss L (Hint: JSD)

* Achievediff P.=P_
e Value of L at global min. is -logd
* At global min. D(x)=%

22

GAN Training

Once we have the optimal Discriminator D" the generator objective L(G) is-

L = 2DJSD (Px<ilf), Pg(fE>) — 10g4

* Theorem 1: Global minimum of L achieved if and only if P.=P _and at that
point L = -log4 and D(x)=1/2

e Theorem 2: If G and D have enough capacity and we let D reach the
optimum given G and Pg to improve Egn(1) then P.convergestoP___

(proofs in appendix)

23

Qualitative Effects of JS-Divergence

Lo+ — DxILtPno;
0.75 - — Dy (QlIP)
0.50 -
0.25 4
0.00 4

The KL-divergence DL(p, q) penalizes the generator if it misses some modes of
images: the penalty is high where p(x) > 0 but g(x) — 0. Nevertheless, it is
acceptable that some images do not look real. The penalty is low when p(x) — 0
but q(x) > 0.

Poorer quality but more diverse samples

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

24

Qualitative Effects of JS-Divergence

0.4 |
P 0.08 — D(PIIQ)

0.3 4 e

0.06
0.2 4

0.04
O.l T 0'02 "
0.0 0.00

-4-3-2-10 12 3 4 -4-3-2-10 12 3 4

» JS-divergence is symmetrical. Unlike KL-divergence, it will penalize poor images
badly, but can allow less diversity

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
25

GAN Training Issues

 Mode Collapse
* Vanishing Gradient
* Convergence and Oscillation

GANSs Training Issues - Mode Collapse

If a generator produces an especially plausible output, the
generator may learn to produce only that output

The Generator gets stuck at a point where it only produces a
limited variety of samples or one sample repeatedly during or
after training

Each iteration of Generator over-optimizes for a particular
Discriminator, and the Discriminator never manages to learn its
way out of the trap

. @ & O

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

27

GANSs Training Issues - Mode Collapse

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

28

GANSs Training Issues - Vanishing
Gradients

0.40 I — |

| —————— |
1400 ¢ diminished gradient :

0.35

1200 1
0.301

1000 4
0.25 1

800

ISD

0.20

600 -
0.15

400 -
0.10

200 A
0.05 A

0.00 1

T T T T ' ' o 5 10 15 20 25 30
-10 0 10 20 30 40 q q

mean of gaussians mean of gaussians

If the Discriminator is too good, then the Generator training can fail due to vanishing gradients.
An optimal Discriminator doesn't provide enough information for the Generator to make
progress

Below image shows how gradients will vanish if the distribution of generated images (p) is too
different than the distribution of real images (g1, g2, g3)

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
29

GANs Training Issues - Convergence and
Oscillation

* GAN training is based on a zero-sum, non-cooperative,
minmax game. In short, if one wins the other loses

* |n game theory, the GAN model converges when the
discriminator and the generator reach a Nash equilibrium.
This is the optimal point for the GAN objective

* Simplified example:

Consider two player A and B which control the value of x and
y respectively.

Player A wants to maximize the value xy while B wants to
minimize it

GANs Training Issues - Convergence and
Oscillation

 We update the parameter x and y based on the
gradient of the functions -

f(x) = max xy, fly) = max, -Xy
of/dx =y and df/dy = —x

X — X—0a-yandy — y+0a-x (dis learning rate)

GANs Training Issues - Convergence and
Oscillation

[terations

* Jf/dx =y and of/dy = —x

X — Xx—0a-yandy — y+a-x (ais learning rate)

* The Nash equilibrium is x =y = 0. This is the only state where the action of your opponent does not matter. It is the
only state that any opponents’ actions will not change the game outcome

https://medium.com/deep-math-machine-learning-ai/ch-14-general-adversarial-networks-gans-with-math-1318faf46b43

32

Remedies

* Feature Matching

* Mini-batch Discrimination
* Historical Averaging

* One-sides label smoothing
* Virtual Batch Normalisation

Feature Matching

|ExD(X) — EzD(G(2))lI3
|Ex f(X) — Ezf(G(2))lI3

Statistics of generated images should match statistics of real images.

Discriminator produces multidimensional output, a “statistic” of data.

Generator trained to minimize L2 between real and generated data.

Discriminator trained to maximize L2 between real and generated data.

Goal: matching features in real images

34

Minibatch Discrimination

Discriminator can look at multiple inputs at
once and decide if those inputs come from
the real or generated distribution.] —

- GANs frequently collapse to a single i /'l&
point -

- Discriminator needs to differentiate
between two distributions -

- Easier task if looking at multiple
samples

Append the similarity between the image
and other images in the same batch in one
of the dense layers in the discriminator to
classify whether this image is real or
generated.

35

Minibatch Discrimination

fi
f2
fn

f(x) € R*: vector of features for input x

36

Minibatch Discrimination

flx) eR*

J0x;)

Te RA xHxC

apxya xp) = exp(—|IM,p — Mill)) €ER
"

olx), = Z cplx.) ER
o M~

/ ‘
M, € rC b3
olx,) = [olx;)y 0lx;)z, ..., alx;)p) € RY
MisfEM] @ [FEYesRamesasrivhse
e R#C
MJ

37

Historical averaging

Dampen oscillations by encouraging updates to converge to a
mean.

- GANSs frequently create a cycle or experience oscillations

- Add a term to reduce oscillations that encourage the current
parameters to be near a moving average of the parameters

2
2

] o
9—22;9,-

One-sided Label Smoothing

Don’t over-penalize generated images

- Label smoothing is a common and easy technique that improves
performance across many domains - reduces overconfidence
- Sigmoid tries to saturate to 0 or 1 but can never quite reach
that goal
- Provide targets that are epsilon or 1- epsilon so the sigmoid
doesn’t saturate

- Sigmoid : 0->0.1 and 1->0.9

- Experimentally, smooth the real targets but do not smooth the
generated targets when training the discriminator.

One-sided Label Smoothing

Replacing positive targets (True) with a

and negative targets (Generator) with 5

The optimal discriminator becomes -

D(x) =

o (A Pdata (CE) B

B Bpmodel (CU)

Pdata (.’L’) B

~ Pmodel (CL’)

40

One-sided Label Smoothing

Replacing positive targets (True) with a

and negative targets (Generator) with 5

The optimal discriminator becomes -

D(x) =

o (X Pdata (33) B

_‘6pmodel (CB)

Pdata (CL’) B

~ Pmodel (CL’)

41

One-sided Label Smoothing

Replacing positive targets (True) with a
The optimal discriminator becomes -

X Pdata (.’L’)
Pdata (CU) + Pmodel (CU)

D(x) =

42

Virtual Batch Normalization

Use batch normalization to accelerate convergence
- Batch normalization accelerates convergence
- However, hard to apply in adversarial setting

- Collect statistics on fixed batch of real data and use to normalize
other data.

43

Recap

KL Divergence

Jenson-Shanon
Divergence

44

P(X)

Special case

X

Q(X)

X=1

45

KL Divergence

Let B be the distance between the two peaks of the distribution.

1

IfO#0, KL(P|Q) = 1109(6) = 00
_ 1
19=0 KL(P|Q) =1log(7) =0
Not differentiable w.r.t 0
P(X) Q(X)

46

Jenson-Shannon Divergence

Pp + Pg
2

1 1
JS(Ppl|Pg) = EKL(PD“’") + 5KL(P¢;|m)

m(X) =

fO#0, JSD(P|Q)=05x (llog(%) i llog(%)) o

If0 =0, JSD(P|Q) = 0.5 (llog(%) + llog(%)) =0

Constant to 0 P09 Q)

47

Also called

Wa SSe rStEi n d iSta nce Kantorovich—Rubinstein

metric.

W(P,,Py) = 76“1(1;{ 3 E(z,y)~v | 12 =yl]

* Adistance function defined between probability distributions
on a given metric space.

 Minimum cost of turning one pile of dirt into another pile of dirt,
when both distributions are treated as pile of dirt.

* The total (X mass) x mean distance required to transform one
distribution to another i.e the amount of dirt that needs to be
moved times the mean distance it has to be moved.

& ..,/_,./J—‘ Red points, Blue points represent two different distributions.

48

Wasserstein distance

Let O be the distance between the two peaks of the distribution.

W(PQ)=|0 |

Differentialble w.r.t 6

P(X) Q(X)

WGAN

W(P,,Py) = —yelli(IL'l:f,Py)E(I’y)M'[|z -y]

<%’torovichﬂubinstein duality

minmax E_[D@) - E, [D(@)

‘D’ should be a 1-Lipschitz function: [f(x1) = f(x2)] < K|x; — x2|

e A function is K-Lipschitz if its gradients are at most K everywhere.
 W(Pr, Pg) is continuous everywhere, and differentiable almost
everywhere

50

WGAN

Weight Clipping:
e Restricts weights between [-c,]

Weight clipping

— Weight clipping (c = 0.001) /
10" —— Weight clipping (c = 0.01)
~ Weight clipping (c = 0.1)

ol Gradient penalty
,

~0.02 -001 0.00 0.01 0.02 Discriminator layer
Weights

Gradient norm (log scale)
|
\I
\

13 10 7 1 1

51

WGAN

Gradient penalty:

L=E D@~ E D@+ E [(IVaD@)lz2—1)].

Original critic loss Our gradient penalty

Gradient penalty introduces a softer constraint on gradients

Gradient penalty

e more stable training
e requires very little hyper-parameter tuning

050 -025 000 025 050
Weights

52

GAN architectures

There are many variations of GANs for modeling
different tasks. This is not meant to be exhaustive but a
sample of the probabilities.

GAN

Conditional GAN

LapGAN

BiGAN

Recurrent Adversarial Network
Categorical GAN

InfoGAN

AAE

CycleGAN

Conditional GAN

e A conditional GAN models P(X [Y). For example, generate samples
of MNIST conditioned on the digit you are generating. The model is

constructed by adding the labels Y as an input to both generator
and discriminator

m(gn max V(D,G) =ExlogD(X,Y)+EzlogD(G(Z,Y),Y)

54

Conditional GAN

Architecture:

Gsmminator Dixly) \

eee000
\
00000 ©0000)

(e o @OOOO® |
e0000

\z[OOOQQNOOOOOJ)

Conditional GAN

Results for the MNIST experiment:

o
<>
<
Q
Q
-4
Q
<3
G
C
Q
o
c
Q
RSN
S
Q
c
Q

|

Jd e 22249

AN TR R A A B A

) S LT o Y |

2
-

LA

5
&

Y 4 /Y¥ S w449y y7¥Y IRy YN
e e b bGo66eebb e L&

1¥v27994°29979%7999°97A1

cach row conditioned on one label

Figure 2: Generated MNIST digits,

LapGAN

A Laplacian GAN is constructed of a chain of conditional GANs, to
generate progressively larger images. A GAN generates small,
blurry images. A conditional GAN generates larger images

conditioned on the smaller image, repeated until you reach the
desired size.

Architecture:

LapGAN

58

POLL

@1718

POLL

Poll 2: The main difference between a Vanilla GAN and Wasserstein
GAN is that in Wasserstein GAN, the discriminator is restricted to have

a bounded Lipshcitz norm

a. True
b. False

Original paper (GAN, 2014)

Output of original GAN paper, 2014 [GPM*14]

61

GANs with time

e Better quality
e High Resolution

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en

62

StarGAN(2018)

Manipulating Celebrity Faces [CCKT17]

Input Blond hair Gender Aged Pale skin Input Angry Happy Fearful

— W ! =W W a7 2 . 7 2 |

Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset.
The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are
generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.

63

Progressive growing of
GANSs (2018)

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

64

High fidelity natural images (2019)

65

BiGAN (2016)

)

* |Introduced by Jeff Donahue et.al. in “Adversarial Feature Learning’

A BiIGAN, or Bidirectional GAN, is a type of generative adversarial
network where the generator not only maps latent samples to
generated data, but also has an inverse mapping from data to the
latent representation. The motivation is to make a type of GAN
that can learn rich representations for us in applications like
unsupervised learning.

BiGAN Architecture

features data
e e (o)
@)
| >

="

D —_—>

| I > x,E(x) S i
S

-

Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

* In addition to the generator G from the standard GAN framework,
BiGAN includes an encoder E which maps data x to latent

representations z.

 The BiGAN discriminator D discriminates not only in data space (x
versus G(z)), but jointly in data and latent space (tuples (x, E(x))
versus (G(z), z)), where the latent component is either an encoder

output E(x) or a generator input z

67

BiGAN Architecture

BiGAN Architecture

Generated Images

Latent Codes
HEE BB B Real Image,
UL Fake Code

Discriminator OR

Generated Real Code,
Latent Codes Fake Image?

Dataset Images

68

BiGAN Training Objective

The BiGAN training objective is defined as a minimax objective

minmax V (D, E, G) (2)
G.E D
where
V(D,B,G) == Eyrne [EEZNPE('b() [log D(x,z)l] + B i [\@Ex,\,pc(.lz) [log (1 — D(x, z))l]
log D (x, E(x)) log(1—D(G(z),2))
3)

 Minimax objective optimized using alternating gradient based
optimization as Goodfellow et al.
 Benchmarked using classification accuracy (%)

69

BiGAN Qualitative Results

Figure 4: Qualitative results for ImageNet BiGAN training, including generator samples G(z), real
data x, and corresponding reconstructions G(E(x)).

70

BiGAN Takeaways

> unsup. and >= self-sup.
feature learning
approaches specific to
the visual domain
Domain agnostic
Needn’t suffer from
domain shift

Can learn feature
representations from
unlabeled static images

FRCN FCN
Classification Detection Segmentation
(% mAP) (% mAP) (% mIU)
trained layers fc8 fc6-8 all all all
sup. ImageNet (Krizhevsky et al., 2012) 77.0 78.8 78.3 56.8 48.0
Agrawal et al. (2015) 312 310 542 439 -
Selfeiiin Pathak et al. (2016) 305 346 565 44.5 30.0
" Wang & Gupta (2015) 284 55.6 63.1 474 -
Doersch et al. (2015) 4.7 551 653 51.1 -
k-means (Krahenbiihl et al., 2016) 320 39.2 56.6 45.6 32.6
Discriminator (D) 30.7 405 564 - -
Latent Regressor (LR) 369 479 57.1 - -
unsup. Joint LR 37.1 479 565 - -
Autoencoder (£2) 248 160 538 41.9 -
BiGAN (ours) 375 487 589 46.2 34.9
BiGAN, 112 x 112 E (ours) 417 525 603 46.9 35.2

Table 3: Classification and Fast R-CNN (Girshick, 2015) detection results for the PASCAL VOC
2007 (Everingham et al., 2014) test set, and FCN (Long et al., 2015) segmentation results on the
PASCAL VOC 2012 validation set, under the standard mean average precision (mAP) or mean
intersection over union (mIU) metrics for each task. Classification models are trained with various
portions of the AlexNet (Krizhevsky et al., 2012) model frozen. In the fc8 column, only the linear
classifier (a multinomial logistic regression) is learned — in the case of BiGAN, on top of randomly
initialized fully connected (FC) layers fc6 and fc7. In the fc6-8 column, all three FC layers are trained
fully supervised with all convolution layers frozen. Finally, in the all column, the entire network is
“fine-tuned”. BiGAN outperforms other unsupervised (unsup.) feature learning approaches, including
the GAN-based baselines described in Section 4.1, and despite its generality, is competitive with
contemporary self-supervised (self-sup.) feature learning approaches specific to the visual domain.

71

CycleGAN (2017)

Introduced by Jun-Yan Zhu (currently a CMU professor) et.al. in
“Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks”

Trains a pair of Conditional GAN’s to perform image-to-image
translation

— GAN A trained to convert from Xto Y

— GAN B trained to convert from Y to X

— Additional “cycle-consistency” losses

72

CycleGAN Results

Monet <_ Photos Zebras 7_ Horses Summer Z_ Winter

zebra — horse

R

horse — zebra

Photograph Monet Van Gogh a Cezanne Ukiyo-e
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

73

CycleGAN Architecture

Real

Fake

Generator
H—Z
Cycle
Consistency
Loss 1

Discriminator
Z

Discriminator
Z

Classification
matrix

!

Least Squares
Loss

- f

Generator
Z—H
Classification
matrix
Real
F F
_/
l F l X X Y cycle-consistency

cycle-consistency |, ...
Dx Dy |

(a)

*‘._...--" loss

(b)

Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dy. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice
versa for Dy, F, and X. To further regularize the mappings, we introduce two “cycle consistency losses™ that capture the
intuition that if we translate from one domain to the other and back again we should arrive where we started: (b) forward
cycle-consistency loss: z — G(z) = F(G(x)) = z, and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) = y

74

CycleGAN Architecture

Fake Classification
matrix
Generator Discriminator %
Z—H H l
Cycle Least Squares
Consistency Loss
Loss
1 Discriminator = 1
Generator H
H"“Z -,
Classification
matrix
Fake Real
G g ¢
S - = 7 N[

l F l X Y| | [x Y

: > cycle-consistency
E ; ‘ “.\S- loss
i cycle-consistency |,..» :

_D X D Y loss) \.& /.

(a) ' (b) (c)
Figure 3: (a) Our model contains two mapping functions G : X — Y and F' : ¥ — X, and associated adversarial
discriminators Dy and Dy. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice
versa for Dy, F, and X. To further regularize the mappings, we introduce two “cycle consistency losses™ that capture the
intuition that if we translate from one domain to the other and back again we should arrive where we started: (b) forward
cycle-consistency loss: z — G(z) = F(G(x)) = z, and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) = y

75

Training Objective

* Adversarial Loss: Lgan(G, Dy, X,Y) =E,,,.(»[log Dy (y)]

=+]Ea:rvpdm(:c) [lOg(]. - DY (G(fl?))],
(1)

+ Cycle Consistency Loss: Loe(G, F) = Eeup o IF(G(2) ~ 2l
+ Ey~pam(y)[”G(F(y)) — y|l1].

Our full objective is:

L:(Ga F) DX,DY) :LGAN(Ga DYaX) Y)
+ £GAN(F,DXaKX)
+ ALeyo(G, F),

We aim to solve:

G*, F* = argmin max L(G,F,Dx,Dy).

)

76

Application 1 - Google Maps

77

Convert satellite imagery to vector maps (and vice-versa if needed)

Application 2 - Night to Day

Rendered Image Left Rendered Image Right

(From Talha Faiz’s research group at CMU Robotics Institute. Image courtesy Vanshaj Chowdhary) 2o

Application 2 - Night to Day

Input Left Image

Stereo Output Entropy Output

(From Talha Faiz’s research group at CMU Robotics Institute. Image courtesy Vanshaj Chowdhary) 2

CycleGAN Takeaways

When paired training data is unavailable

No easy discriminative method to train

classes (like zebras from horses)

Edge cases: Performs poorly

— if test image is rather different from
the training dataset.

— on some tasks like Photos <-> Labels
Succeeded by contrastive unpaired
translation (CUT), an unpaired img2img
translation model that enables fast and
memory-efficient training (Look this up!)

80

Neural Style Transfer*

Neural style transfer is an optimization technique used to take two
images—a content image and a style reference image (such as an
artwork by a famous painter)—and blend them together so the
output image looks like the content image, but “painted” in the
style of the style reference image.

Extended by NVIDIA with StyleGAN-I

Neural Style Transfer Input

Style

Content

82

Neural Style Transfer Results

o
o0

Style Transfer Objective Function

1 2
° . S L [[
Content Loss: L onient (P, T, 1) = = Z (Fw — Pw)
2 —
i,
1 2
e Styleloss: g — — — Gt — AL)
! 417\.*[‘2 *\[12 sz: ((¥ ?-J)
L
L tyle (6 ?) = Z w B
=0

* TOtaI I—OSS: Etoin[(ﬁ«, (—i 7) - Of'ﬁ("o-nfmz,t (]3: f) & .Blcstyle(d‘a T)

84

Neural Style Transfer vs. CycleGAN

Neural Style Transfer

— Need a content and style image

— Specific & small number of images

— More control

— https://reiinakano.com/arbitrary-image-stylization-tfis/

CycleGAN

— Just need 2 domains of images. No need for specific content or
style images

— Many similar pictures
— Specificity of images doesn’t really matter

85

https://reiinakano.com/arbitrary-image-stylization-tfjs/

References

* 10-708 Probabilistic graphical models (link)

* Yours truly, Bhiksha Ramakrishnan

* Ameya Mahabaleshwarkar, Fuyu Tang, Roshan
Ram (fellow TAs)

https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture19.pdf

Appendix

Math: Theorem 1

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Pdata- At that point, C(G) achieves the value — log 4.

Proof. For py = paaw, D;(x) = %, (consider Eq. 2). Hence, by inspecting Eq. 4 at D{.(x) = %, we
find C(G) = log 5 + log = — log 4. To see that this is the best possible value of C(G), reached
only for p, = pgawa, Observe that

Ex~pis [—1082] +Egnp, [—log2] = —log4

and that by subtracting this expression from C(G) = V (D}, G), we obtain:

. (5)

O(G) = —log(4) + KL (p

Pdata + pg
2

where KL is the Kullback—Leibler divergence. We recognize in the previous expression the Jensen—
Shannon divergence between the model’s distribution and the data generating process:

C(G) = —log(4) +2- JSD (paata “Pg) (6)

Since the Jensen—Shannon divergence between two distributions is always non-negative and zero
only when they are equal, we have shown that C* = — log(4) is the global minimum of C(G) and
that the only solution is p; = pgai, 1.€., the generative model perfectly replicating the data generating
process.]

89

Math: Theorem 2

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Ezn piu [log Dg;(x)] + anpg [log(1 — D¢ (x))]

then p, converges 10 piasa

Proof. Consider V(G,D) = U(pg, D) as a function of p, as done in the above criterion. Note
that U(pg, D) is convex in p,. The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(z) =
SUPye A fol(z) and f,(z) is convex in z for every «, then dfg(z) € Of if B = argsup,c.4 fao(Z).
This is equivalent to computing a gradient descent update for p, at the optimal D given the cor-
responding G. supp, U(p,, D) is convex in p, with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of p,, p, converges to p., concluding the proof. O

In practice, adversarial nets represent a limited family of p, distributions via the function G(2;6,),
and we optimize 6, rather than p, itself. Using a multilayer perceptron to define GG introduces
multiple critical points in parameter space. However, the excellent performance of multilayer per-
ceptrons in practice suggests that they are a reasonable model to use despite their lack of theoretical
guarantees.

90

