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Topics for the week

• Transformers

• GNNs

• VAEs

• GANs

• Connecting the dots

2



Agenda

• Recap of GANs

• GAN Training

• Issues with GAN Training

• Remedies for GAN Training Issues

• GAN Architectures and Recent Progress
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Recap
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• Discriminative models learn 
conditional distribution P(Y | X)

• Learns decision boundary between 
classes.

• Limited scope. Can only be used for 
classification tasks.

• E.g. Logistic regression, SVM etc.

• Generative models learn the joint 
distribution P(Y, X)

• Learns actual probability distribution of 
data P(X)

• Can do both generative and 
discriminative tasks.

• E.g. Naïve Bayes, Gaussian Mixture 
Model etc.

• Harder problem, requires a deeper 
understanding of the distribution than 
discriminative models.

Discriminative models Generative models

Given a distribution of inputs X and labels Y.



The problem

• From a large collection of images of faces, can a 
network learn to generate new portrait
– Can we generate new samples from the distribution of 

“face” images
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Recap
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Given a dataset how can we generate more points like it?



Recap
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Given a dataset how can we generate more points like it?

1. Approximately model P(x) and sample from it - VAE (explicit models)



Recap
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Given a dataset how can we generate more points like it?

1. Approximately model P(x) and sample from it - VAE (explicit models)

2. Model an approximate sampling function of x, but not P(x) itself - GANs 
(implicit models)



Recap
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Given a dataset how can we generate more points like it?

1. Approximately model P(x) and sample from it - VAE (explicit models)

2. Model an approximate sampling function of x, but not P(x) itself - GANs 
(implicit models)

3. Learn how changing a datapoint x changes its likelihood of being 
observed P(x) [ ∇P(x)] - Diffusion Models



GANs
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GANs
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GANs
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http://www.youtube.com/watch?v=p5U4NgVGAwg


GAN Training - Notation 
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Real/Fake
?

→ N(0,1) or U(-1,1)
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Real/Fake
?

The GAN formulation

- (1)
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The GAN formulation

True Generated



GAN Training 
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GAN Training 
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GAN Training 

19



GAN Training Routine (Ian Goodfellow et al.) 
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Poll 1

@1717

Once we have the optimal discriminator D*, which options are true at global 
minimum of the resultant Generator loss L (Hint: JSD)

• Achieved iff P
X
=P

G
• Value of L at global min. is -log4
• At global min. D(x)=½
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GAN Training 
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Once we have the optimal Discriminator D* the generator objective L(G) is-

• Theorem 1: Global minimum of L achieved if and only if P
X
=P

G
 and at that 

point L = -log4 and D(x)=1/2

• Theorem 2: If G and D have enough capacity and we let D reach the 

optimum given G and P
g
 to improve Eqn(1) then P

G
 converges to P

Data

(proofs in appendix)



Qualitative Effects of JS-Divergence

• The KL-divergence DL(p, q) penalizes the generator if it misses some modes of 
images: the penalty is high where p(x) > 0 but q(x) → 0. Nevertheless, it is 
acceptable that some images do not look real. The penalty is low when p(x) → 0 
but q(x) > 0. 

• Poorer quality but more diverse samples

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
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Qualitative Effects of JS-Divergence

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
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• JS-divergence is symmetrical. Unlike KL-divergence, it will penalize poor images 
badly, but can allow less diversity



GAN Training Issues 
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• Mode Collapse

• Vanishing Gradient

• Convergence and Oscillation



GANs Training Issues - Mode Collapse

• If a generator produces an especially plausible output, the 
generator may learn to produce only that output

• The Generator gets stuck at a point where it only produces a 
limited variety of samples or one sample repeatedly during or 
after training

• Each iteration of Generator over-optimizes for a particular 
Discriminator, and the Discriminator never manages to learn its 
way out of the trap

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
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GANs Training Issues - Mode Collapse

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
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GANs Training Issues - Vanishing 
Gradients

• If the Discriminator is too good, then the Generator training can fail due to vanishing gradients. 
An optimal Discriminator doesn't provide enough information for the Generator to make 
progress

• Below image shows how gradients will vanish if the distribution of generated images (p) is too 
different than the distribution of real images (q1, q2, q3)

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
29

JS
D

mean of gaussians mean of gaussians



GANs Training Issues - Convergence and 
Oscillation

• GAN training is based on a zero-sum, non-cooperative, 
minmax game. In short, if one wins the other loses

• In game theory, the GAN model converges when the 
discriminator and the generator reach a Nash equilibrium. 
This is the optimal point for the GAN objective

• Simplified example: 

Consider two player A and B which control the value of x and 
y respectively. 
Player A wants to maximize the value xy while B wants to 
minimize it
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• We update the parameter x and y based on the 
gradient of the functions -

f(x) = max
x
 xy, f(y) = max

y
 -xy

∂f/∂x = y and ∂f/∂y = −x

x → x−α⋅y and y → y+α⋅x ( α is learning rate )
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GANs Training Issues - Convergence and 
Oscillation



https://medium.com/deep-math-machine-learning-ai/ch-14-general-adversarial-networks-gans-with-math-1318faf46b43
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GANs Training Issues - Convergence and 
Oscillation

• ∂f/∂x = y and ∂f/∂y = −x

x → x−α⋅y and y → y+α⋅x ( α is learning rate)

• The Nash equilibrium is x = y = 0. This is the only state where the action of your opponent does not matter. It is the 
only state that any opponents’ actions will not change the game outcome



Remedies 
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• Feature Matching 

• Mini-batch Discrimination

• Historical Averaging

• One-sides label smoothing

• Virtual Batch Normalisation 



Feature Matching

Statistics of generated images should match statistics of real images.
Discriminator produces multidimensional output, a “statistic” of data.
Generator trained to minimize L2 between real and generated data.
Discriminator trained to maximize L2 between real and generated data.
Goal: matching features in real images    

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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Minibatch Discrimination
Discriminator can look at multiple inputs at 
once and decide if those inputs come from 
the real or generated distribution.
- GANs frequently collapse to a single 

point
- Discriminator needs to differentiate 

between two distributions
- Easier task if looking at multiple 

samples

Append the similarity between the image 
and other images in the same batch in one 
of the dense layers in the discriminator to 
classify whether this image is real or 
generated. 

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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Minibatch Discrimination

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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f(x
i
) ∈ RA : vector of features for input x

i



Minibatch Discrimination

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 

Historical averaging
Dampen oscillations by encouraging updates to converge to a 
mean.

- GANs frequently create a cycle or experience oscillations

- Add a term to reduce oscillations that encourage the current 
parameters to be near a moving average of the parameters
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One-sided Label Smoothing
Don’t over-penalize generated images

- Label smoothing is a common and easy technique that improves 
performance across many domains - reduces overconfidence

- Sigmoid tries to saturate to 0 or 1 but can never quite reach 
that goal 

- Provide targets that are epsilon or 1- epsilon so the sigmoid 
doesn’t saturate 

- Sigmoid : 0->0.1 and 1->0.9

   -   Experimentally, smooth the real targets but do not smooth the 
generated targets when training the discriminator.

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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One-sided Label Smoothing
Replacing positive targets (True) with 𝞪 

and negative targets (Generator) with 𝜷
 

The optimal discriminator becomes - 

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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One-sided Label Smoothing
Replacing positive targets (True) with 𝞪 

and negative targets (Generator) with 𝜷
 

The optimal discriminator becomes - 

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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One-sided Label Smoothing
Replacing positive targets (True) with 𝞪  

The optimal discriminator becomes - 

   

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 
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Virtual Batch Normalization

Use batch normalization to accelerate convergence

- Batch normalization accelerates convergence

- However, hard to apply in adversarial setting

- Collect statistics on fixed batch of real data and use to normalize 
other data.
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Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 
Cheung, Alec Radford, and Xi Chen, Improved techniques for 
training gans, CoRR abs/1606.03498 (2016). 



Recap
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Special case
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KL Divergence

Let θ be the distance between the two peaks of the distribution.

If θ ≠ 0,

If θ = 0,
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Not differentiable w.r.t θ



Jenson-Shannon Divergence

If θ ≠ 0,

If θ = 0,
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Constant to θ



Wasserstein distance

• A distance function defined between probability distributions 
on a given metric space.

• Minimum cost of turning one pile of dirt into another pile of dirt, 
when both distributions are treated as pile of dirt.

• The total (Σ mass) × mean distance required to transform one 
distribution to another i.e the amount of dirt that needs to be 
moved times the mean distance it has to be moved.

Red points, Blue points represent two different distributions.
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Also called 
Kantorovich–Rubinstein 
metric.



Wasserstein distance

Let θ be the distance between the two peaks of the distribution.

W(P,Q) = | θ |
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Differentialble w.r.t θ



WGAN

‘D’ should be a 1-Lipschitz function:

• A function is K-Lipschitz if its gradients are at most K everywhere.

• W(Pr, Pg) is continuous everywhere, and differentiable almost 

everywhere
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WGAN

Weight Clipping:

• Restricts weights between [-c, c]
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WGAN

Gradient penalty:

Gradient penalty introduces a softer constraint on gradients

• more stable training

• requires very little hyper-parameter tuning
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GAN architectures

There are many variations of GANs for modeling 
different tasks. This is not meant to be exhaustive but a 
sample of the probabilities.

• GAN
• Conditional GAN
• LapGAN
• BiGAN
• Recurrent Adversarial Network
• Categorical GAN
• InfoGAN
• AAE
• CycleGAN
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Conditional GAN

• A conditional GAN models P(X | Y). For example, generate samples 
of MNIST conditioned on the digit you are generating. The model is 
constructed by adding the labels Y as an input to both generator 
and discriminator
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Conditional GAN

Architecture:
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Conditional GAN

Results for the MNIST experiment:
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LapGAN

A Laplacian GAN is constructed of a chain of conditional GANs, to 
generate progressively larger images. A GAN generates small, 
blurry images. A conditional GAN generates larger images 
conditioned on the smaller image, repeated until you reach the 
desired size.
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LapGAN

Architecture:
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POLL

@1718
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POLL

Poll 2: The main difference between a Vanilla GAN and Wasserstein 
GAN is that in Wasserstein GAN, the discriminator is restricted to have 
a bounded Lipshcitz norm

a. True 
b. False
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Original paper (GAN, 2014)
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GANs with time

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en 

• Better quality
• High Resolution
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StarGAN(2018)
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Progressive growing of 
GANs (2018)
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High fidelity natural images (2019)
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BiGAN (2016)
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• Introduced by Jeff Donahue et.al. in “Adversarial Feature Learning”

• A BiGAN, or Bidirectional GAN, is a type of generative adversarial 

network where the generator not only maps latent samples to 

generated data, but also has an inverse mapping from data to the 

latent representation. The motivation is to make a type of GAN 

that can learn rich representations for us in applications like 

unsupervised learning.



BiGAN Architecture
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• In addition to the generator G from the standard GAN framework, 

BiGAN includes an encoder E which maps data x to latent 

representations z. 

• The BiGAN discriminator D discriminates not only in data space (x 

versus G(z)), but jointly in data and latent space (tuples (x, E(x)) 

versus (G(z), z)), where the latent component is either an encoder 

output E(x) or a generator input z



BiGAN Architecture
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BiGAN Training Objective
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• Minimax objective optimized using alternating gradient based 

optimization as Goodfellow et al.

• Benchmarked using classification accuracy (%) 



BiGAN Qualitative Results
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BiGAN Takeaways
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• > unsup. and >= self-sup. 

feature learning 

approaches specific to 

the visual domain

• Domain agnostic

• Needn’t suffer from 

domain shift

Can learn feature 

representations from 

unlabeled static images



CycleGAN (2017)
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• Introduced by Jun-Yan Zhu (currently a CMU professor) et.al. in 

“Unpaired Image-to-Image Translation using Cycle-Consistent 

Adversarial Networks”

• Trains a pair of Conditional GAN’s to perform image-to-image 

translation

– GAN A trained to convert from X to Y

– GAN B trained to convert from Y to X

– Additional “cycle-consistency” losses 



CycleGAN Results
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CycleGAN Architecture
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CycleGAN Architecture
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Training Objective
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• Adversarial Loss:

• Cycle Consistency Loss:



Application 1 - Google Maps
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Convert satellite imagery to vector maps (and vice-versa if needed)



Application 2 - Night to Day
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(From Talha Faiz’s research group at CMU Robotics Institute. Image courtesy Vanshaj Chowdhary)



Application 2 - Night to Day
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(From Talha Faiz’s research group at CMU Robotics Institute. Image courtesy Vanshaj Chowdhary)



CycleGAN Takeaways
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• When paired training data is unavailable

• No easy discriminative method to train 

classes (like zebras from horses)

• Edge cases: Performs poorly

– if test image is rather different from 

the training dataset. 

– on some tasks like Photos <-> Labels 

• Succeeded by contrastive unpaired 

translation (CUT), an unpaired img2img 

translation model that enables fast and 

memory-efficient training (Look this up!)



Neural Style Transfer*
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• Neural style transfer is an optimization technique used to take two 

images—a content image and a style reference image (such as an 

artwork by a famous painter)—and blend them together so the 

output image looks like the content image, but “painted” in the 

style of the style reference image.

• Extended by NVIDIA with StyleGAN-I



Neural Style Transfer Input
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Content Style    



Neural Style Transfer Results
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Style Transfer Objective Function
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• Content Loss:

• Style Loss:

• Total Loss:



Neural Style Transfer vs. CycleGAN
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• Neural Style Transfer
– Need a content and style image
– Specific & small number of images
– More control
– https://reiinakano.com/arbitrary-image-stylization-tfjs/

• CycleGAN
– Just need 2 domains of images. No need for specific content or 

style images
– Many similar pictures
– Specificity of images doesn’t really matter

https://reiinakano.com/arbitrary-image-stylization-tfjs/
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Math: Theorem 1
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Math: Theorem 2
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