Neural Networks

Hopfield Nets and Boltzmann Machines
Fall 2022

Recap: Hopfield network

yi= © (Z wj;yj + bi)

J#FI

+1ifz>0
G(Z)z{—lifZSO

 Symmetric loopy network
* Each neuron is a perceptron with +1/-1 output

2

Recap: Hopfield network

yi= 0 (2 wj;yj + bi)

J#FI

+1ifz>0
—1ifz<0

O(z) = {

. . oe: ”
At each time each neuron receives a “field Z]-ii w;; Vi + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field

Recap: Energy of a Hopfield Network

Not assuming node bias

}’i=@<

O(z) = {

z Wji%‘)

JEI!

+1ifz>0
—-1ifz<0

* The system will evolve until the energy hits a local minimum

* Invector form, including a bias term (not typically used in

Hopfield nets) 1

E=—=
2

y' Wy

Recap: Evolution

* The network will evolve until it arrives at a

local minimum in the energy contour

Recap: Content-addressable memory

X

A

(AN
Q.

state
 Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory

Examples: Content addressable
memory

FEeconstruction

Hopfield network reconstmicting degraded images
frotn nowsy (top) o partial (bottorn) cues.

o http://staff.itee.ug.edu.au/janetw/cmc/chapters/Hopfield/

“Training” the network

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach
— Optimization

* Secondary question

— How many patterns can we store?

Recap: Hebbian Learning to Store a
Specific Pattern

HEBBIAN LEARNING:
Wji = VjVi

W=y,y, —1I

* For a single stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

Storing multiple patterns

Wji 0.6 z yl.py]p

PE{Yp}
* {Vp] is the set of patterns to store

* Superscript p represents the specific pattern

10

How many patterns can we store?

 Hopfield: For a network of N neurons can store up to 0.14N
random patterns
* |n reality, seems possible to store K > 0.14N patterns

— i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

— But behavior with more than even 1 pattern is unpredictable

11

“Training” the network

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning

— Geometric approach

— Optimization

* Secondary question

— How many patterns can we store?

Evolution of the network

Note: for real vectors sign(y)is a projection
— Projects y onto the nearest corner of the hypercube

— It “quantizes” the space into orthants

Response to field: y « sign(Wy)

— Each step rotates the vector y and then projects it onto the nearest
Projection: sign(Wy)

corner
2D example 3D example)
| . | y sl w
1 Slgn(Wy) : v
'\Rro'ection E
-T Y i /
- A :
' :
I 1
. A 4 ; |
_1 1 II'
Tl;énSform
U4

13

Storing patterns

A pattern yp is stored if:
— Sign(Wyp) =y, for all target patterns

Training: Design W such that this holds

Simple solution: y, is an Eigenvector of W
— And the corresponding Eigenvalue is positive

Wy, = 1y,
— More generally orthant(Wy,) = orthant(y,)

How many such y,,can we have?

Storing more than one pattern

* Requirement: Giveny4, Yy, ..., Vp
— Design W such that
. Sign(Wyp) =y, for all target patterns

* There are no other binary vectors for which this holds

* What is the largest number of patterns that
can be stored?

Storing K orthogonal patterns

* Simple solution: Design W such that y;,
Y-, ..., Vi are the Eigen vectors of W

—LetY =y, y2 ... x|

W = YAY?!
— A4, ..., Ag are positive

— For A{ = A, = A = 1 this is exactly the Hebbian
rule

* The patterns are provably stationary

16

Storing N orthogonal patterns

* The N orthogonal patterns y4, V¥, ..., Yy Span the

space

* Any patterny can be written as

y=ay:s Tay>

aAnyYn

Wy = a; Wy, + a, Wy, + -+ ayWyy
= ay1 T Ay, + -+ ayyy =Yy

* All patterns are stationary

— Remembers everything

— Completely useless network

17

Hebbian rule and general (non-
orthogonal) vectors

What happens when the patterns are not orthogonal

What happens when the patterns are presented more than
once

— Different patterns presented different numbers of times

— Equivalent to having unequal Eigen values..
Can we predict the evolution of any vector y

— Hint: For real valued vectors, use Lanczos iterations

* Canwrite Yp = UpAVy, > W = UpA*Uj
— Tougher for binary vectors (NP)

The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

19

The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

20

The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

iSe

For a specific set of K patterns, we can always build a
network for which all K patterns are sta ided K < N

— Mostafa and St. Jacques 85’ Can we do something

_ about this?
* Forlarge N, the upper bound on K is actuany
— MctElice et. Al. 87’

— But this may come with many “parasitic” memories

21

A different tack

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach

— Optimization

* Secondary question

— How many patterns can we store?

Consider the energy function

1

E=—-y"Wy—b'y

2

* This must be maximally low for target patterns

* Must
—So t

oe maximally hig

nat they are unstab

the target patterns

n for all other patterns

e and evolve into one of

23

Alternate Approach to Estimating the
Network

1
E(y) = —EyTWy —b'y

Estimate W (and b) such that

— E is minimized foryq, y5, ..., ¥p

— £ is maximized for all othery

e Caveat: Unrealistic to expect to store more than
N patterns, but can we make those N patterns
memorable .

Optimizing W (and b)

1 _
E(y)=—=y'Wy W = argmin E E(y)
w

2
YEYp
The bias can be captured by
another fixed-value component

 Minimize total energy of target patterns

— Problem with this?

25

Optimizing W

1

E(y) = —EyTWy

W = argmin 2 E(y) — 2 E(y)
W YEYp y&Yp
 Minimize total energy of target patterns

 Maximize the total energy of all non-target
patterns

26

Optimizing W

1 N |
E(y) = —EyTWy W = argmin E E(y) — E E(y)
w
YEYp y&Yp

* Simple gradient descent:

W=W+n<z yy' — zny)

YEYp y€Yp

27

Optimizing W

W=W+n(2 yy' — Zny>

YEYp YEYp

* Can “emphasize” the importance of a pattern
by repeating

— More repetitions = greater emphasis

28

Optimizing W

W=W+n(z yy' — Zny>

YEYp YE€Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis

* How many of these?

— Do we need to include all of them?
— Are all equally important?

The training again..

W=W+n(z yy' — Zny)

YEYp YEYp

* Note the energy contour of a Hopfield
network for any weight W

Bowls will all actually be
quadratic

Energy

state

30

The training again

W=W+n Eny—Zny

YEYp YEYp

* The first term tries to minimize the energy at target patterns
— Make them local minima

— Emphasize more “important” memories by repeating them more
frequently

A Target patterns

Energy

v

state

The negative class

W=W+n(z yy' — zny)

YEYp yE€Yp

* The second term tries to “raise” all non-target
patterns

— Do we need to raise everything?

Energy o

state

32

Option 1: Focus on the valleys

W=W+n Zny— Z yy'

VEYp y&éYp&y=valley

* Focus on raising the valleys

— If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

Energy

v

state 33

Identifying the valleys..

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

* Problem: How do you identify the valleys for
the current W?

Energy MA ‘ ‘

state

34

Identifying the valleys..

* |nitialize the network randomly and let it evolve

— |t will settle in a valley

Energy

state

35

Training the Hopfield network

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Randomly initialize the network several times and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

36

Training the Hopfield network: SGD

version
W=W+y Zny— Z yy'
VEYp yv&€Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target patterny,
 Sampling frequency of pattern must reflect importance of pattern

— Randomly initialize the network and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,¥5 —Vu¥7)

37

Training the Hopfield network

W=W+r7 Zny— Z yy'

yEYp y&Yp&y=valley

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target patterny,
~_* Sampling frequency of pattern must reflect importance of pattern

-< Randomly |n|t|aI|ze>the network and let it evolve
+ And settle at a vaIIey 2

— Update weights

c W=W+ U(Ypr Yva)

38

Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

Energy

state

Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

 Major requirement: memories must be stable

— They must be broad valleys

e Spurious valleys in the neighborhood of
memories are more important to eliminate

Energy Y

state

Identifying the valleys..

e |nitialize the network at valid memories and let it evolve
— It will settle in a valley. If this is not the target pattern, raise it

Energy

v

state

41

Training the Hopfield network

w:w+n(2ny— Z ny>

yEYp y&Yp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Initialize the network with each target pattern and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

42

Training the Hopfield network: SGD

version
W=W+n E(YYT—YVYS)
YEYp

nitialize W
Do until convergence, satisfaction, or death from
poredom:
— Sample a target patterny,
 Sampling frequency of pattern must reflect importance of pattern

— Initialize the network at y,, and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,y) —Vu¥7)

43

A possible problem

 What if there’s another target pattern
downvalley

— Raising it will destroy a better-represented or
stored pattern!

Energy

state

A related issue

* Really no need to raise the entire surface, or
even every valley

Energy o

state

45

A related issue

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state

Raising the neighborhood

* Starting from a target pattern, let the network
evolve only a few steps

— Try to raise the resultant location
* Will raise the neighborhood of targets

* Will avoid problem of down-valley targets

Energy

state

Training the Hopfield network: SGD

version
— T T
W =W+ nn Z(yy — VYaYVa)
YEYp

nitialize W
Do until convergence, satisfaction, or death from
poredom:

— Sample a target pattern y,

* Sampling frequency of pattern must reflect importance of pattern
— Initialize the network at y,, and let it evolve a few steps (2-4)
* And arrive at a down-valley position y,

— Update weights
* W=W+n(y,y; —Ya¥a)

48

Story so far

 Hopfield nets with N neurons can store up to 0.14N
random patterns through Hebbian learning

— Issue: Hebbian learning assumes all patterns to be stored are
equally important

* |n theory the number of intentionally stored patterns
(stationary and stable) can be as large as N

— But comes with many parasitic memories

* Networks that store O(N) memories can be trained
through optimization

— By minimizing the energy of the target patterns, while
increasing the energy of the neighboring patterns

Storing more than N patterns

* The memory capacity of an N-bit network is at
most N

— Stable patterns (not necessarily even stationary)
* Abu Mustafa and St. Jacques, 1985
e Although “information capacity” is O(N3)
* How do we increase the capacity of the
network

— How to store more than N patterns

Expanding the network

N Neurons

A /
L .’.- ’.-'.'.

b ? . ’p“ .p,-."-_.'ﬁ;'-'-:;.u

A "y ‘ 4 .,-"'_- 4 ¥
>N AN
%%#‘i%‘éfi'] 2
N PSRTING :
PSR #<

S DK

3

b ; A1
raTer L\ LT
AT ANy A TN
':'E;/_:-}'*t\-‘-“ '-'5;#2" o

 Add a large number of neurons whose actual
values you don’t care about!

51

Expanded Network

N Neurons

LIRS /
L ”.-'.'.

L .‘. :
e)
‘.‘ .g.':%";-:;:.
i e AN 1
"e ey’ HaAN
N i\ o
AT
= "-.‘
X J

PR
e

* New capacity: ~(N + K) pattern

— Although we only care about the pattern of the first N
neurons

— We're interested in N-bit patterns

52

Terminology

Hidden
Neurons

Visible
Neurons

 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern

Increasing the capacity: bits view

Visible bits

00000000

o] o] oo (@
00000000

o, (000 | @

oo o @ @

00000000
00000000

QOCCOCC?

 The maximum number of patterns the net can store is bounded by the
width N of the patterns..

54

Increasing the capacity: bits view

Visible bits Hidden bits

L 0 00 o | 00000000 000eeee.

o] o] (00 (000000 00000000000
L 0 (0] [0 000000 00000000000

o, (000 | [0000000000000000.

o0 [0 0 00000000000000ee.

L 1 19 (00 | (0000000000000 0e0
ol l [l [0 000000000000 0eee0

QOQQOQQ?OOOOOOOOOOOOOOOO

N+ K

 The maximum number of patterns the net can store is bounded by the
width N of the patterns..

 So, let’s pad the patterns with K “don’t care” bits
— The new width of the patterns is N+K
— Now we can store N+K patterns!

55

Issues: Storage

Visible bits | Hidden bits

000000000 0000000000OO000

o o] (00 (0000000000000 0000
L 9 0] 0] [©000000000000e00n

o] Joloe] | looo/oclclclol00cccl0000

ool o] o] (0000000000 eeeeee0.

L 1 19 00 | O0000000000000e0
C000000OO000000O0000O000000

QOCQOQQQOOOOOOOOOOOOOOOO

N+ K

* What patterns do we f|II in the don’t care bits?

— Simple option: Randomly
* Flip a coin for each bit
— We could even compose multiple extended patterns for a base pattern to
increase the probability that it will be recalled properly

* Recalling any of the extended patterns from a base pattern will recall the base pattern

* How do we store the patterns?

— Standard optimization method should work »

Issues: Recall

Visible bits | Hidden bits

000000000 0000000000OO000

o o] (00 (0000000000000 0000
L 9 0] 0] [©000000000000e00n

o] Joloe] | looo/oclclclol00cccl0000

ool o] o] (0000000000 eeeeee0.

L 1 19 00 | O0000000000000e0
C000000OO000000O0000O000000

QOCQOQQQOOOOOOOOOOOOOOOO

N+ K

* How do we retrieve a memory?

* Can do so using usual “evolution” mechanism

* But this is not taking advantage of a key feature of the extended

patterns:
— Making errors in the don’t care bits doesn’t matter

57

Robustness of recall

K Neuron

NS

N Neurons

TS TS
ST
SIS

= Ny
Z S i
MR
NS =gy e s 2N ie g gy
F .’t‘f‘-‘tﬁ‘-’(‘_ !-‘5,‘."‘.1-'; TN SRS T
S S S s AN Sy S S N

s ‘ﬁr"*. "P&Tﬁ‘. A =
. E.‘.A.;“’- AT

e

B Fal .-
£l .‘.J"“

o

253

“g\‘
s

e

i

£
A

LT
i

_— N3 ; es . X
\"%;;-..::__ S

.

|
i
a

]
.

A

e

e

‘2“
Ch

s

({7
s

07

i

< SOt

S T A2
e o, S TR ol
e S

* The value taken by the K hidden neurons during recall
doesn’t really matter
— Even if it doesn’t match what we actually tried to store

* Can we take advantage of this somehow?

Robustness of recall

N Neurons

\ o
SRR
AR B
S RRIOR, il
B N A . - ! “'H
R A
IR RSN A AS SES

By ‘

'|’ . o

A=

00000060
O *0

0008 08
QOeCeOe0

-'aﬁﬁﬁ R R ==
“0 b s

L Lol S T

a4

‘qﬁﬁaﬁdéﬁ=L—

* Also, we can have multiple extended patterns
with the same pattern over visible bits

— Can we exploit this somehow?

59

Taking advantage of don’t care bits

Simple random setting of don’t care bits, and using the usual
training and recall strategies for Hopfield nets should work

However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits

— Possible to set the don’t care bits such that the overall pattern (and
hence the “visible” bits portion of the pattern) is more memorable

— Also, may have multiple don’t-care patterns for a target pattern

* Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine

A probabilistic interpretation of
Hopfield Nets

* For binary y the energy of a pattern is the
analog of the negative log likelihood of a
Boltzmann distribution

— Minimizing energy maximizes log likelihood

E() = —5y™Wy P(y) = Cexp(~E(y)

61

The Boltzmann Distribution

1 —E(y)
E(y)=—-y"Wy —Db'y P(y) = Cexp
2 kT
FL = A N —E(y)
B Rm 2y exp(kT)

* k is the Boltzmann constant
T isthe temperature of the system

 The energy terms are the negative loglikelihood of a Boltzmann
distribution at T = 1 to within an additive constant

— Derivation of this probability is in fact quite trivial..
62

Continuing the Boltzmann analogy

1 —E(y)
E(y)=—-y"Wy —Db'y P(y) = Cexp
2 kT
e :ii‘ - . 1
fie et B —E(y)

* The system probabilistically selects states with
lower energy

— With infinitesimally slow cooling, at T = 0, it
arrives at the global minimal state

63

Spin glasses and the Boltzmann
distribution

Energy

state

* Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at T = 1, in a universe
where k =1

— Energy landscape of a spin-glass model: Exploration and
characterization, Zhou and Wang, Phys. Review E 79, 2009

Hopfield nets: Optimizing W

1

E(y) = —EyTWy W = argmin 2 E(y) — 2 E(y)

yEYp Y€Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ,B(E(Y))YYT)

YEYp [

More importance to more frequently
presented memories

yEYp \

More importance to more attractive
spurious memories

65

Hopfield nets: Optimizing W

1

E(y) = —EyTWy W = argmin 2 E(y) — 2 E(y)

YEYp y&Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ,B(E(Y))YYT)

YyEYp [y&Yp \
More importance to more frequently More importance to more attractive
presented memories spurious memories

THIS LOOKS LIKE AN EXPECTATIONI

66

Hopfield nets: Optimizing W

1 .
E(y) = —EyTWy W= argvflnin 2 E(y) — 2 E(y)

YEYp YEYp
e Update rule

W=W-+7 (2 ayyy' — 2 ,B(E(Y))YYT>

YEYp VEYp
W =W +n(Ey-y,yy" — Eyyyy")

Natural distribution for variables: The Boltzmann Distribution

67

From Analogy to Model

 The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution

* So, let’s explicitly model the Hopfield net as a
distribution..

-
— — L
— il _— L
L --__ ___.I — -
e P " i

1
!
)
-
PE

state

* [sthe system actually in a specific state at any time?

* No —the state is actually continuously changing

— Based on the temperature of the system
* At higher temperatures, state changes more rapidly

 What s actually being characterized is the probability of
the state
— And the expected value of the state

The Helmholtz Free Energy of a System

 Athermodynamic system at temperature T can exist in
one of many states

— Potentially infinite states

— At any time, the probability of finding the system in state s
at temperature T is Py (s)

* At each state s it has a potential energy E

 The internal energy of the system, representing its
capacity to do work, is the average:

Ur =) Pr(s)E

The Helmholtz Free Energy of a System

* The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

Hr = =) Pr(s)logPr(s)

 The Helmholtz free energy of the system combines the
two terms

FT —_ UT + kTHT

=) Pr(s)E; — kKT) Pr(s)1og Pr(s)

The Helmholtz Free Energy of a System

Fr = z Pr(s)E, — sz P;(s)log Py (s)

* A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

* The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

Fr=) Pr(s)E;— kT) Pr(s)logPr(s)

* Minimizing this w.r.t P-(s), we get

1 [—E,
Pr(s) = Z€XP |\ 7

— Also known as the Gibbs distribution
— Z is a normalizing constant
— Note the dependenceon T

— AT =0, the system will always remain at the lowest-
energy configuration with prob = 1.

The Energy of the Network

Visible E(S) = —2 W;jSiSj — b;s;
Neurons i<j
exp(—E(S))
P(S) =
) = 5 exp(CES))

We can define the energy of the system as before
Since neurons are stochastic, there is disorder or entropy (with T=1)

The equilibribum probability distribution over states is the Boltzmann
distribution at T=1

— This is the probability of different states that the network will wander over at
equilibrium

The Hopfield net is a distribution

Visible E(S) = —Z W;jSiSj — b;s;
Neurons i<j
exp(—E(S))
P(S) =
) = 5 exp(CES))

 The stochastic Hopfield network models a probability distribution over
states

— Where a state is a binary string
— Specifically, it models a Boltzmann distribution
— The parameters of the model are the weights of the network

* The probability that (at equilibrium) the network will be in any state is P(S)
— Itis a generative model: generates states according to P(S5)

The field at a single node

* LetS andS ' be otherwise identical states that only differ in the i-th bit
— Shasi-th bit=41 and S’ has i-th bit= —1

P(S) = P(s; = 1|sj2:)P(Sj2i)
P(S") = P(s; = —1|8j;) P(Sj=i)

logP(S) — logP(S') = logP(si = 1|Sj¢i) — logP(sl- = —1|Sj¢i)

P(Si = 1|Sj¢i)

logP(S) — logP(S") =lo
J I 1— P(Si — 1|Sj¢i)

76

The field at a single node

 LetS and S ' be the states with the ith bit in the +1 and
— 1 states

logP(S) =—-E(S)+C

1
= _E(Enoti +szSj +bi

5o
|

, 1
E(S :—E(Enoti—ZWij—bi

J#FI

* logP(S) —logP(S') = E(S') —E(S) = X+ W;sj + b;

77

The field at a single node

P(Sl' — 1‘Sj¢l
l z b,

]-‘/—'l

* Glving us

1
P(Sl' — 1‘Sj¢i) —

1 +e_(Z]¢lW]S]+b)
* The probability of any node taking value 1
given other node values is a logistic

Redefining the network

Visible Zi = 2 w;jisj + bi
Neurons J

P(s; = 1|sj%) =]

+ e %

First try: Redefine a regular Hopfield net as a stochastic system
Each neuron is now a stochastic unit with a binary state s;, which
can take value 0 or 1 with a probability that depends on the local
field

— Note the slight change from Hopfield nets

— Not actually necessary; only a matter of convenience

The Hopfield net is a distribution

Visible Zi = Z wjiSj + b
Neurons J

1
@ PE =) = e

 The Hopfield net is a probability distribution over
binary sequences

— The Boltzmann distribution

e The conditional distribution of individual bits in the
sequence is a logistic

Running the network

Visible Zi = 2 wjiSj + b
Neurons J

P(si = 1sj21) =7

+ e4i

Initialize the neurons
Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
— Gibbs sampling: Fix N-1 variables and sample the remaining variable
— As opposed to energy-based update (mean field approximation): run the test z, >0 ?

After many many iterations (until “convergence”), sample the individual neurons

Exploiting the probabilistic view

e Next..

