Neural Networks
Learning the network: Backprop

11-785, Fall 2022
Lecture 4
Recap: Empirical Risk Minimization

\[Y = f(X; W) \]

• Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
 – Divergence on the i-th instance: \(\text{div}(f(X_i; W), d_i) \)
 – Empirical average divergence on all training data:

\[
\text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)
\]

• Estimate the parameters to minimize the empirical estimate of expected divergence

\[
\bar{W} = \text{argmin}_W \text{Loss}(W)
\]
 – I.e. minimize the empirical risk over the drawn samples
Recap: Empirical Risk Minimization

- Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
 - Error on the i-th instance: \(\text{div}(f(X_i; W), d_i) \)
 - Empirical average error on all training data:
 \[
 \text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)
 \]
- Estimate the parameters to minimize the empirical estimate of expected error
 \[
 \bar{W} = \arg\min_W \text{Loss}(W)
 \]
 - I.e. minimize the empirical error over the drawn samples
A quick intro to function optimization

with an initial discussion of derivatives
A brief note on derivatives..

- A derivative of a function at any point tells us how much a minute increment to the *argument* of the function will increment the *value* of the function
 - For any $y = f(x)$, expressed as a multiplier α to a tiny increment Δx to obtain the increments Δy to the output
 \[\Delta y = \alpha \Delta x \]
 - Based on the fact that at a fine enough resolution, any smooth, continuous function is locally linear at any point
Scalar function of scalar argument

- When x and y are scalar

 \[y = f(x) \]

 - Derivative:
 \[\Delta y = \alpha \Delta x \]

 - Often represented (using somewhat inaccurate notation) as $\frac{dy}{dx}$
 - Or alternately (and more reasonably) as $f'(x)$
Scalar function of scalar argument

- **Derivative** $f'(x)$ is the *rate of change* of the function at x
 - How fast it increases with increasing x
 - The magnitude of $f'(x)$ gives you the steepness of the curve at x
 - Larger $|f'(x)| \rightarrow$ the function is increasing or decreasing more rapidly

- It will be positive where a small increase in x results in an *increase* of $f(x)$
 - Regions of positive slope

- It will be negative where a small increase in x results in a *decrease* of $f(x)$
 - Regions of negative slope

- It will be 0 where the function is locally flat (neither increasing nor decreasing)
Multivariate scalar function:
Scalar function of vector argument

\[y = f(x) \]

\[x \text{ is now a vector: } x = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} \]

\[\Delta x = \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_D \end{bmatrix} \]

\[\Delta y = \alpha \Delta x \]

- Giving us that \(\alpha \) is a row vector: \(\alpha = [\alpha_1 \ \cdots \ \alpha_D] \)
 \[\Delta y = \alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \cdots + \alpha_D \Delta x_D \]

- The partial derivative \(\alpha_i \) gives us how \(y \) increments when only \(x_i \) is incremented

- Often represented as \(\frac{\partial y}{\partial x_i} \)
 \[\Delta y = \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \cdots + \frac{\partial y}{\partial x_D} \Delta x_D \]
Multivariate scalar function:
Scalar function of vector argument

\[\Delta y = \nabla_x y \Delta x \]

- Where

\[\nabla_x y = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_D} \end{bmatrix} \]

- You may be more familiar with the term “gradient” which is actually defined as the transpose of the derivative

Note: \(\Delta x \) is now a vector

\[\Delta x = \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_D \end{bmatrix} \]
Gradient of a scalar function of a vector

- The derivative \(\nabla_X f(X) \) of a scalar function \(f(X) \) of a multi-variate input \(X \) is a multiplicative factor that gives us the change in \(f(X) \) for tiny variations in \(X \)

\[
df(X) = \nabla_X f(X) dX
\]

- \(\nabla_X f(X) = \left[\frac{\partial f(X)}{\partial x_1} \quad \frac{\partial f(X)}{\partial x_2} \quad \ldots \quad \frac{\partial f(X)}{\partial x_n} \right] \)

- The **gradient** is the transpose of the derivative \(\nabla_X f(X)^T \)
 - A column vector of the same dimensionality as \(X \)
Gradient of a scalar function of a vector

- The derivative $\nabla_X f(X)$ of a scalar function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

$$df(X) = \nabla_X f(X) dX$$

- The gradient is the transpose of the derivative $\nabla_X f(X)^T$.

This is a vector inner product. To understand its behavior lets consider a well-known property of inner products.
A well-known vector property

$\mathbf{u}^T \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$

- The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned
 - i.e. when $\theta = 0$
Properties of Gradient

- $df(X) = \nabla_X f(X) dX$
- For an increment dX of any given length $df(X)$ is max if dX is aligned with $\nabla_X f(X)^T$
 - The function $f(X)$ increases most rapidly if the input increment dX is exactly in the direction of $\nabla_X f(X)^T$
- The gradient is the direction of fastest increase in $f(X)$
Gradient vector $\nabla_x f(X)^T$
Gradient

Moving in this direction increases \(f(X) \) fastest

Gradient vector \(\nabla_X f(X)^T \)
Gradient

Moving in this direction increases $f(X)$ fastest.

$-\nabla_x f(X)^T$

Gradient vector $\nabla_x f(X)^T$

Moving in this direction decreases $f(X)$ fastest.
Gradient

Gradient here is 0

Gradient here is 0
Properties of Gradient: 2

- The gradient vector $\nabla_X f(X)^T$ is perpendicular to the level curve.
The Hessian

• The Hessian of a function $f(x_1, x_2, \ldots, x_n)$ is given by the second derivative

$$\nabla^2_x f(x_1, \ldots, x_n) := \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}$$
Poll 1

• Select all that are true about derivatives of a scalar function $f(X)$ of multivariate inputs
 – At any location X, there may be many directions in which we can step, such that $f(X)$ increases
 – The direction of the gradient is the direction in which the function increases fastest
 – The gradient is the derivative of $f(X)$ w.r.t. X

• $y = f(x)$ is a scalar function of an $N\times 1$ column vector variable x. What is the shape of the derivative of y with respect to x
 – Scalar
 – $N \times 1$ column vector
 – $1 \times N$ row vector
 – There is insufficient information to decide
Poll 1

- Select all that are true about derivatives of a scalar function $f(X)$ of multivariate inputs
 - At any location X, there may be many directions in which we can step, such that $f(X)$ increases
 - The direction of the gradient is the direction in which the function increases fastest
 - The gradient is the derivative of $f(X)$ w.r.t. X

- $y = f(x)$ is a scalar function of an $N \times 1$ column vector variable x. What is the shape of the derivative of y with respect to x
 - Scalar
 - $N \times 1$ column vector
 - $1 \times N$ row vector
 - There is insufficient information to decide
The problem of optimization

- General problem of optimization: Given a function $f(x)$ of some variable x ...

- Find the value of x where $f(x)$ is minimum
Finding the minimum of a function

- Find the value x at which $f'(x) = 0$
 - Solve

$$\frac{df(x)}{dx} = 0$$

- The solution is a “turning point”
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?
Poll 2

Which of the following is true (choose only one) about the minimum of a function $f(x)$

1. The derivative $f'(x) = 0$ at the minimum. This is the only condition to be satisfied
2. $f'(x) = 0$ and the second derivative $f''(x)$ is negative
3. $f'(x) = 0$ and the second derivative $f''(x)$ is positive
Poll 2

Which of the following is true (choose only one) about the minimum of a function $f(x)$

1. The derivative $f'(x) = 0$ at the minimum. This is the only condition to be satisfied
2. $f'(x) = 0$ and the second derivative $f''(x)$ is negative
3. $f'(x) = 0$ and the second derivative $f''(x)$ is positive
Turning Points

• Both *maxima* and *minima* have zero derivative
• Both are turning points
Derivatives of a curve

- Both maxima and minima are turning points
- Both maxima and minima have zero derivative
Derivative of the derivative of the curve

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative

- The *second derivative* \(f''(x) \) is \(-ve\) at maxima and \(+ve\) at minima!
Solution: Finding the minimum or maximum of a function

• Find the value x at which $f'(x) = 0$: Solve

$$\frac{df(x)}{dx} = 0$$

• The solution x_{soln} is a **turning point**

• Check the double derivative at x_{soln}: compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum
A note on derivatives of functions of single variable

• All locations with zero derivative are critical points
 – These can be local maxima, local minima, or inflection points

• The second derivative is
 – Positive (or 0) at minima
 – Negative (or 0) at maxima
 – Zero at inflection points
A note on derivatives of functions of single variable

• All locations with zero derivative are *critical* points
 ─ These can be local maxima, local minima, or inflection points

• The *second* derivative is
 ─ ≥ 0 at minima
 ─ ≤ 0 at maxima
 ─ Zero at inflection points

• It’s a little more complicated for functions of multiple variables..
What about functions of multiple variables?

- The optimum point is still “turning” point
 - Shifting in any direction will increase the value
 - For smooth functions, at the minimum/maximum, the gradient is 0
 - Really tiny shifts will not change the function value
Finding the minimum of a scalar function of a multivariate input

- The optimum point is a turning point – the gradient will be 0
- Find the location where the gradient is 0
Unconstrained Minimization of function (Multivariate)

1. Solve for the X where the derivative (or gradient) equals to zero
 \[\nabla_X f(X) = 0 \]

2. Compute the Hessian Matrix $\nabla^2_X f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima
Unconstrained Minimization of function (Example)

• Minimize

\[f(x_1, x_2, x_3) = (x_1)^2 + x_1(1-x_2) + (x_2)^2 - x_2x_3 + (x_3)^2 + x_3 \]

• Gradient

\[\nabla_X f^T = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} \]
Unconstrained Minimization of function (Example)

• Set the gradient to null

$$\nabla_x f = 0 \Rightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
Unconstrained Minimization of function (Example)

- Compute the Hessian matrix \(\nabla^2_x f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \)
- Evaluate the eigenvalues of the Hessian matrix
 \(\lambda_1 = 3.414, \; \lambda_2 = 0.586, \; \lambda_3 = 2 \)
- All the eigenvalues are positives => the Hessian matrix is positive definite

- The point \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \) is a minimum
Closed Form Solutions are not always available

- Often it is not possible to simply solve $\nabla_x f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a “guess” for the optimal X and refine it iteratively until the correct value is obtained
Iterative solutions

- Start from an initial guess X_0 for the optimal X
- Update the guess towards a (hopefully) “better” value of $f(X)$
- Stop when $f(X)$ no longer decreases

Problems:
- Which direction to step in
- How big must the steps be
The Approach of Gradient Descent

- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A negative derivative \rightarrow moving right decreases error
 - A positive derivative \rightarrow moving left decreases error
 - Shift point in this direction
The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 ▪ Initialize x^0
 ▪ While $f'(x^k) \neq 0$
 • If $\text{sign} \left(f'(x^k) \right)$ is positive:
 $$x^{k+1} = x^k - \text{step}$$
 • Else
 $$x^{k+1} = x^k + \text{step}$$
 – What must step be to ensure we actually get to the optimum?
The Approach of Gradient Descent

- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 $$x^{k+1} = x^k - \text{sign} \left(f'(x^k) \right) \cdot \text{step}$$
- Identical to previous algorithm
The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 \[x^{k+1} = x^k - \eta^k f'(x^k) \]
 - η^k is the "step size"
Poll 3: Multivariate functions

• Select all that are true about derivatives of a scalar function $f(X)$ of multivariate inputs
 – At any location X, there may be many directions in which we can step, such that $f(X)$ increases
 – The direction of the gradient is the direction in which the function increases fastest
 – The gradient is the derivative of $f(X)$ w.r.t. X
Poll 3: Multivariate functions

• Select all that are true about derivatives of a scalar function $f(X)$ of multivariate inputs
 – At any location X, there may be many directions in which we can step, such that $f(X)$ increases
 – The direction of the gradient is the direction in which the function increases fastest
 – The gradient is the derivative of $f(X)$ w.r.t. X
Gradients of multivariate functions

- Moving in this direction decreases $f(X)$ fastest
- Moving in this direction increases $f(X)$ fastest
- Gradient vector $\nabla_x f(X)^T$
Gradient descent/ascent (multivariate)

• The gradient descent/ascent method to find the minimum or maximum of a function f iteratively
 – To find a maximum move in the direction of the gradient
 $$x^{k+1} = x^k + \eta^k \nabla_x f(x^k)^T$$
 – To find a minimum move exactly opposite the direction of the gradient
 $$x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$$

• Many solutions to choosing step size η^k
Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied

\[|f(x^{k+1}) - f(x^k)| < \varepsilon_1 \]

• Or

\[\left\| \nabla_x f(x^k) \right\| < \varepsilon_2 \]
Overall Gradient Descent Algorithm

- Initialize:
 - x^0
 - $k = 0$

- do
 - $x^{k+1} = x^k - \eta^k \nabla_x f(x^k)^T$
 - $k = k + 1$
- while $|f(x^{k+1}) - f(x^k)| > \varepsilon$
Convergence of Gradient Descent

• For appropriate step size, for convex (bowl-shaped) functions gradient descent will always find the minimum.

• For non-convex functions it will find a local minimum or an inflection point.
• $y = f(x)$ is a scalar function of an Nx1 column vector variable x. Starting from $x = x_0$, in which direction must we move in the space of x, to achieve the maximum decrease in $f()$?
 – Exactly in the direction of the gradient of $f(x)$ at x_0
 – Exactly perpendicular to the direction of the gradient of $f(x)$ at x_0
 – Exactly opposite to the direction of the gradient of $f(x)$ at x_0
 – Exactly perpendicular to the direction of the gradient of $f(x)$ at x_0.
 Poll 4

- $y = f(x)$ is a scalar function of an $N \times 1$ column vector variable x. Starting from $x = x_0$, in which direction must we move in the space of x, to achieve the maximum decrease in $f()$?
 - Exactly in the direction of the gradient of $f(x)$ at x_0
 - Exactly perpendicular to the direction of the gradient of $f(x)$ at x_0
 - **Exactly opposite to the direction of the gradient of $f(x)$ at x_0**
 - Exactly perpendicular to the direction of the gradient of $f(x)$ at x_0.

• Returning to our problem from our detour.
Problem Statement

• Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)

• Minimize the following function

\[
Loss(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)
\]

w.r.t \(W\)

• This is problem of function minimization
 – An instance of optimization
Gradient Descent to train a network

• Initialize:
 – W^0
 – $k = 0$

\[
\text{do}
\quad W^{k+1} = W^k - \eta^k \nabla \text{Loss}(W^k)^T
\quad k = k + 1
\]

\[
\text{while } \left| \text{Loss}(W^k) - \text{Loss}(W^{k-1}) \right| > \varepsilon
\]
Preliminaries

• Before we proceed: the problem setup
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$

- Minimize the following function

\[
\text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)
\]

w.r.t W
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

- What are these input-output pairs?

 \[\text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i) \]
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$

- What are these input-output pairs?

\[
\text{Loss}(W) = \frac{1}{T} \sum_{i} \text{div}(f(X_i; W), d_i)
\]

- What is $f()$ and what are its parameters W?
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$

- What are these input-output pairs?

- What is $f()$ and what are its parameters W?

- What is the divergence $\text{div}()$?

- $\text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)$
Problem Setup: Things to define

• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$

• Minimize the following function

$$\text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)$$

What is $f()$ and what are its parameters W?
What is f()? Typical network

- Multi-layer perceptron
- A *directed* network with a set of inputs and outputs
 - No loops
Typical network

- We assume a “layered” network for simplicity
 - Each “layer” of neurons only gets inputs from the earlier layer(s) and outputs signals only to later layer(s)
 - We will refer to the inputs as the **input layer**
 - No neurons here – the “layer” simply refers to inputs
 - We refer to the outputs as the **output layer**
 - Intermediate layers are “**hidden**” layers
The individual neurons

- Individual neurons operate on a set of inputs and produce a single output
 - **Standard setup**: A continuous activation function applied to an affine function of the inputs
 \[y = f \left(\sum_i w_i x_i + b \right) \]
 - More generally: *any* differentiable function
 \[y = f(x_1, x_2, \ldots, x_N; W) \]
The individual neurons

- Individual neurons operate on a set of inputs and produce a single output
 - **Standard setup:** A continuous activation function applied to an affine function of the inputs
 \[y = f \left(\sum_i w_i x_i + b \right) \]
 - More generally: any differentiable function
 \[y = f(x_1, x_2, \ldots, x_N; W) \]

Parameters are weights \(w_i \) and bias \(b \)

We will assume this unless otherwise specified
Activations and their derivatives

- **Sigmoid function**
 \[f(z) = \frac{1}{1 + \exp(-z)} \]
 \[f'(z) = f(z)(1 - f(z)) \]

- **Tanh function**
 \[f(z) = \tanh(z) \]
 \[f'(z) = (1 - f^2(z)) \]

- **Rectified Linear Unit (ReLU)**
 \[f(z) = \begin{cases}
 z, & z \geq 0 \\
 0, & z < 0
 \end{cases} \]
 \[f'(z) = \begin{cases}
 1, & z \geq 0 \\
 0, & z < 0
 \end{cases} \]

- **Logistic function**
 \[f(z) = \log(1 + \exp(z)) \]
 \[f'(z) = \frac{1}{1 + \exp(-z)} \]

- **Some popular activation functions and their derivatives**
Vector Activations

- We can also have neurons that have *multiple coupled* outputs

\[[y_1, y_2, \ldots, y_l] = f(x_1, x_2, \ldots, x_k; W) \]

- Function \(f() \) operates on set of inputs to produce set of outputs
- Modifying a single parameter in \(W \) will affect *all* outputs
Vector activation example: Softmax

- Example: Softmax vector activation

\[
z_i = \sum_j w_{ji}x_j + b_i
\]

\[
y = \frac{\exp(z_i)}{\sum_j \exp(z_j)}
\]

Parameters are weights \(w_{ji} \) and bias \(b_i \)
Multiplicative combination: Can be viewed as a case of vector activations

- A layer of multiplicative combination is a special case of vector activation

\[z_i = \sum_j w_{ji}x_j + b_i \]

\[y_i = \prod_l (z_l)^{a_{li}} \]

Parameters are weights \(w_{ji} \) and bias \(b_i \)
In a layered network, each layer of perceptrons can be viewed as a single vector activation.
Notation

- The input layer is the 0th layer
- We will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the kth layer as $w_{ij}^{(k)}$
 - The bias to the jth unit of the kth layer is $b_j^{(k)}$
Problem Setup: Things to define

• Given a training set of input-output pairs
 \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)

• Minimize the following function

\[
Loss(W) = \frac{1}{T} \sum \text{div}(f(X_i; W), d_i)
\]

What is \(f()\) and what are its parameters \(W\)?
Problem Setup: Things to define

• Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$

• What are these input-output pairs?

$$Loss(W) = \frac{1}{T} \sum_{i} \text{div}(f(X_i; W), d_i)$$
Input, target output, and actual output:

Vector notation

- Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)
- \(X_n = [x_{n1}, x_{n2}, \ldots, x_{nD}]^T\) is the nth input vector
- \(d_n = [d_{n1}, d_{n2}, \ldots, d_{nL}]^T\) is the nth desired output
- \(Y_n = [y_{n1}, y_{n2}, \ldots, y_{nL}]^T\) is the nth vector of actual outputs of the network
 - Function of input \(X_n\) and network parameters
- We will sometimes drop the first subscript when referring to a specific instance
Representing the input

- Vectors of numbers
 - (or may even be just a scalar, if input layer is of size 1)
 - E.g. vector of pixel values
 - E.g. vector of speech features
 - E.g. real-valued vector representing text
 - We will see how this happens later in the course
 - Other real valued vectors
If the desired output is real-valued, no special tricks are necessary

- Scalar Output: single output neuron
 - \(d = \text{scalar (real value)} \)
- Vector Output: as many output neurons as the dimension of the desired output
 - \(d = [d_1 \ d_2 \ldots \ d_L] \) (vector of real values)
Representing the output

- If the desired output is **binary** (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it’s a cat
 - 0 = No it’s not a cat.
Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
 - Viewed as the probability $P(Y = 1|X)$ of class value 1
 - Indicating the fact that for actual data, in general a feature value X may occur for both classes, but with different probabilities
 - Is differentiable
Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it’s a cat
 - 0 = No it’s not a cat.

- Sometimes represented by two outputs, one representing the desired output, the other representing the negation of the desired output
 - Yes: $\rightarrow [1 \ 0]$
 - No: $\rightarrow [0 \ 1]$

- The output explicitly becomes a 2-output softmax
Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower.

- We can represent this set as the following vector, with the classes arranged in a chosen order:

 \[
 [\text{cat} \hspace{0.5em} \text{dog} \hspace{0.5em} \text{camel} \hspace{0.5em} \text{hat} \hspace{0.5em} \text{flower}]^T
 \]

- For inputs of each of the five classes the desired output is:

 - cat:
 \[
 [1 \hspace{0.5em} 0 \hspace{0.5em} 0 \hspace{0.5em} 0 \hspace{0.5em} 0]^T
 \]

 - dog:
 \[
 [0 \hspace{0.5em} 1 \hspace{0.5em} 0 \hspace{0.5em} 0 \hspace{0.5em} 0]^T
 \]

 - camel:
 \[
 [0 \hspace{0.5em} 0 \hspace{0.5em} 1 \hspace{0.5em} 0 \hspace{0.5em} 0]^T
 \]

 - hat:
 \[
 [0 \hspace{0.5em} 0 \hspace{0.5em} 0 \hspace{0.5em} 1 \hspace{0.5em} 0]^T
 \]

 - flower:
 \[
 [0 \hspace{0.5em} 0 \hspace{0.5em} 0 \hspace{0.5em} 0 \hspace{0.5em} 1]^T
 \]

- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class.

- This is a one hot vector.
Multi-class networks

• For a multi-class classifier with N classes, the one-hot representation will have N binary target outputs
 – The desired output d is an N-dimensional binary vector
• The neural network’s actual output too must ideally be binary (N-1 zeros and a single 1 in the right place)
• More realistically, it will be a probability vector
 – N probability values that sum to 1.
Multi-class classification: Output

• Softmax *vector* activation is often used at the output of multi-class classifier nets

\[z_i = \sum_j w_{ji}^{(n)} y_j^{(n-1)} \]

\[y_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)} \]

• This can be viewed as the probability \(y_i = P(\text{class} = i | X) \)
Inputs and outputs: Typical Problem Statement

- We are given a number of “training” data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
 - Binary recognition: Is this a “2” or not
 - Multi-class recognition: Which digit is this?
** Typical Problem statement:**

binary classification

Given, many positive and negative examples (training data),

- learn all weights such that the network does the desired job

<table>
<thead>
<tr>
<th>Training data</th>
<th>Input: vector of pixel values</th>
<th>Output: sigmoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5, 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Problem statement: multiclass classification

- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Training data

\[
\begin{align*}
(5, 5) & \quad (2, 2) \\
(2, 2) & \quad (4, 4) \\
(0, 0) & \quad (2, 2)
\end{align*}
\]
Problem Setup: Things to define

• Given a training set of input-output pairs \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)

• Minimize the following function

\[
\text{Loss}(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)
\]

What is the divergence \(\text{div}()\)?
Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$

- Minimize the following function

$$Loss(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

What is the divergence $div()$?

Note: For $Loss(W)$ to be differentiable w.r.t W, $div()$ must be differentiable
Examples of divergence functions

• For real-valued output vectors, the (scaled) L_2 divergence is popular

$$Div(Y, d) = \frac{1}{2} \|Y - d\|^2 = \frac{1}{2} \sum_i (y_i - d_i)^2$$

– Squared Euclidean distance between true and desired output
– Note: this is differentiable

$$\frac{dDiv(Y, d)}{dy_i} = (y_i - d_i)$$

$$\nabla_Y Div(Y, d) = [y_1 - d_1, y_2 - d_2, ...]$$
For binary classifier

- For binary classifier with scalar output, \(Y \in (0,1) \), \(d \) is 0/1, the Kullback Leibler (KL) divergence between the probability distribution \([Y, 1-Y]\) and the ideal output probability \([d, 1-d]\) is popular

\[
Div(Y, d) = -d \log Y - (1-d) \log(1-Y)
\]

- Minimum when \(d = Y \)

- Derivative

\[
\frac{dDiv(Y, d)}{dY} = \begin{cases}
-\frac{1}{Y} & \text{if } d = 1 \\
\frac{1}{1-Y} & \text{if } d = 0
\end{cases}
\]
• Both KL and L2 have a minimum when y is the target value of d
• KL rises much more steeply away from d
 – Encouraging faster convergence of gradient descent
• The derivative of KL is not equal to 0 at the minimum
 – It is 0 for L2, though
For binary classifier

- For binary classifier with scalar output, $Y \in (0,1)$, d is 0/1, the Kullback Leibler (KL) divergence between the probability distribution $[Y, 1-Y]$ and the ideal output probability $[d, 1-d]$ is popular

$$Div(Y, d) = -d \log Y - (1-d) \log(1-Y)$$

- Minimum when $d = Y$

- Derivative

$$\frac{dDiv(Y, d)}{dY} = \begin{cases}
-\frac{1}{Y} & \text{if } d = 1 \\
\frac{1}{1-Y} & \text{if } d = 0
\end{cases}$$

Note: when $y = d$ the derivative is not 0

Even though $\text{div}(\cdot) = 0$ (minimum) when $y = d$
For multi-class classification

- Desired output d is a one hot vector $[0 \ 0 \ ... \ 1 \ ... \ 0 \ 0 \ 0]$ with the 1 in the c-th position (for class c)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y, d) = \sum_i d_i \log \frac{d_i}{y_i} = \sum_i d_i \log d_i - \sum_i d_i \log y_i = -\log y_c$$

- Derivative

$$\frac{dDiv(Y, d)}{dY_i} = \begin{cases} -\frac{1}{y_c} & \text{for the } c \text{- th component} \\ 0 & \text{for remaining component} \end{cases}$$

$$\nabla_y Div(Y, d) = \begin{bmatrix} 0 & 0 & ... & \frac{-1}{y_c} & ... & 0 \end{bmatrix}$$

The slope is negative w.r.t. y_c
Indicates increasing y_c will reduce divergence
For multi-class classification

- Desired output d is a one hot vector $[0 \ 0 \ ... \ 1 \ ... \ 0 \ 0 \ 0]$ with the 1 in the c-th position (for class c).
- Actual output will be probability distribution $[y_1, y_2, ...]$.
- The KL divergence between the desired one-hot output and actual output:

$$Div(Y, d) = \sum_i d_i \log d_i - \sum_i d_i \log y_i = 0 - \log y_c = -\log y_c$$

\[\text{The slope is negative w.r.t. } y_c\]
\[\text{Indicates increasing } y_c \text{ will reduce divergence}\]

\[\text{Even though } div() = 0 \text{ (minimum) when } y = d\]
KL divergence vs cross entropy

- KL divergence between d and y:
 \[KL(Y, d) = \sum_i d_i \log d_i - \sum_i d_i \log y_i \]

- Cross-entropy between d and y:
 \[Xent(Y, d) = -\sum_i d_i \log y_i \]

- The cross entropy is merely the KL - entropy of d
 \[Xent(Y, d) = KL(Y, d) - \sum_i d_i \log d_i = KL(Y, d) - H(d) \]

- The \mathcal{W} that minimizes cross-entropy will minimize the KL divergence
 - since d is the desired output and does not depend on the network, $H(d)$ does not depend on the net
 - In fact, for one-hot d, $H(d) = 0$ (and KL = Xent)

- We will generally minimize to the cross-entropy loss rather than the KL divergence
 - The Xent is not a divergence, and although it attains its minimum when $y = d$, its minimum value is not 0
"Label smoothing"

- It is sometimes useful to set the target output to \([\epsilon \epsilon \ldots (1 - (K - 1)\epsilon) \ldots \epsilon \epsilon \epsilon]\) with the value \(1 - (K - 1)\epsilon\) in the \(c\)-th position (for class \(c\)) and \(\epsilon\) elsewhere for some small \(\epsilon\)
 - "Label smoothing" -- aids gradient descent
- The KL divergence remains:
 \[
 \text{Div}(Y, d) = \sum_i d_i \log d_i - \sum_i d_i \log y_i
 \]
- Derivative
 \[
 \frac{d\text{Div}(Y, d)}{dY_i} = \begin{cases}
 -\frac{1 - (K - 1)\epsilon}{y_c} & \text{for the } c \text{- th component} \\
 -\frac{\epsilon}{y_i} & \text{for remaining components}
 \end{cases}
 \]
“Label smoothing”

• It is sometimes useful to set the target output to \([\epsilon \ \epsilon \ ... \ (1 - (K - 1)\epsilon) \ ... \ \epsilon \ \epsilon \ \epsilon]\) with the value \(1 - (K - 1)\epsilon\) in the \(c\)-th position (for class \(c\)) and \(\epsilon\) elsewhere for some small \(\epsilon\)
 – “Label smoothing” -- aids gradient descent

• The KL divergence remains:

\[
\text{Div}(Y, d) = \sum_i d_i \log d_i - \sum_i d_i \log y_i
\]

• Derivative

\[
\frac{d\text{Div}(Y, d)}{dY_i} = \begin{cases}
-\frac{1 - (K - 1)\epsilon}{y_c} & \text{for the } c - \text{th component} \\
-\frac{\epsilon}{y_i} & \text{for remaining components}
\end{cases}
\]

Negative derivatives encourage increasing the probabilities of all classes, including incorrect classes! (Seems wrong, no?)
Problem Setup: Things to define

• Given a training set of input-output pairs
 \((X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)\)

• Minimize the following function

\[
Loss(W) = \frac{1}{T} \sum_i \text{div}(f(X_i; W), d_i)
\]
• Select all that are correct
 – The gradient of the loss will always be 0 or close to 0 at a minimum
 – The gradient of the loss may be 0 or close to 0 at a minimum
 – The gradient of the loss may have large magnitude at a minimum
 – If the gradient is not 0 at a minimum, it must be a local minimum
Poll 5

• Select all that are correct
 – The gradient of the loss will always be 0 or close to 0 at a minimum
 – The gradient of the loss may be 0 or close to 0 at a minimum
 – The gradient of the loss may have large magnitude at a minimum
 – If the gradient is not 0 at a minimum, it must be a local minimum
Story so far

• Neural nets are universal approximators

• Neural networks are trained to approximate functions by adjusting their parameters to minimize the average divergence between their actual output and the desired output at a set of “training instances”
 – Input-output samples from the function to be learned
 – The average divergence is the “Loss” to be minimized

• To train them, several terms must be defined
 – The network itself
 – The manner in which inputs are represented as numbers
 – The manner in which outputs are represented as numbers
 • As numeric vectors for real predictions
 • As one-hot vectors for classification functions
 – The divergence function that computes the error between actual and desired outputs
 • L2 divergence for real-valued predictions
 • KL divergence for classifiers
Next Class

- Backpropagation