

Training Neural Networks: Optimization

Intro to Deep Learning, Fall 2022

Recap

- Neural networks are universal approximators
- We must *train* them to approximate any function
- Networks are trained to minimize total "error" on a training set
 - We do so through empirical risk minimization
- We use variants of gradient descent to do so

- Gradients are computed through backpropagation

Recap

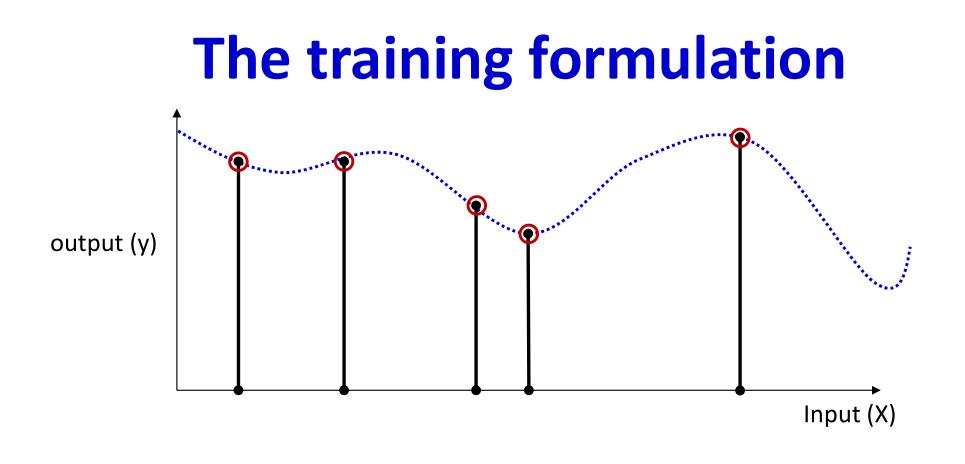
- Vanilla gradient descent may be too slow or unstable
- Better convergence can be obtained through
 - Second order methods that normalize the variation across dimensions
 - Adaptive or decaying learning rates that can improve convergence
 - Methods like Rprop that decouple the dimensions can improve convergence
 - Momentum methods which emphasize directions of steady improvement and deemphasize unstable directions

Moving on...

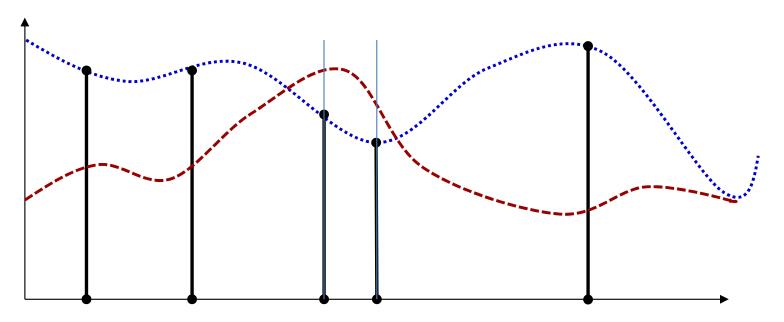
- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations

Moving on: Topics for the day

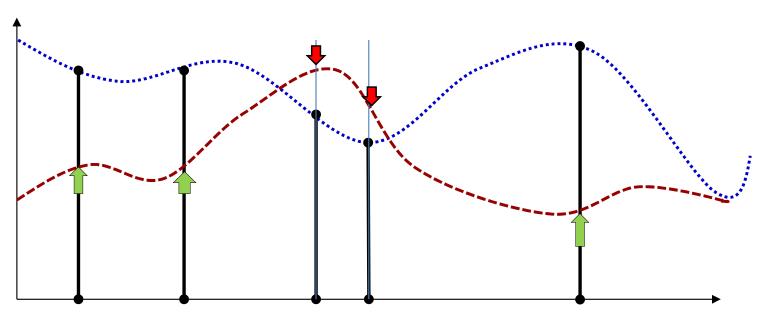
- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations



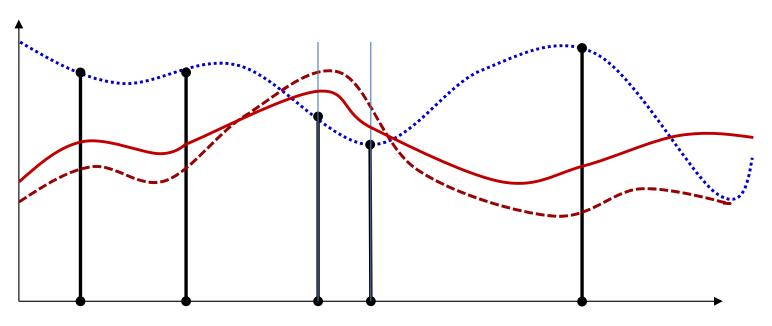
• Given input output pairs at a number of locations, estimate the entire function



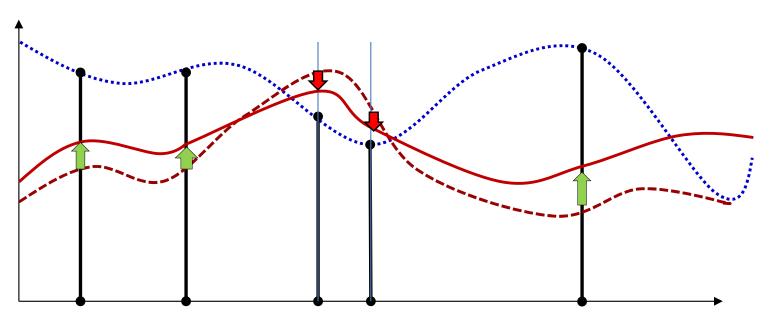
• Start with an initial function



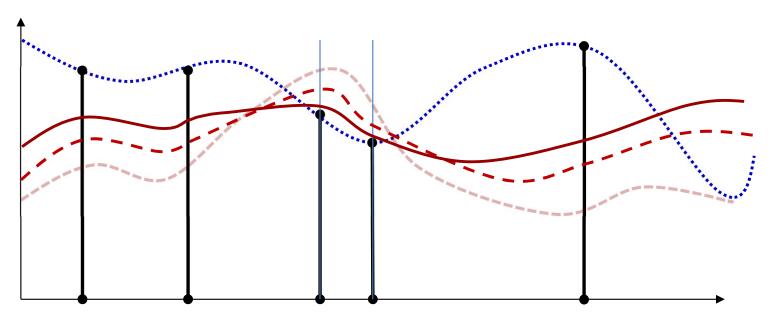
- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points



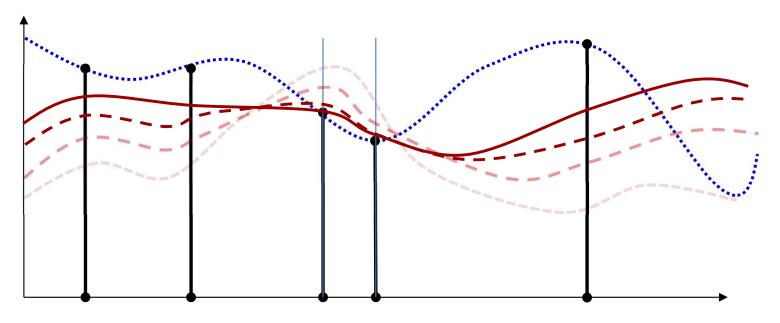
- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points



- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

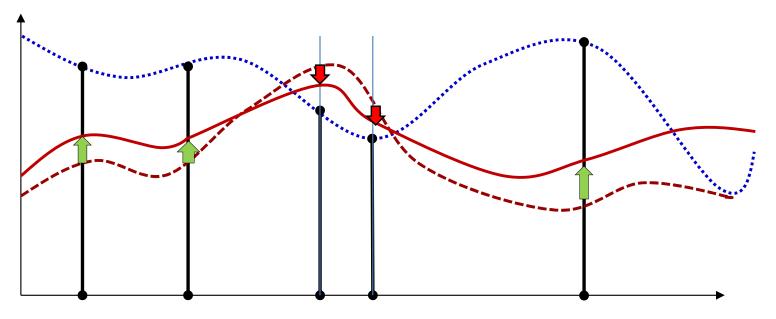


- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points



- Start with an initial function
- Adjust its value at *all* points to make the outputs closer to the required value
 - Gradient descent adjusts parameters to adjust the function value at *all* points
 - Repeat this iteratively until we get arbitrarily close to the target function at the training points

Effect of number of samples



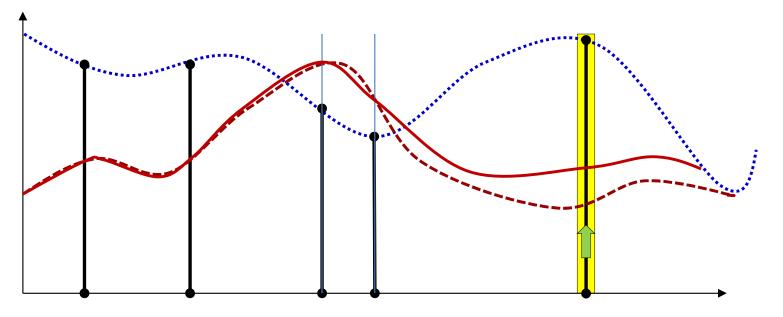
- Problem with conventional gradient descent: we try to simultaneously adjust the function at *all* training points
 - We must process *all* training points before making a single adjustment
 - <mark>"Batch"</mark> update

Select all that are true

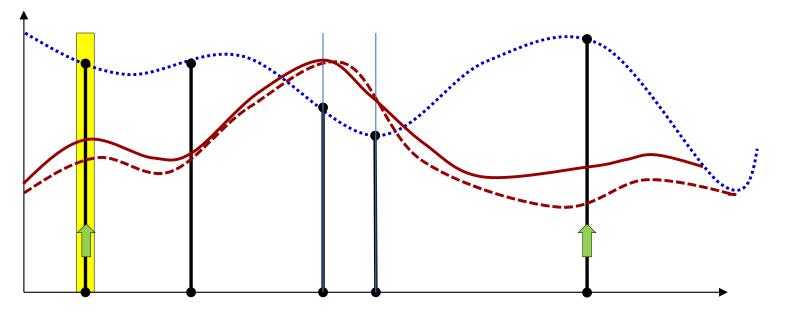
- The actual loss function we try to minimize requires batch updates
- Batch updates minimize the total loss over the entire training data
- Batch updates optimize the actual loss function
- Batch updates require processing the entire training data before we perform a single update

Select all that are true [all correct]

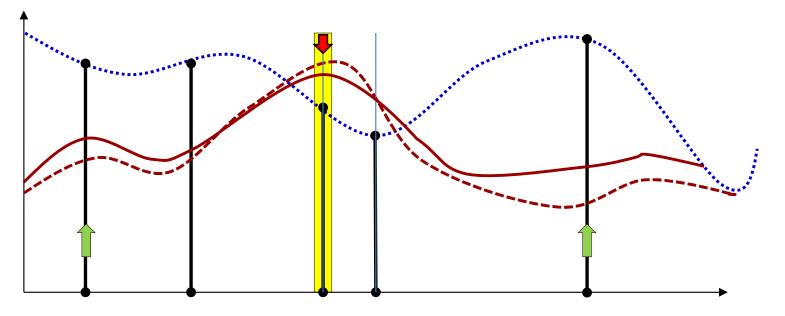
- The actual loss function we try to minimize requires batch updates
- Batch updates minimize the total loss over the entire training data
- Batch updates optimize the actual loss function
- Batch updates require processing the entire training data before we perform a single update



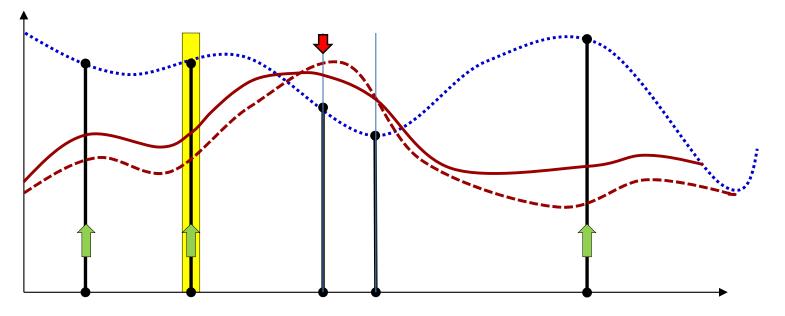
- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



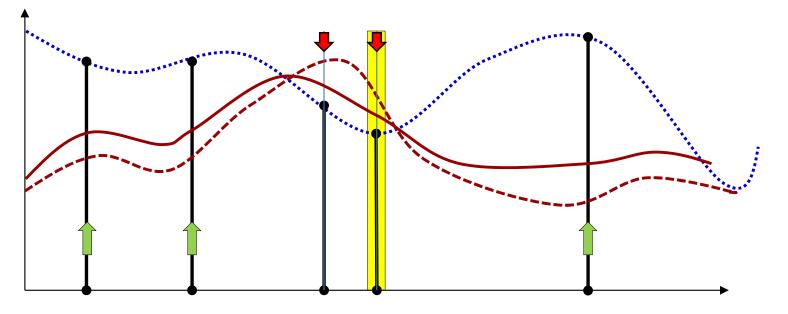
- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



- Alternative: adjust the function at one training point at a time
 - Keep adjustments small



- Alternative: adjust the function at one training point at a time
 - Keep adjustments small
 - Eventually, when we have processed all the training points, we will have adjusted the entire function
 - With *greater* overall adjustment than we would if we made a single "Batch" update

Incremental Update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights W_1, W_2, \dots, W_K
- Do:
 - For all t = 1:T
 - For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

 $W_k = W_k - \eta \nabla_{W_k} \mathbf{Div}(\mathbf{Y}_t, \mathbf{d}_t)^T$

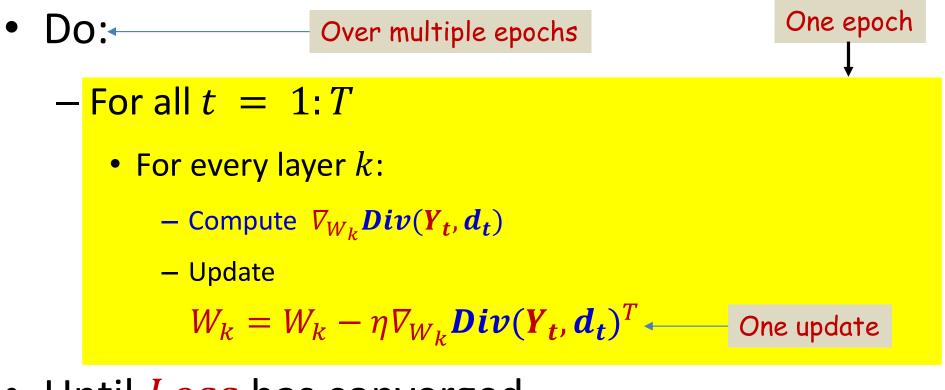
• Until *Loss* has converged

Incremental Updates

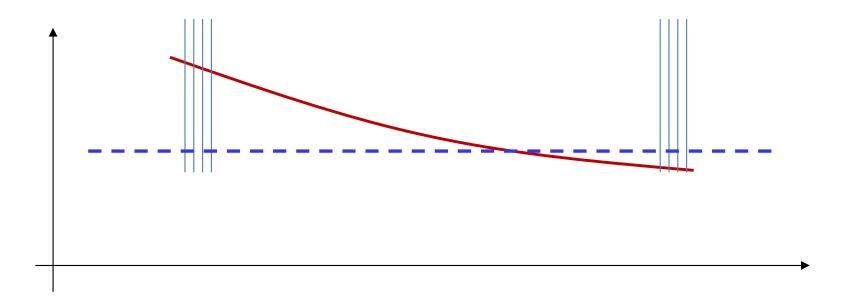
- The iterations can make multiple passes over the data
- A single pass through the entire training data is called an "epoch"
 - An epoch over a training set with T samples results in T updates of parameters

Incremental Update

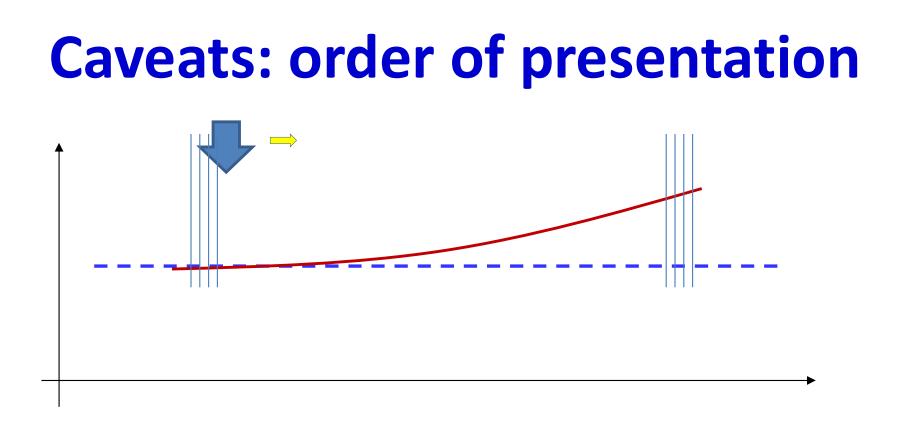
- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights W_1, W_2, \dots, W_K



Until Loss has converged



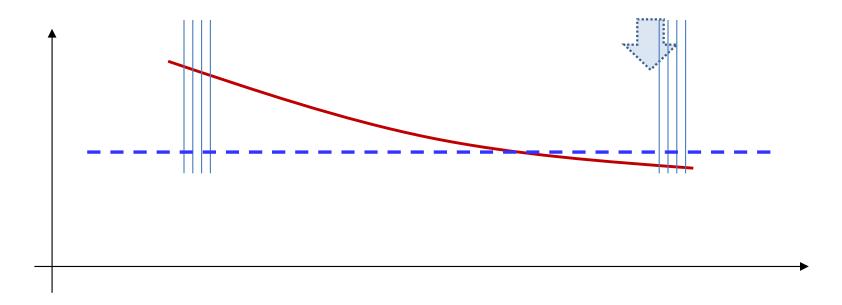
• If we loop through the samples in the same order, we may get *cyclic* behavior



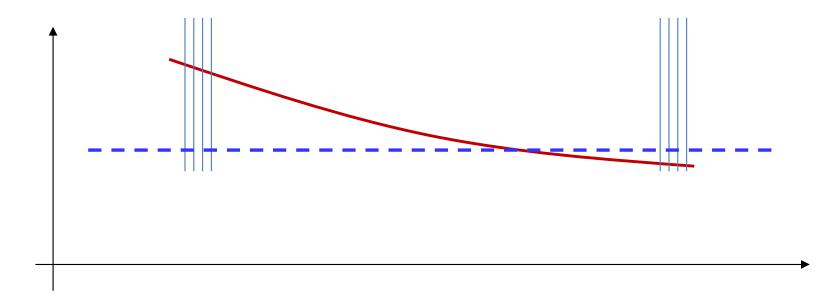
• If we loop through the samples in the same order, we may get *cyclic* behavior



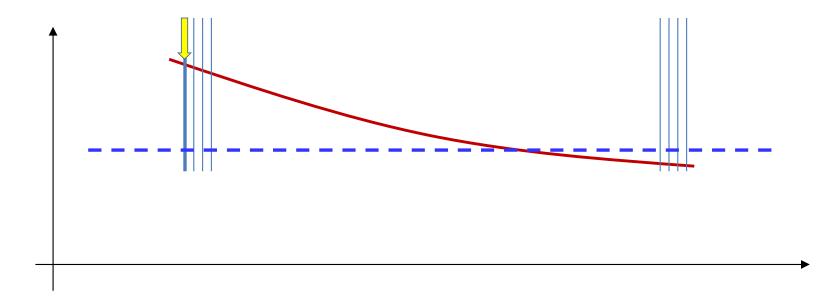
• If we loop through the samples in the same order, we may get *cyclic* behavior



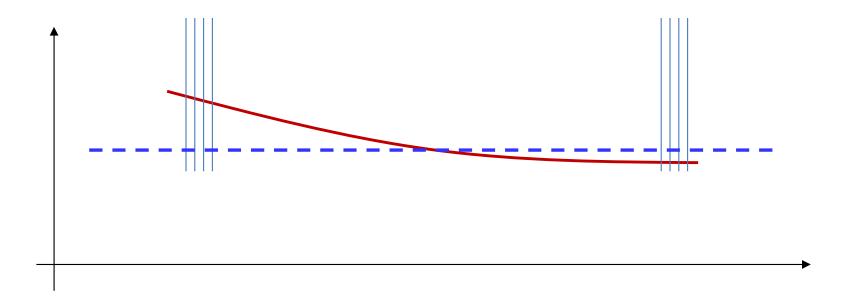
 If we loop through the samples in the same order, we may get cyclic behavior



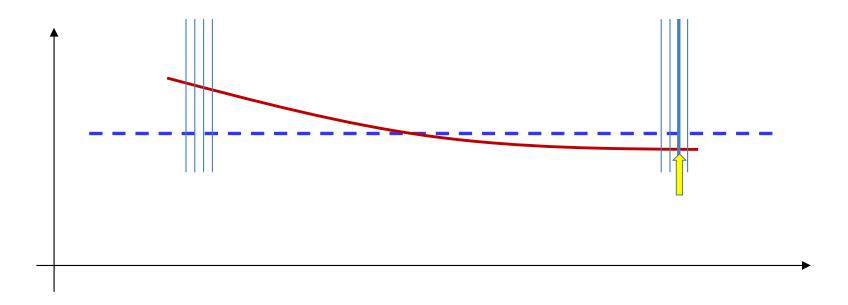
- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



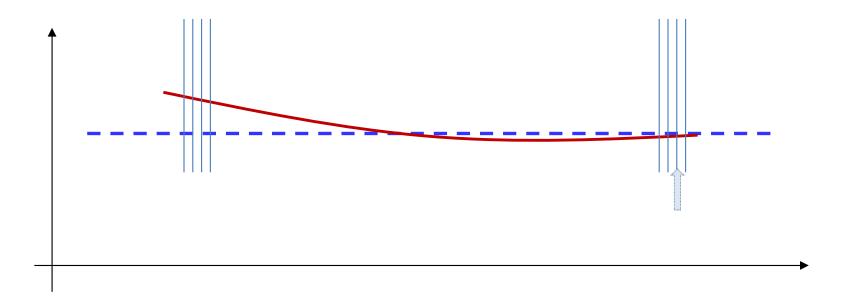
- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior



- If we loop through the samples in the same order, we may get cyclic behavior
- We must go through them *randomly* to get more convergent behavior

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Initialize all weights W_1, W_2, \dots, W_K
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For all t = 1:T
 - For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update
 - $W_k = W_k \eta \nabla_{W_k} \mathbf{D} i \boldsymbol{\nu} (\boldsymbol{Y}_t, \boldsymbol{d}_t)^T$
- Until Loss has converged

Story so far

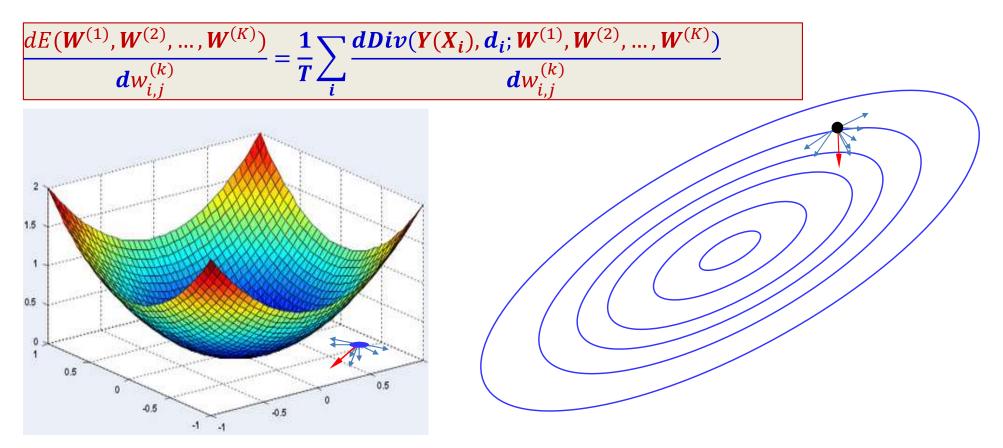
- In any gradient descent optimization problem, presenting training instances incrementally can be more effective than presenting them all at once
 - Provided training instances are provided in random order
 - "Stochastic Gradient Descent"
- This also holds for training neural networks

Explanations and restrictions

- So why does this process of incremental updates work?
- Under what conditions?
- For "why": first consider a simplistic explanation that's often given

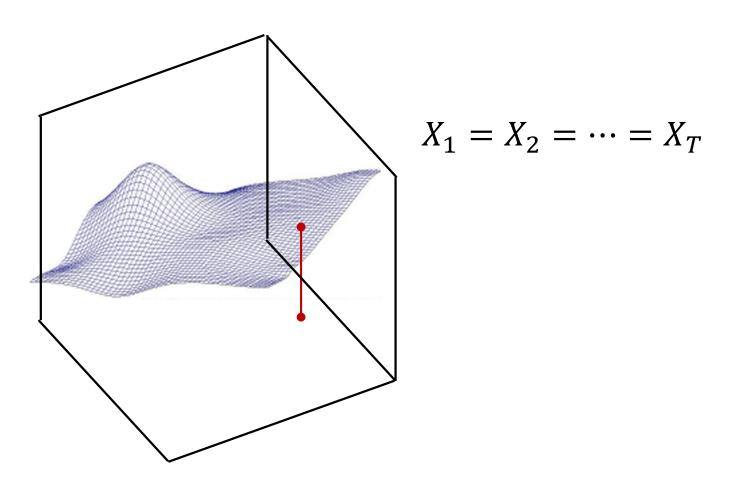
– Look at an extreme example

The expected behavior of the gradient



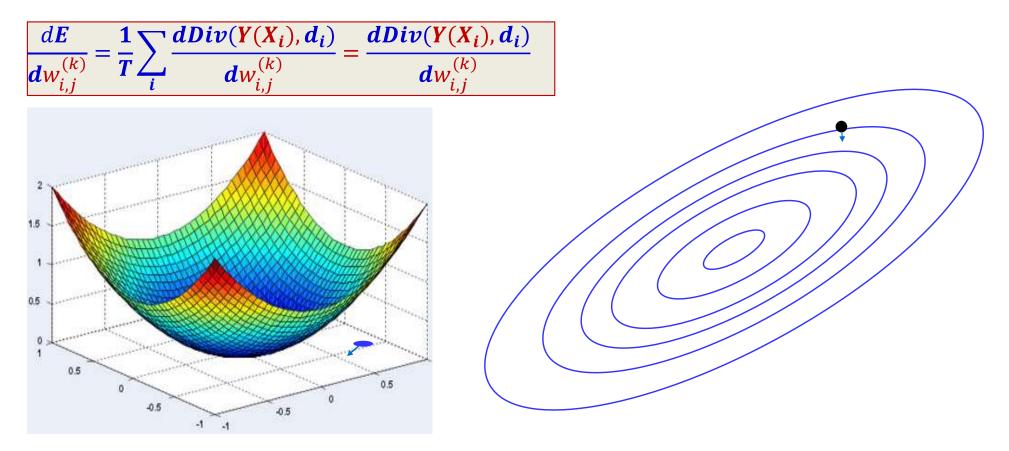
- The individual training instances contribute different directions to the overall gradient
 - The final gradient points is the average of individual gradients
 - It points towards the net direction

Extreme example

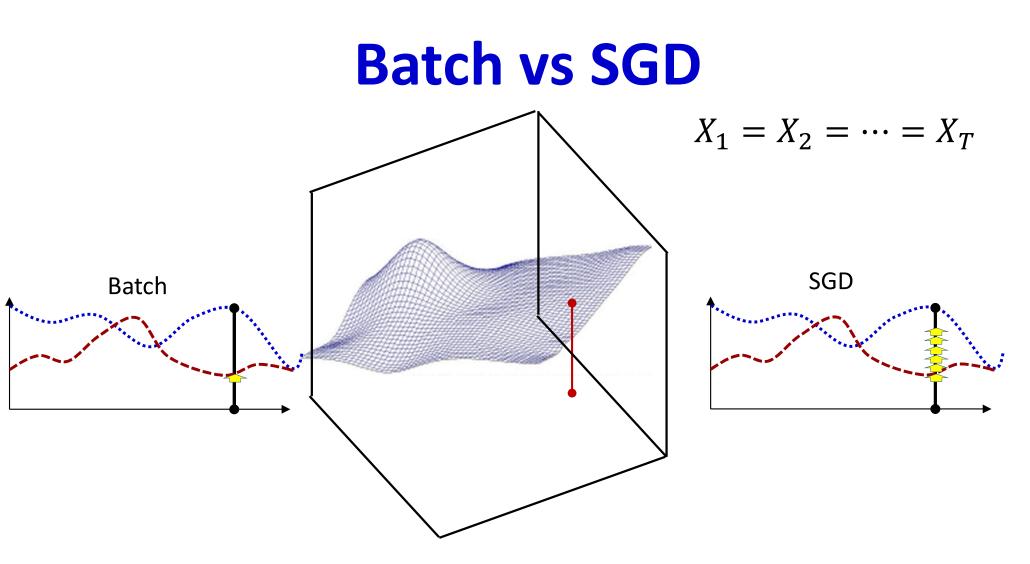


• Extreme instance of data clotting: all the training instances are exactly the same

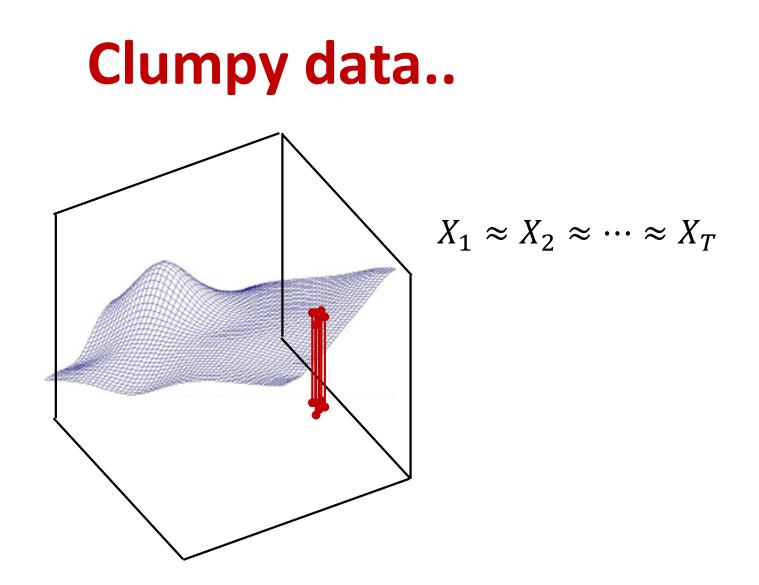
The expected behavior of the gradient



- The individual training instance contribute identical directions to the overall gradient
 - The final gradient points is simply the gradient for an individual instance

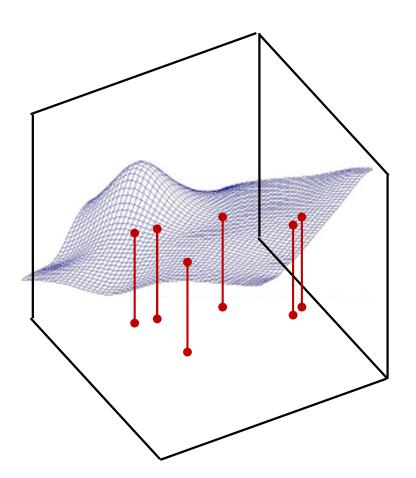


- Batch gradient descent operates over *T* training instances to get a *single* update
- SGD gets T updates for the same computation



 Also holds if all the data are not identical, but are tightly clumped together

Clumpy data..

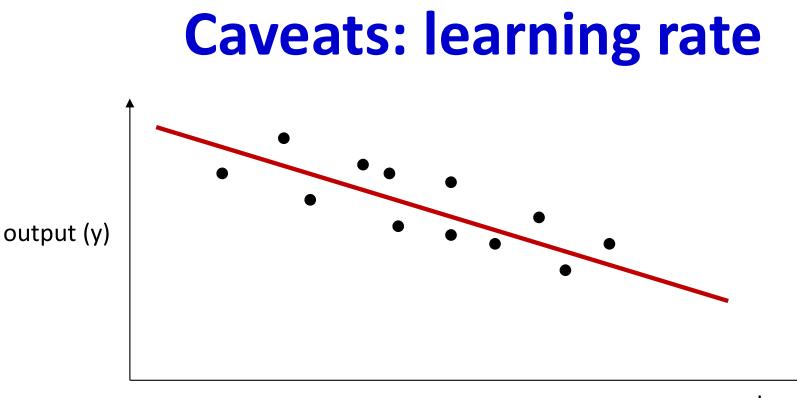


• As data get increasingly diverse, the benefits of incremental updates decrease, but do not entirely vanish

When does it work

• What are the considerations?

• And how well does it work?



Input (X)

- Except in the case of a perfect fit, even an optimal overall fit will look incorrect to *individual* instances
 - Correcting the function for individual instances will lead to never-ending, non-convergent updates
 - We must *shrink* the learning rate with iterations to prevent this
 - Correction for individual instances with the eventual miniscule learning rates will not modify the function

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

- For all
$$t = 1:T$$

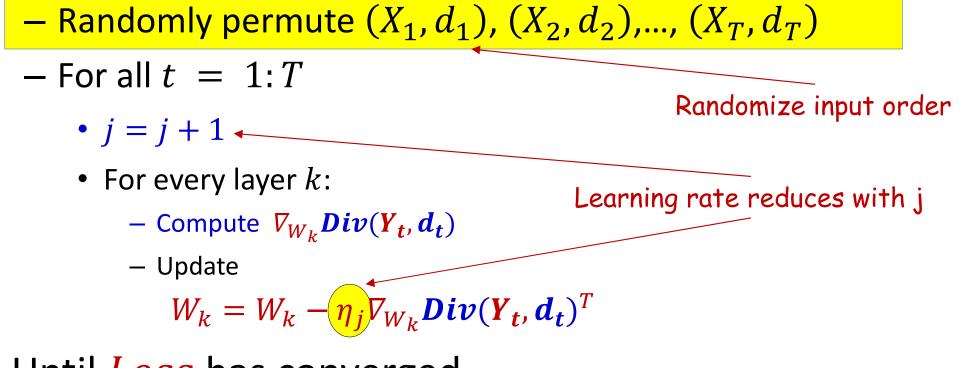
- j = j + 1
- For every layer k:
 - Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - Update

 $W_k = W_k - \eta_j \nabla_{W_k} \mathbf{D} i \boldsymbol{\nu} (\boldsymbol{Y}_t, \boldsymbol{d}_t)^T$

Until Loss has converged

Incremental Update: Stochastic Gradient Descent

- Given $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:



Until Loss has converged

SGD convergence

- SGD converges "almost surely" to a global or local minimum for most functions
 - Sufficient condition: step sizes follow the following conditions (Robbins and Munro 1951)

$$\sum_k \eta_k = \infty$$

• Eventually the entire parameter space can be searched

$$\sum_k \eta_k^2 < \infty$$

- The steps shrink
- The fastest converging series that satisfies both above requirements is

$$\eta_k \propto \frac{1}{k}$$

- This is the optimal rate of shrinking the step size for strongly convex functions
- More generally, the learning rates are heuristically determined
- If the loss is convex, SGD converges to the optimal solution
- For non-convex losses SGD converges to a local minimum

SGD convergence

- We will define convergence in terms of the number of iterations taken to get within ϵ of the optimal solution
 - $\left|f\left(W^{(k)}\right) f(W^*)\right| < \epsilon$
 - Note: f(W) here is the optimization objective on the *entire* training data, although SGD itself updates after every training instance
- Using the optimal learning rate 1/k, for strongly convex functions,

$$\left|f(W^{(k)}) - f(W^*)\right| < \frac{1}{k} \left|f(W^{(0)}) - f(W^*)\right|$$

- Strongly convex \rightarrow Can be placed inside a quadratic bowl, touching at any point
- Giving us the iterations to ϵ convergence as $O\left(\frac{1}{\epsilon}\right)$
- For generically convex (but not strongly convex) function, various proofs report an ϵ convergence of $\frac{1}{\sqrt{k}}$ using a learning rate of $\frac{1}{\sqrt{k}}$.

Batch gradient convergence

In contrast, using the batch update method, for strongly convex functions,

 $\left| f(W^{(k)}) - f(W^*) \right| < c^k \left| f(W^{(0)}) - f(W^*) \right|$

– Giving us the iterations to ϵ convergence as $O\left(log\left(\frac{1}{\epsilon}\right)\right)$

- For generic convex functions, iterations to ϵ convergence is $O\left(\frac{1}{\epsilon}\right)$
- Batch gradients converge "faster"

But SGD performs T updates for every batch update

SGD Convergence: Loss value

lf:

- f is λ -strongly convex, and
- at step t we have a noisy estimate of the subgradient \hat{g}_t with $\mathbb{E}[\|\hat{g}_t\|^2] \leq G^2$ for all t,
- and we use step size $\eta_t = 1/\lambda_t$

Then for any T > 1:

$$E[f(w_T) - f(w^*)] \le \frac{17G^2(1 + \log(T))}{\lambda T}$$

SGD Convergence

- We can bound the expected difference between the loss over our data using the optimal weights w^* and the weights w_T at any single iteration to $\mathcal{O}\left(\frac{\log(T)}{T}\right)$ for strongly convex loss or $\mathcal{O}\left(\frac{\log(T)}{\sqrt{T}}\right)$ for convex loss
- Averaging schemes can improve the bound to $\mathcal{O}\left(\frac{1}{T}\right)$ and $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$
- Smoothness of the loss is not required

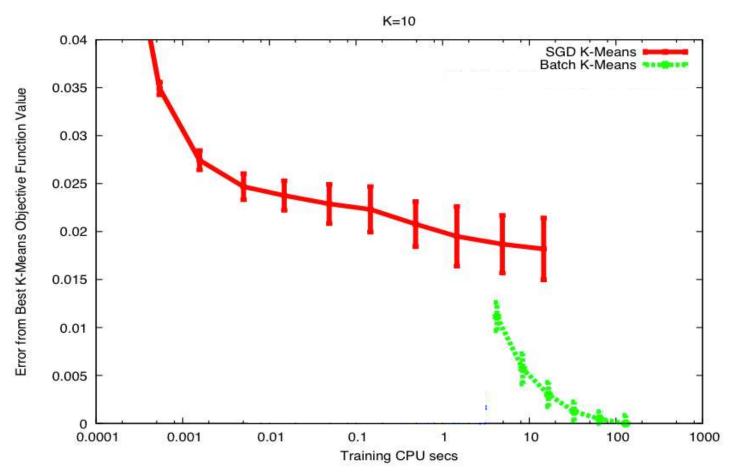
SGD Convergence and weight averaging

Polynomial Decay Averaging:

$$\overline{w}_t^{\gamma} = \left(1 - \frac{\gamma + 1}{t + \gamma}\right) \overline{w}_{t-1}^{\gamma} + \frac{\gamma + 1}{t + \gamma} w_t$$

With γ some small positive constant, e.g. $\gamma = 3$ Achieves $\mathcal{O}\left(\frac{1}{T}\right)$ (strongly convex) and $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ (convex) convergence

SGD example



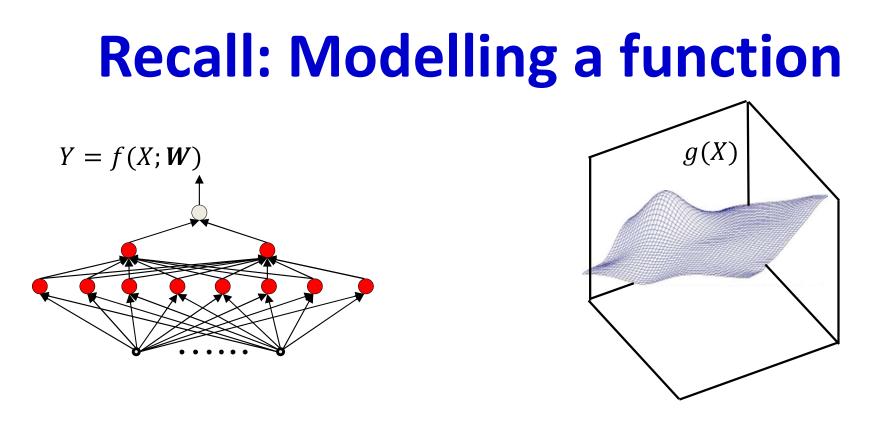
- A simpler problem: K-means
- Note: SGD converges faster
 - But to a poorer minimum
- Also note the rather large variation between runs
 - Let's try to understand these results..

Select all that are true

- SGD is an online version of batch updates
- SGD can have oscillatory behavior if we do not randomize the order of the inputs
- SGD can converge faster than batch updates, but arrive at poorer optima
- SGD convergence to the global optimum can only be guaranteed if step sizes shrink across iterations, but sum to infinity in the limit

Select all that are true [all correct]

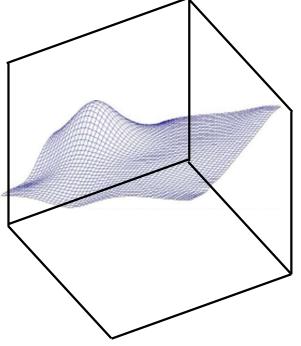
- SGD is an online version of batch updates
- SGD can have oscillatory behavior if we do not randomize the order of the inputs
- SGD can converge faster than batch updates, but arrive at poorer optima
- SGD convergence to the global optimum can only be guaranteed if step sizes shrink across iterations, but sum to infinity in the limit

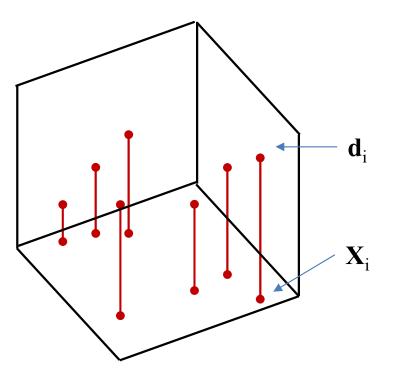


To learn a network f (X; W) to model a function g(X) we minimize the *expected divergence*

$$\widehat{\boldsymbol{W}} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X; W), g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E\left[div(f(X; W), g(X))\right]$$

Recall: The Empirical risk



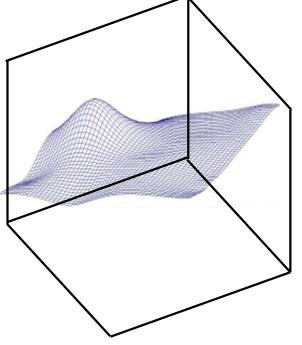


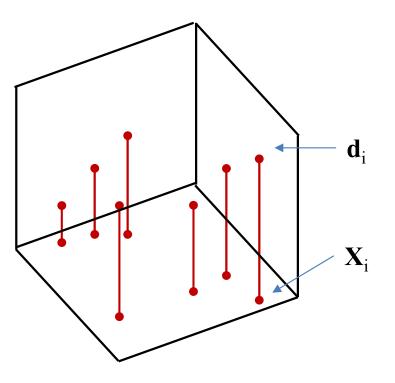
• In practice, we minimize the *empirical risk (or loss)*

$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$
$$\widehat{W} = \underset{W}{\operatorname{argmin}} Loss(W)$$

• The expected value of the empirical risk is actually the expected divergence E[Loss(W)] = E[div(f(X; W), g(X))]

Recall: The Empirical risk





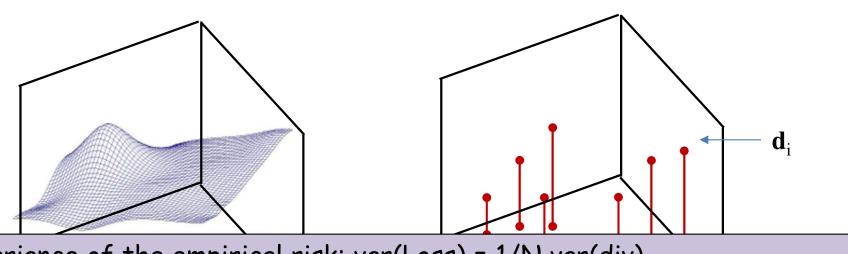
• In practice, we minimize the *empirical risk (or loss)*

$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected divergence Though there is no guarantee that minimizing it will minimize the expected divergence

E[Loss(W)] = E[div(f(X; W), g(X))]

Recall: The Empirical risk

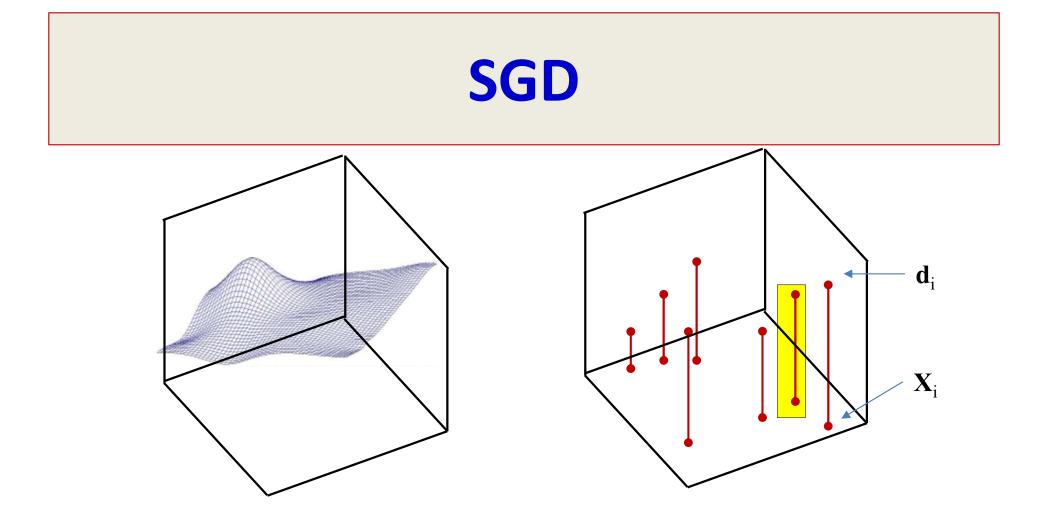


The variance of the empirical risk: var(Loss) = 1/N var(div) The variance of the estimator is proportional to 1/N The larger this variance, the greater the likelihood that the W that minimizes the empirical risk will differ significantly from the W that minimizes the expected divergence

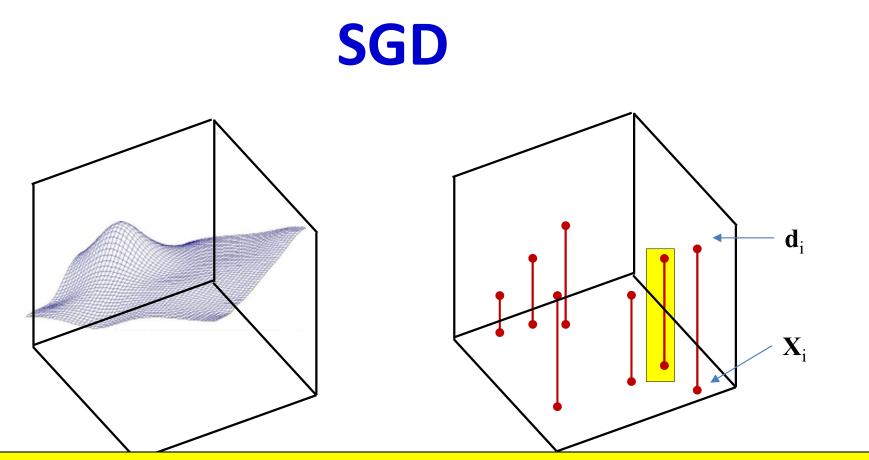
$$Loss(W) = \frac{1}{N} \sum_{i=1}^{N} div(f(X_i; W), d_i)$$

The empirical risk is an unbiased estimate of the expected divergence Though there is no guarantee that minimizing it will minimize the expected divergence

E[Loss(W)] = E[div(f(X; W), g(X))]



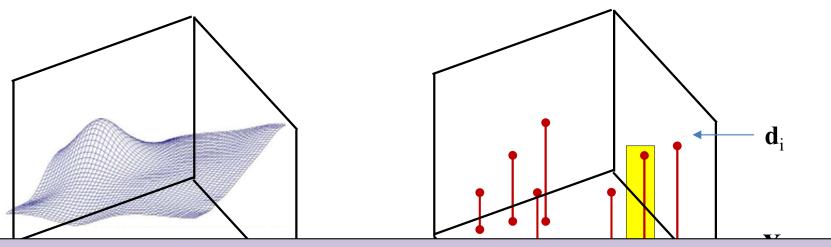
- At each iteration, **SGD** focuses on the divergence of a **single** sample $div(f(X_i; W), d_i)$
- The *expected value* of the *sample error* is *still* the expected divergence E[div(f(X; W), g(X))]



The sample divergence is also an *unbiased* estimate of the expected error

- At each iteration, SGD focuses on the divergence of a single sample div(f(X_i; W), d_i)
- The expected value of the sample error is **still** the expected divergence E[div(f(X; W), g(X))] 60

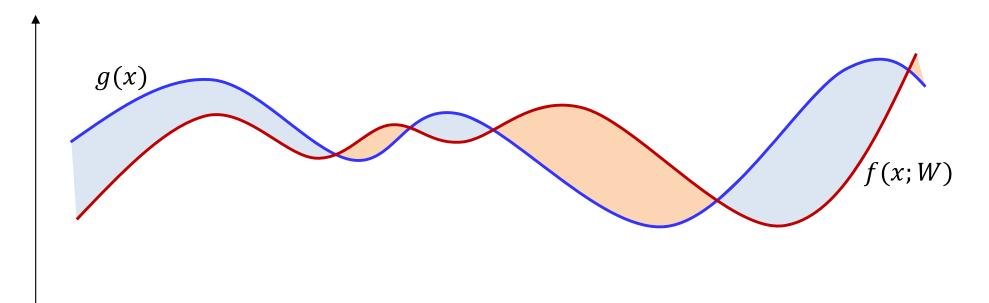
SGD



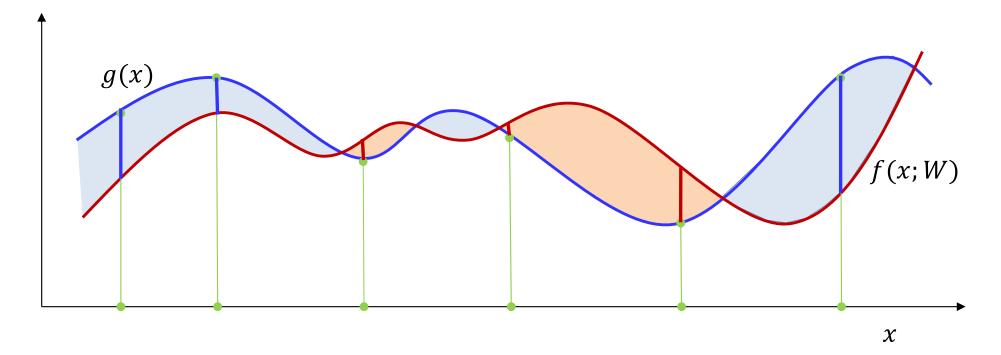
The variance of the sample divergence is the variance of the divergence itself: var(div). This is N times the variance of the empirical average minimized by batch update

The sample divergence is also an *unbiased* estimate of the expected error

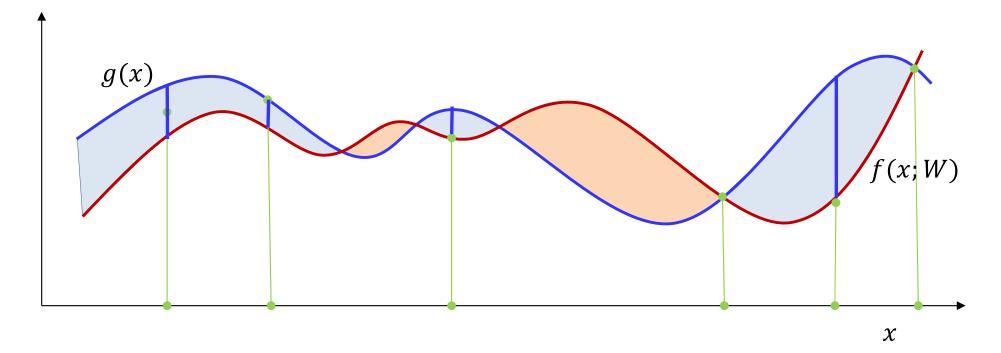
- At each iteration, SGD focuses on the divergence of a single sample div(f(X_i; W), d_i)
- The expected value of the sample error is **still** the expected divergence $E\left[div(f(X; W), g(X))\right]_{61}$



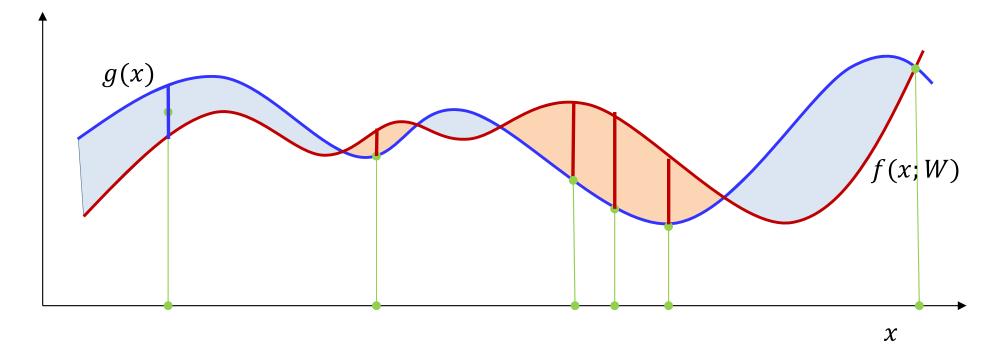
- The blue curve is the function being approximated
- The red curve is the approximation by the model at a given W
- The heights of the shaded regions represent the point-by-point error
 - The divergence is a function of the error
 - We want to find the W that minimizes the average divergence



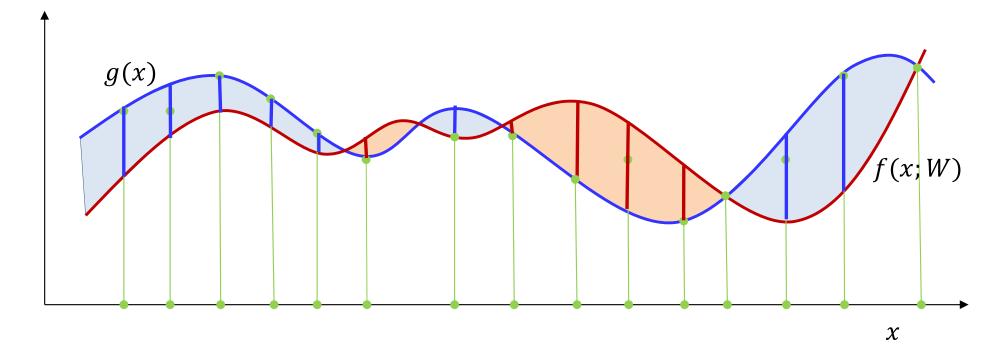
 Sample estimate approximates the shaded area with the average length of the lines



- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples

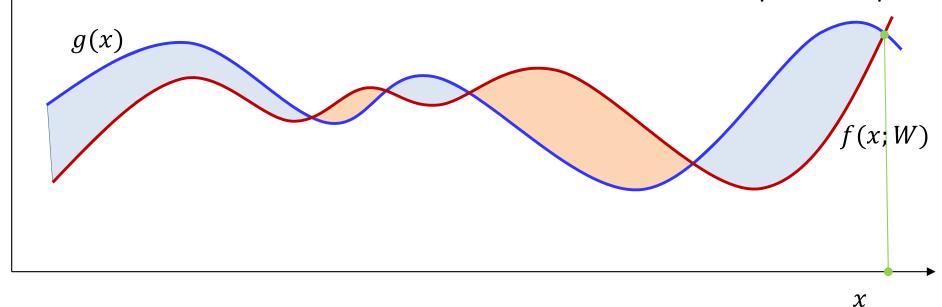


- Sample estimate approximates the shaded area with the average length of the lines
- This average length will change with position of the samples



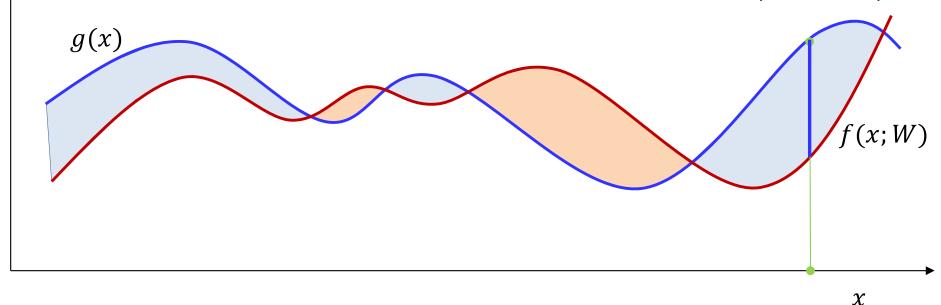
- Having more samples makes the estimate more robust to changes in the position of samples
 - The variance of the estimate is smaller

With only one sample



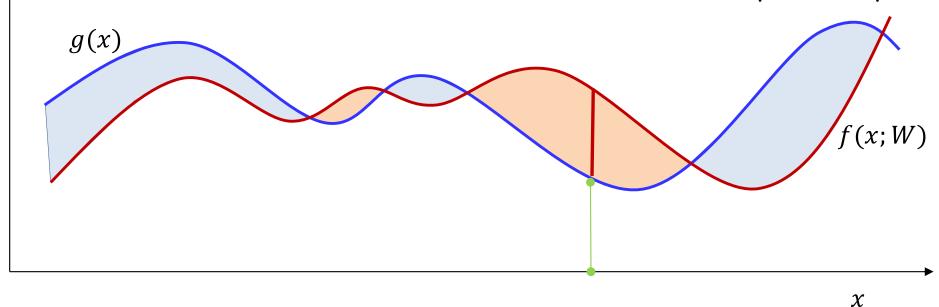
- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

With only one sample



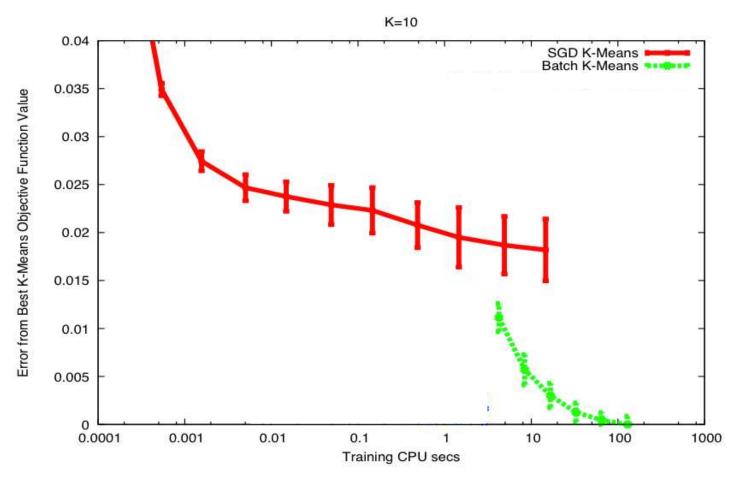
- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

With only one sample



- Having very few samples makes the estimate swing wildly with the sample position
 - Since our estimator learns the W to minimize this estimate, the learned W too can swing wildly

SGD example

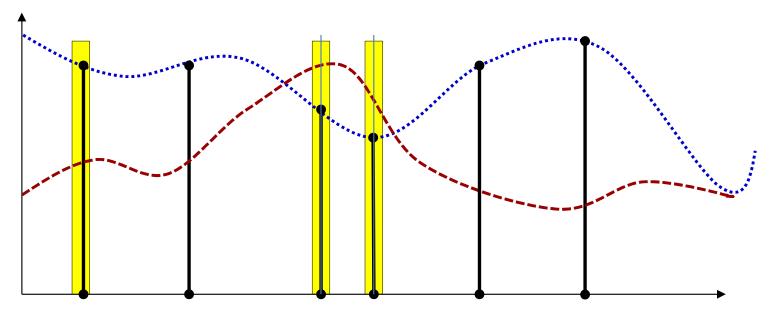


- A simpler problem: K-means
- Note: SGD converges faster
- But also has large variation between runs

SGD vs batch

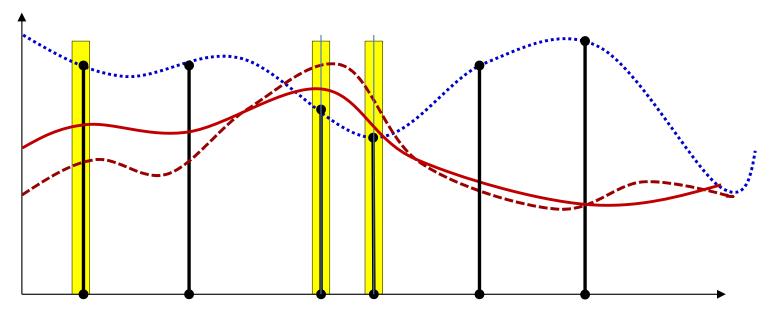
- SGD uses the gradient from only one sample at a time, and is consequently high variance
- But also provides significantly quicker updates than batch
- Is there a good medium?

Alternative: Mini-batch update



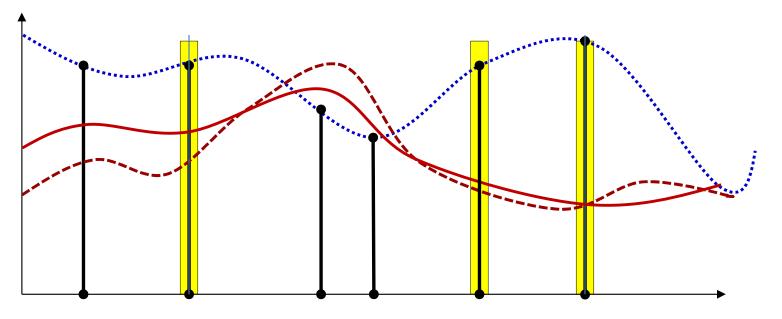
- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

Alternative: Mini-batch update



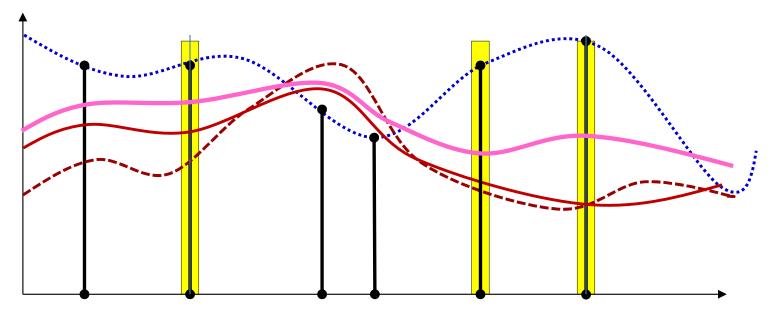
- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

Alternative: Mini-batch update



- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

Alternative: Mini-batch update



- Alternative: adjust the function at a small, randomly chosen subset of points
 - Keep adjustments small
 - If the subsets cover the training set, we will have adjusted the entire function
- As before, vary the subsets randomly in different passes through the training data

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $-\Delta W_k = 0$
 - For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)^T$
 - Update
 - For every layer k:

 $W_k = W_k - \eta_j \Delta W_k$

• Until *Err* has converged

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $-\Delta W_k = 0$
 - For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\Delta W_k = \Delta W_k + \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)^T$
 - Update
 - For every layer k:

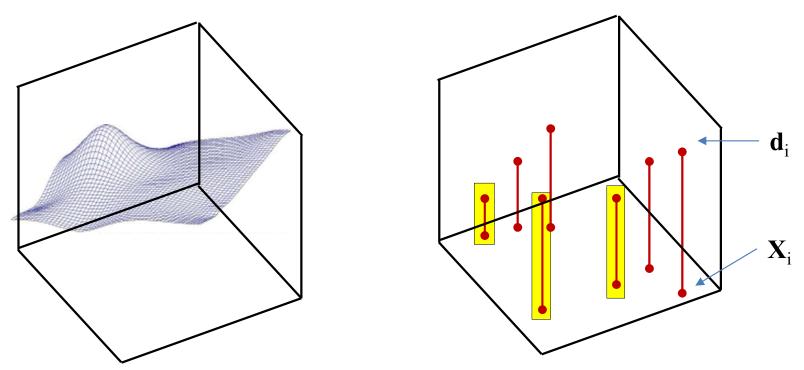
 $W_k = W_k - \eta_j \Delta W_k$

Until *Err* has converged

Mini-batch size

Shrinking step size

Mini Batches

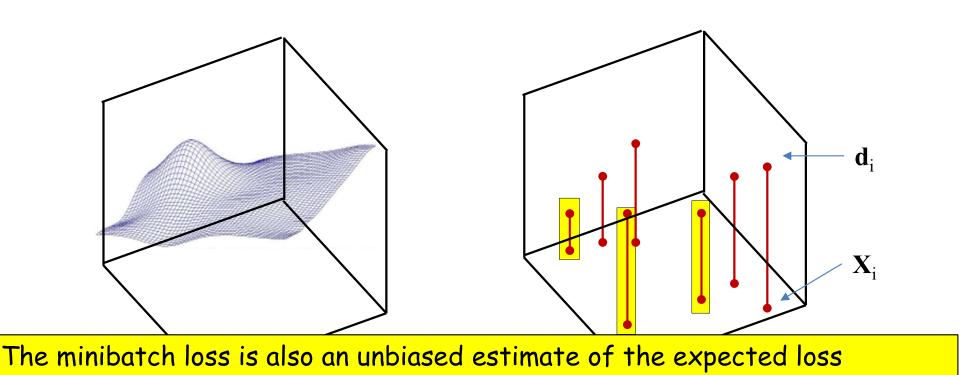


• Mini-batch updates compute and minimize a *batch loss*

$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence E[MiniBatchLoss(W)] = E[div(f(X; W), g(X))]

Mini Batches

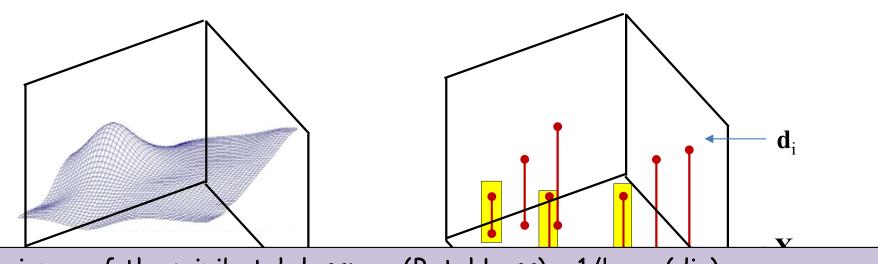


• Mini-batch updates compute and minimize a *batch loss*

$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence E[MiniBatchLoss(W)] = E[div(f(X;W),g(X))]

Mini Batches



The variance of the minibatch loss: var(BatchLoss) = 1/b var(div) This will be much smaller than the variance of the sample error in SGD

The minibatch loss is also an unbiased estimate of the expected error

• Mini-batch updates compute and minimize a *batch loss*

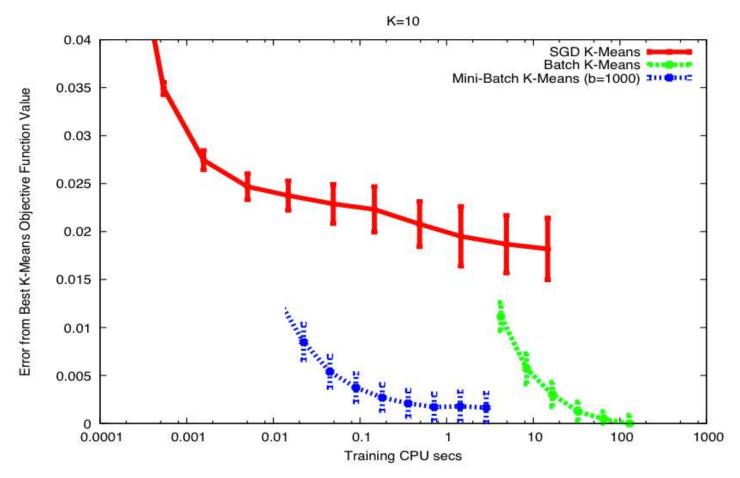
$$MiniBatchLoss(W) = \frac{1}{b} \sum_{i=1}^{b} div(f(X_i; W), d_i)$$

• The expected value of the batch loss is also the expected divergence E[MiniBatchLoss(W)] = E[div(f(X;W),g(X))]

Minibatch convergence

- For convex functions, convergence rate for SGD is $\mathcal{O}\left(\frac{1}{\sqrt{\nu}}\right)$.
- For *mini-batch* updates with batches of size *b*, the convergence rate is $O\left(\frac{1}{\sqrt{bk}} + \frac{1}{k}\right)$
 - Apparently an improvement of \sqrt{b} over SGD
 - But since the batch size is b, we perform b times as many computations per iteration as SGD
 - We actually get a *degradation* of \sqrt{b}
- However, in practice
 - The objectives are generally not convex; mini-batches are more effective with the right learning rates
 - We also get additional benefits of vector processing

SGD example

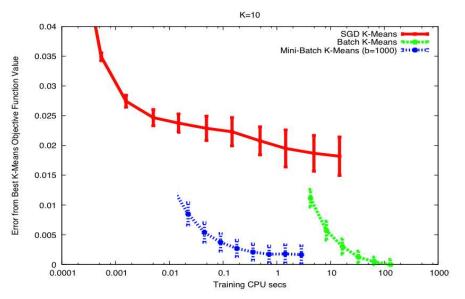


- Mini-batch performs comparably to batch training on this simple problem
 - But converges orders of magnitude faster

Measuring Loss

 Convergence is generally defined in terms of the overall training loss

Not sample or batch loss



- Infeasible to actually measure the overall training loss after each iteration
- More typically, we estimate is as
 - Divergence or classification error on a held-out set
 - Average sample/batch loss over the past N samples/batches

Training and minibatches

- In practice, training is usually performed using minibatches
 - The mini-batch size is generally set to the largest that your hardware will support (in memory) without compromising overall compute time
 - Larger minibatches = less variance
 - Larger minibatches = few updates per epoch
- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
 - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation

PIAZZA @531

Select all that are true

- Minibatch descent is an online version of batch updates
- Minibatch descent is faster than SGD when the batch size is 1
- The variance of minibatch updates decreases with batch size
- Minibatch gradient approaches batch updates in variance, but SGD in efficiency when we use vector processing and large batches

Select all that are true

- Minibatch descent is an online version of batch updates
- Minibatch descent is faster than SGD when the batch size is 1 [false]
- The variance of minibatch updates decreases with batch size
- Minibatch gradient approaches batch updates in variance, but SGD in efficiency when we use vector processing and large batches

Story so far

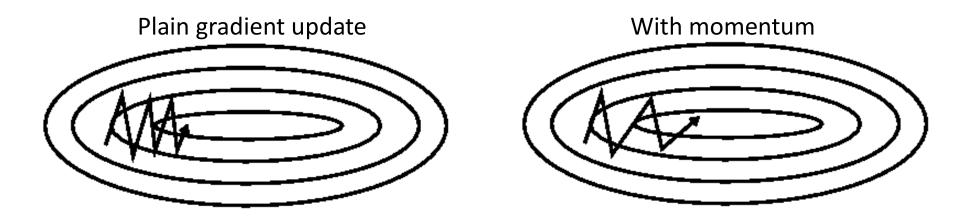
- SGD: Presenting training instances one-at-a-time can be more effective than full-batch training
 - Provided they are provided in random order
- For SGD to converge, the learning rate must shrink sufficiently rapidly with iterations
 - Otherwise the learning will continuously "chase" the latest sample
- SGD estimates have higher variance than batch estimates
- Minibatch updates operate on *batches* of instances at a time
 - Estimates have lower variance than SGD
 - Convergence rate is theoretically worse than SGD
 - But we compensate by being able to perform batch processing

Training and minibatches

- Convergence depends on learning rate
 - Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
 - Advanced methods: Adaptive updates, where the learning rate is itself determined as part of the estimation

Moving on: Topics for the day

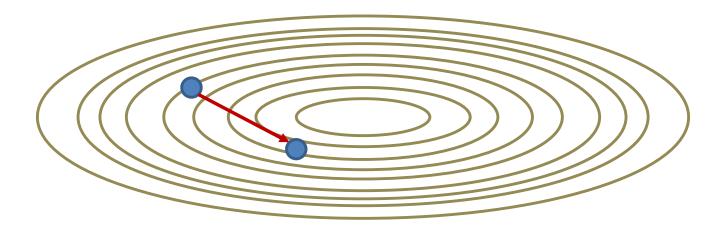
- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences..
 - Activations
 - Normalizations



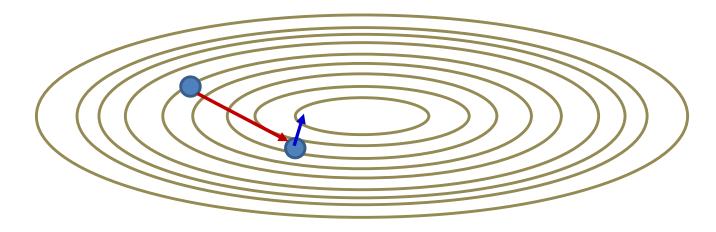
• The momentum method maintains a running average of all gradients until the *current* step

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss \left(W^{(k-1)} \right)^{\mathsf{T}}$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

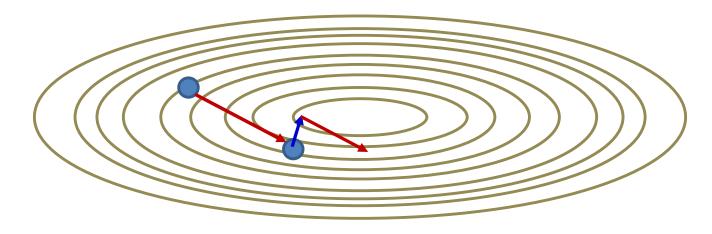
- Typical β value is 0.9
- The running average steps
 - Get longer in directions where gradient retains the same sign
 - Become shorter in directions where the sign keeps flipping



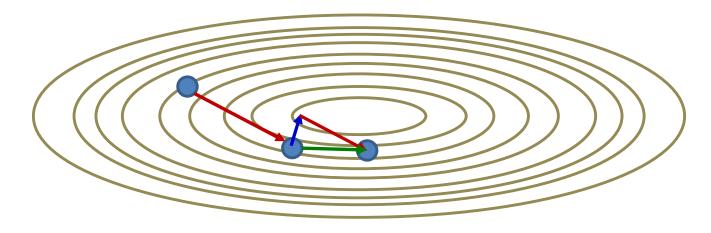
- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$
- At any iteration, to compute the current step:



- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$
- At any iteration, to compute the current step:
 First compute the gradient step at the current location



- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$
- At any iteration, to compute the current step:
 - First compute the gradient step at the current location
 - Then add in the scaled *previous* step
 - Which is actually a running average

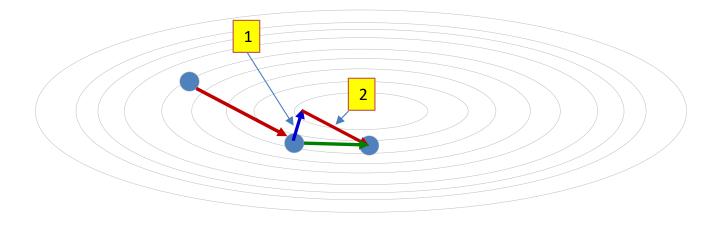


• The momentum method

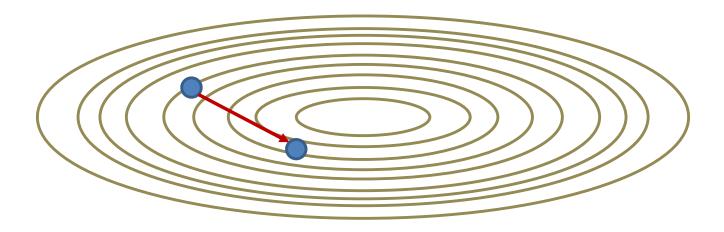
$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)})^T$$

- At any iteration, to compute the current step:
 - First compute the gradient step at the current location
 - Then add in the scaled *previous* step
 - Which is actually a running average
 - To get the final step

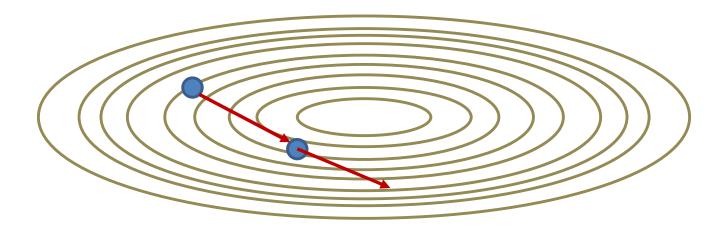
Momentum update



- Momentum update steps are actually computed in two stages
 - First: We take a step against the gradient at the current location
 - Second: Then we add a scaled version of the previous step
- The procedure can be made more optimal by reversing the order of operations..

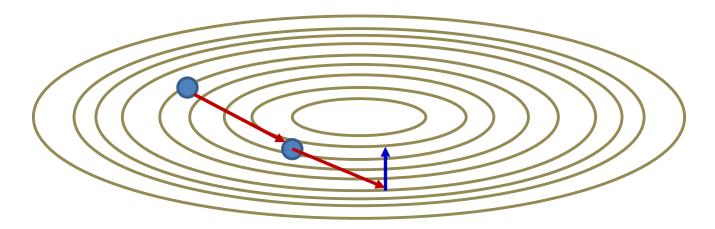


- Change the order of operations
- At any iteration, to compute the current step:

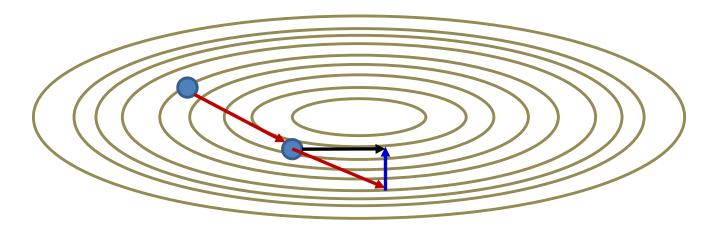


- Change the order of operations
- At any iteration, to compute the current step:

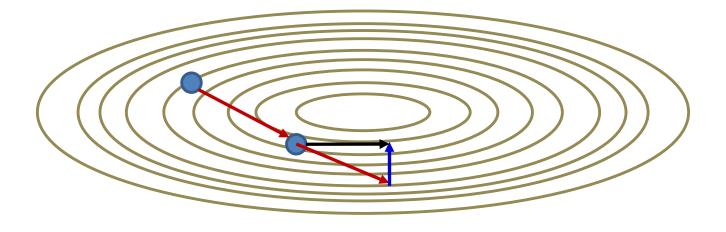
First extend the previous step



- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position



- Change the order of operations
- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient step at the resultant position
 - Add the two to obtain the final step



• Nestorov's method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss (W^{(k-1)} + \beta \Delta W^{(k-1)})^T$ $W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$



- Comparison with momentum (example from Hinton)
- Converges much faster

Momentum and incremental updates

SGD instance or minibatch loss

• The momentum method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss \left(W^{(k-1)} \right)^T$$

- Incremental SGD and mini-batch gradients tend to have high variance
- Momentum smooths out the variations
 - Smoother and faster convergence

Momentum: Mini-batch update

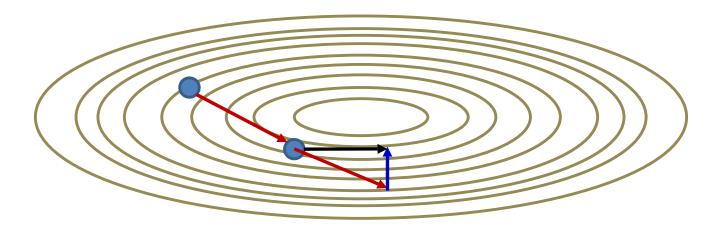
- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, \dots, W_K; j = 0, \Delta W_k = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:

$$- \nabla_{W_k} Loss = 0$$

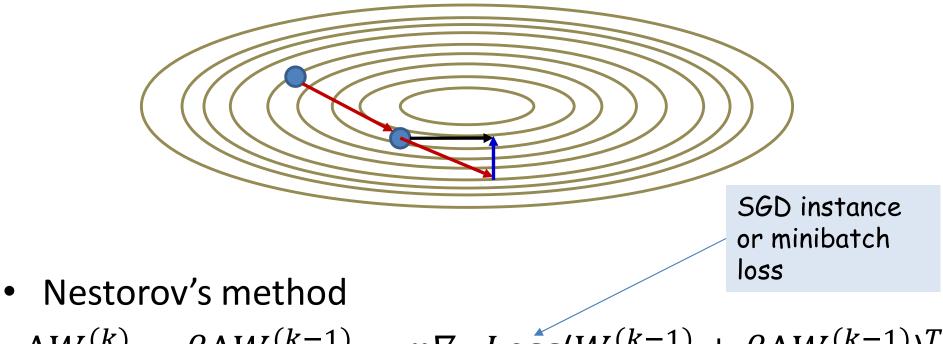
- For t' = t : t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\nabla_{W_k} Loss += \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)$
- Update
 - For every layer k:

$$\Delta W_k = \beta \Delta W_k - \eta_j (\nabla_{W_k} Loss)^T$$
$$W_k = W_k + \Delta W_k$$

• Until *Loss* has converged



- At any iteration, to compute the current step:
 - First extend the previous step
 - Then compute the gradient at the resultant position
 - Add the two to obtain the final step
- This also applies directly to incremental update methods
 - The accelerated gradient smooths out the variance in the gradients



 $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Loss(W^{(k-1)} + \beta \Delta W^{(k-1)})^T$ $W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$

Nestorov: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K; j = 0, \Delta W_k = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1: b: T
 - j = j + 1
 - For every layer k:
 - $W_k = W_k + \beta \Delta W_k$
 - $\nabla_{W_k} Loss = 0$
 - For t' = t : t+b-1
 - For every layer *k*:
 - » Compute $\nabla_{W_k} Div(Y_t, d_t)$
 - » $\nabla_{W_k} Loss += \frac{1}{b} \nabla_{W_k} Div(Y_t, d_t)$
 - Update
 - For every layer k:

$$W_{k} = W_{k} - \eta_{j} \nabla_{W_{k}} Loss^{T}$$
$$\Delta W_{k} = \beta \Delta W_{k} - \eta_{j} \nabla_{W_{k}} Loss^{T}$$

• Until *Loss* has converged

The other term in the update

• Standard gradient descent rule

 $W \leftarrow W - \eta \nabla_W L(W)$

- Gradient descent invokes two terms for updates
 - The derivative
 - and the learning rate

The other term in the update

• Standard gradient descent rule

$$W \leftarrow W - \eta \nabla_W L(W)$$

- Gradient descent invokes two terms for updates
 - The derivative
 - and the learning rate
- Momentum methods fix this term to reduce unstable oscillation

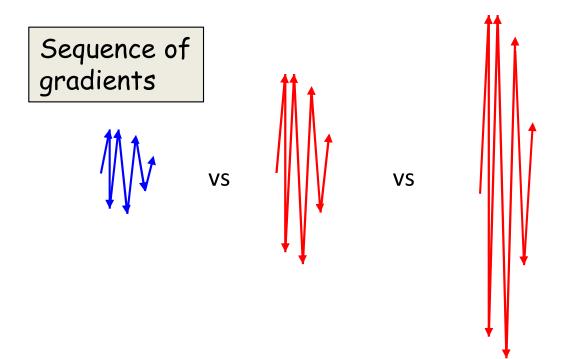
The other term in the update

• Standard gradient descent rule

$$W \leftarrow W - \eta \nabla_W L(W)$$

- Gradient descent invokes two terms for updates
 - The derivative
 - and the learning rate
- Momentum methods fix this term to reduce unstable oscillation
- What about this term?

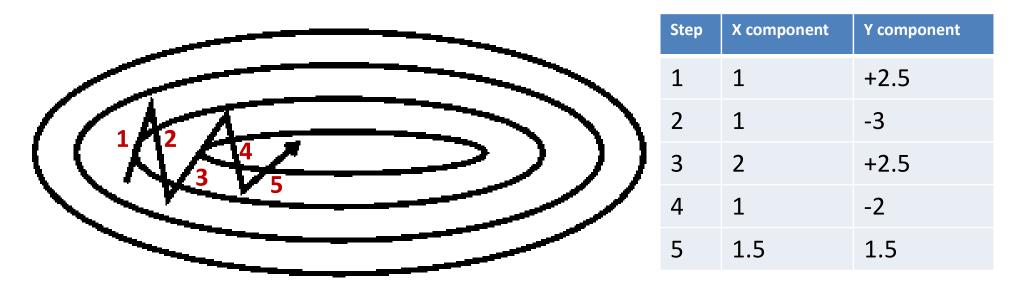
Adjusting the learning rate



With separate learning rates in each direction, which should have the lowest learning rate in the vertical direction?

- Have separate learning rates for each component
- Directions in which the derivatives swing more should likely have lower learning rates
 - Is likely indicative of more wildly swinging behavior
- Directions of greater swing are indicated by total movement
 - Direction of greater movement should have lower learning rate

Smoothing the trajectory



- Observation: Steps in "oscillatory" directions show large total movement
 - In the example, total motion in the vertical direction is much greater than in the horizontal direction
- Solution: Lower learning rate in the vertical direction than in the horizontal direction
 - Based on total motion
 - As quantified by RMS value

RMS Prop

- Notation:
 - Formulae are by parameter
 - Derivative of loss w.r.t any individual parameter w is shown as $\partial_w D$
 - Batch or minibatch loss, or individual divergence for batch/minibatch/SGD
 - The **squared** derivative is $\partial_w^2 D = (\partial_w D)^2$
 - Short-hand notation represents the squared derivative, not the second derivative
 - The *mean squared* derivative is a running estimate of the average squared derivative. We will show this as $E[\partial_w^2 D]$
- Modified update rule: We want to
 - scale down learning rates for terms with large mean squared derivatives
 - scale up learning rates for terms with small mean squared derivatives

RMS Prop

• This is a variant on the *basic* mini-batch SGD algorithm

• Procedure:

- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale learning rate of the parameter by the *inverse* of the *root* mean squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1-\gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

RMS Prop

• This is a variant on the *basic* mini-batch SGD algorithm

• Procedure:

- Maintain a running estimate of the mean squared value of derivatives for each parameter
- Scale learning rate of the parameter by the *inverse* of the *root* mean squared derivative

$$E[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1-\gamma)(\partial_w^2 D)_k$$
$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

Note similarity to RPROP The magnitude of the derivative is being normalized out

RMS Prop (updates are for each weight of each layer)

- Do:
 - Randomly shuffle inputs to change their order
 - Initialize: k = 1; for all weights w in all layers, $E[\partial_w^2 D]_k = 0$
 - For all t = 1: B: T (incrementing in blocks of B inputs)
 - For all weights in all layers initialize $(\partial_w D)_k = 0$
 - For b = 0: B 1
 - Compute
 - » Output $Y(X_{t+b})$

» Compute gradient
$$\frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$$

» Compute
$$(\partial_w D)_k += \frac{1}{B} \frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$$

• update: for all
$$w \in \left\{ w_{\{ij\}}^k \forall i, j, k \right\}$$

$$E\left[\partial_w^2 D\right]_k = \gamma E\left[\partial_w^2 D\right]_{k-1} + (1-\gamma)\left(\partial_w^2 D\right)_k$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{E[\partial_w^2 D]_k + \epsilon}} \partial_w D$$

Typical values: $\gamma = 0.9$ $\eta = 0.001$

- k = k+1
- Until loss has converged

All the terms in gradient descent

- Standard gradient descent rule $W \leftarrow W - \eta \nabla_W L(W)$
- RMSprop only adapts the learning rate
 by total movement
- Momentum only smooths the gradient

All the terms in gradient descent

• Standard gradient descent rule

$$W \leftarrow W - \eta \nabla_W L(W)$$

- RMSprop only adapts the learning rate
 by total movement
- Momentum only smooths the gradient
- How about combining both?

ADAM: RMSprop with momentum

- RMS prop only adapts the learning rate
- Momentum only smooths the gradient
- ADAM combines the two
- Procedure:
 - Maintain a running estimate of the mean derivative for each parameter
 - Maintain a running estimate of the mean squared value of derivatives for each parameter
 - Scale update of the parameter by the *inverse* of the *root mean squared* derivative

ADAM: RMSprop with momentum

- RMS prop only adapts the learning rate
- Momentum only smooths the gradient
- ADAM combines the two

• Procedure:

- Maintain a running estimate of the mean derivative for each parameter.
- Maintain a running estimate of the mean squared value parameter
- Scale update of the parameter by the *inverse* of the derivative

Ensures that the δ and γ terms do not dominate in early iterations

$$m_{k} = \delta m_{k-1} + (1 - \delta)(\partial_{w}D)_{k}$$
$$v_{k} = \gamma v_{k-1} + (1 - \gamma)(\partial_{w}^{2}D)_{k}$$

$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \hat{m}_k$$

ADAM: RMSprop with momentum

Typically μ_0 is 0 and δ is close to 1. So $(1 - \delta) \approx 0$. Without the denominator term μ_k will stay close to 0 for k = 0,1,2,... for a long time, resulting in minimal parameter updates

The denominator term ensures that $\mu_1 = (\partial_w D)_1$ and updates actually happen

For large k, the denominator just becomes 1

- Maintain a running estimate of the mean squared value parameter
- Scale update of the parameter by the *inverse* of the derivative

$$m_{k} = \delta m_{k-1} + (1 - \delta)(\partial_{w}D)_{k}$$
$$v_{k} = \gamma v_{k-1} + (1 - \gamma)(\partial_{w}^{2}D)_{k}$$

Ensures that the δ and γ terms do not dominate in early iterations

$$\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}$$

$$w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \hat{m}_k$$

Other variants of the same theme

- Many:
 - Adagrad
 - AdaDelta
 - AdaMax
 - ...
- Generally no explicit learning rate to optimize
 - But come with other hyper parameters to be optimized
 - Typical params:
 - RMSProp: $\eta = 0.001, \gamma = 0.9$
 - ADAM: $\eta = 0.001, \delta = 0.9, \gamma = 0.999$

PIAZZA @532

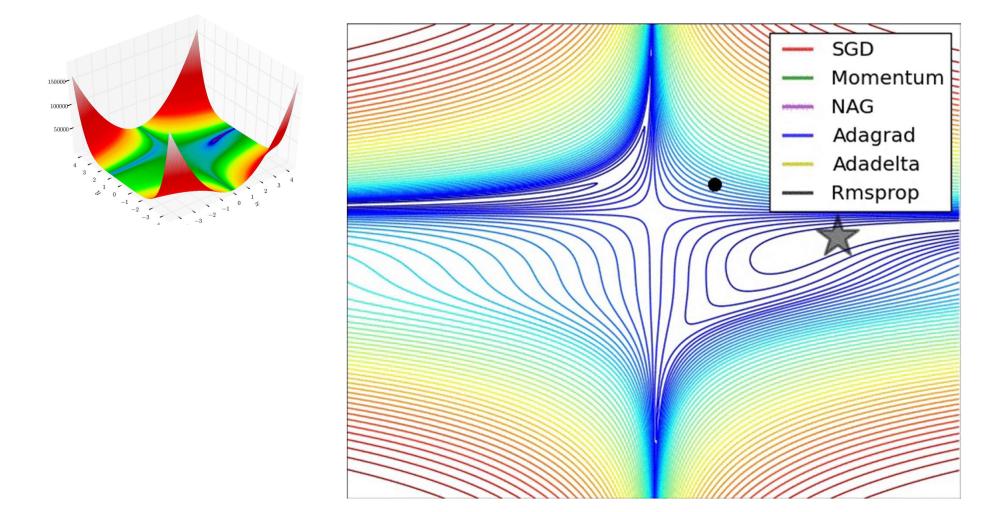
Which of the following are true

- Vanilla SGD considers the long-term trends of gradients in update steps
- Momentum methods consider the long-term average of derivatives to make updates
- RMSprop only considers the second order moment of derivatives, but not their average trend, to make updates
- ADAM considers both the average trend and second moment of derivatives to make updates
- Trend-based optimizers like momentum, RMSprop and ADAM are important to smooth out the variance of SGD or minibatch updates

Which of the following are true

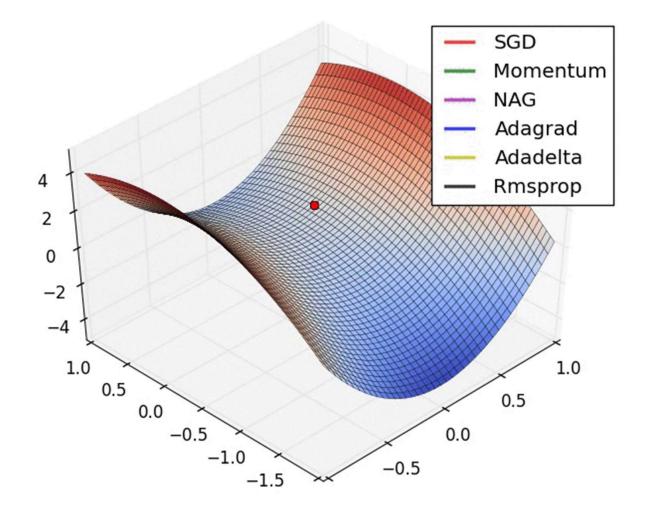
- Vanilla SGD considers the long-term trends of gradients in update steps [false]
- Momentum methods consider the long-term average of derivatives to make updates
- RMSprop only considers the second order moment of derivatives, but not their average trend, to make updates
- ADAM considers both the average trend and second moment of derivatives to make updates
- Trend-based optimizers like momentum, RMSprop and ADAM are important to smooth out the variance of SGD or minibatch updates

Visualizing the optimizers: Beale's Function



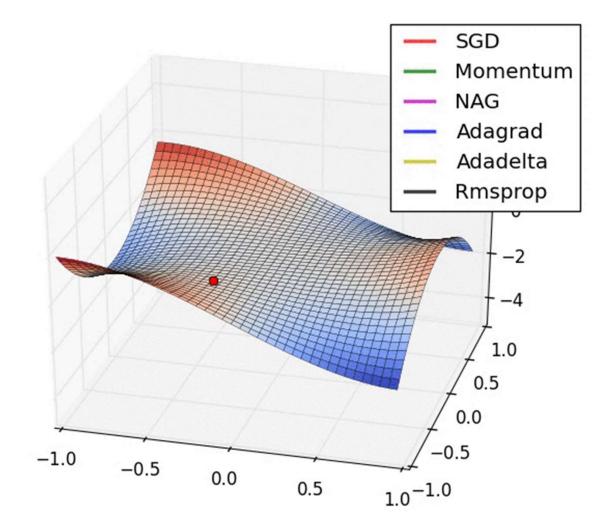
• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Long Valley



• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Saddle Point



• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Story so far

- Gradient descent can be sped up by incremental updates
 - Convergence is guaranteed under most conditions
 - Learning rate must shrink with time for convergence
 - Stochastic gradient descent: update after each observation. Can be much faster than batch learning
 - Mini-batch updates: update after batches. Can be more efficient than SGD
- Convergence can be improved using smoothed updates
 - RMSprop and more advanced techniques