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Training Neural Networks:
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Recap

Neural networks are universal approximators

We must train them to approximate any

function

Networks are trained to minimize total “error”
on a training set

— We do so through empirical risk minimization

We use variants of gradient descent to do so

— Gradients are computed through backpropagation




Recap

* Vanilla gradient descent may be too slow or unstable

* Better convergence can be obtained through

— Second order methods that normalize the variation across
dimensions

— Adaptive or decaying learning rates that can improve
convergence

— Methods like Rprop that decouple the dimensions can
Improve convergence

— Momentum methods which emphasize directions of
steady improvement and deemphasize unstable directions




Moving on...

Incremental updates

Revisiting “trend” algorithms
Generalization

Tricks of the trade
— Divergences..

— Activations

— Normalizations



Moving on: Topics for the day

Incremental updates

Revisiting “trend” algorithms
Generalization

Tricks of the trade
— Divergences..

— Activations

— Normalizations



The training formulation

output (y) o
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* Given input output pairs at a number of
locations, estimate the entire function



Gradient descent
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Start with an initial function



Gradient descent
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e Start with an initial function
* Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points
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Gradient descent

e Start with an initial function
* Adjust its value at all points to make the outputs closer to the required
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Gradient descent

e Start with an initial function
* Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points
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Effect of number of samples

* Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points

— We must process all training points before making a single
adjustment

— “Batch”

update
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Poll 1

PIAZZA @528

Select all that are true

e The actual loss function we try to minimize requires batch updates
e Batch updates minimize the total loss over the entire training data
e Batch updates optimize the actual loss function

e Batch updates require processing the entire training data before we perform a single
update
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Poll 1

Select all that are true [all correct]

e The actual loss function we try to minimize requires batch updates
e Batch updates minimize the total loss over the entire training data
e Batch updates optimize the actual loss function

e Batch updates require processing the entire training data before we perform a single
update
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Alternative: Incremental
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* Alternative: adjust the function at one training poi
— Keep adjustments small
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Alternative: Incremental update

Alternative: adjust the function at one training point at a time
— Keep adjustments small
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Alternative: Incremental update
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* Alternative: adjust the function at one training point at a time
— Keep adjustments small



Alternative: Incremental update

Alternative: adjust the function at one training point at a time
— Keep adjustments small
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Alternative: Incremental update

‘e

* Alternative: adjust the function at one training point at a time
— Keep adjustments small

— Eventually, when we have processed all the training points, we will
have adjusted the entire function

* With greater overall adjustment than we would if we made a single “Batch”
update

20



Incremental Update

Given (Xl) dl)r (Xz, dZ)l"-r (XT) dT)
Initialize all weights W, W, ..., Wy

Do:
—Forallt = 1: T

* For every layer k:
— Compute Wy, Div(Y,, d;)
— Update
Wy = Wi —nVy, Div(Yy, dy)"

Until Loss has converged

21



Incremental Updates

* The iterations can make multiple passes over
the data

* Asingle pass through the entire training data
is called an “epoch”

— An epoch over a training set with T samples
results in T updates of parameters



Incremental Update

Given (Xl) dl)r (Xz, dZ)l'"r (XT) dT)
Initialize all weights W, W, ..., Wy

Do:- Over multiple epochs

—Forallt = 1: T

* For every layer k:
— Compute Wy, Div(Y,, d;)
— Update
Wy = Wy —nVy, Div(Y,,dy)"

Until Loss has converged

One epoch

!

One update
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Caveats: order of presentation

* |f we loop through the samples in the same
order, we may get cyclic behavior
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Caveats: order of presentation
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* |f we loop through the samples in the same
order, we may get cyclic behavior
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Caveats: order of presentation
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* |f we loop through the samples in the same
order, we may get cyclic behavior
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Caveats: order of presentation

* |f we loop through the samples in the same
order, we may get cyclic behavior
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Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior
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Caveats: order of presentation

* If we loop through the samples in the same order,
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convergent behavior
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Caveats: order of presentation
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* We must go through them randomly to get more
convergent behavior
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Caveats: order of presentation
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* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior
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Incremental Update: Stochastic
Gradient Descent
Given (Xl) dl)l (Xz, dz),..., (XT, dT)
Initialize all weights W, W, ..., Wy

Do:

— Randomly permute (X,d,), (X5,d5),..., (X7, dr)
— Forallt = 1:T

* Forevery layer k:
— Compute Vy, Div(Y,, d;)
— Update
Wi = Wi —nVy, Div(Yy, dy)"

Until Loss has converged
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Story so far

* [n any gradient descent optimization problem,
presenting training instances incrementally
can be more effective than presenting them
all at once

— Provided training instances are provided in
random order

— “Stochastic Gradient Descent”

* This also holds for training neural networks



Explanations and restrictions

* So why does this process of incremental
updates work?

e Under what conditions?

* For “why”: first consider a simplistic
explanation that’s often given

— Look at an extreme example



The expected behavior of the gradient
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* The individual training instances contribute different directions to the

overall gradient

— The final gradient points is the average of individual gradients

— It points towards the net direction
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Extreme example

— I\

* Extreme instance of data clotting: all the
training instances are exactly the same



The expected behavior of the gradient
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* The individual training instance contribute identical
directions to the overall gradient

— The final gradient points is simply the gradient for an individual

instance
38



Batch vs SGD

* Batch gradient descent operates over T training instances
to get a single update

 SGD gets T updates for the same computation



Clumpy data..

* Also holds if all the data are not identical, but
are tightly clumped together
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Clumpy data..

e As data get increasingly diverse, the benefits of incremental
updates decrease, but do not entirely vanish
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When does it work

e What are the considerations?

e And how well does it work?



Caveats: learning rate

output (y)

Input (3()
* Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances

— Correcting the function for individual instances will lead to
never-ending, non-convergent updates

— We must shrink the learning rate with iterations to prevent this

e Correction for individual instances with the eventual miniscule
learning rates will not modify the function



Incremental Update: Stochastic

Gradient Descent
Given (Xl) dl)l (Xz, dz),..., (XT, dT)
Initialize all weights W, W,, ..., Wy; j=10
Do:

— Randomly permute (X{,dq), (X5,d5),..., (X7, d7r)
— Forallt = 1:T
cj=j+1
* Forevery layer k:
— Compute Vy, Div(Yy, d;)
— Update
Wy = Wy —n;Vy, Div(Y,, dy)"

Until Loss has converged
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Incremental Update: Stochastic

Gradient Descent
* Given (Xl) dl)l (Xz, dz),..., (XT, dT)
* Initialize all weights W, W,, ..., Wg,; j=0
* Do:

— Randomly permute (X4, dl), (X,,d5),..., X7, d7)
— Forallt = 1:T T

Randomize input order

’]=]+1 

* Forevery layer k: Learning rate reduces with j

— Compute Vy, Div(Yy, d;)
— Update /

Wk — Wk _@7WkDiv(Yt' dt)T
* Until Loss has converged
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SGD convergence

* SGD converges “almost surely” to a global or local minimum for most
functions

— Sufficient condition: step sizes follow the following conditions
(Robbins and Munro 1951)

Enk=00
Kk

* Eventually the entire parameter space can be searched
St <o
K

— The fastest converging series that satisfies both above requirements is

1
OC_
Nk 2

* This is the optimal rate of shrinking the step size for strongly convex functions

* The steps shrink

— More generally, the learning rates are heuristically determined
* Ifthe loss is convex, SGD converges to the optimal solution
* For non-convex losses SGD converges to a local minimum



SGD convergence

We will define convergence in terms of the number of iterations taken to
get within € of the optimal solution

— [f(W®) - fw™
— Note: f(W) here is the optimization objective on the entire training data,
although SGD itself updates after every training instance

<€

Using the optimal learning rate 1/k, for strongly convex functions,

1
[FW®) = fw)| < [f(W®) = Fw)
— Strongly convex = Can be placed inside a quadratic bowl, touching at any point

. : : 1
— Giving us the iterations to € convergence as 0 (E)

For generically convex (but not strongly convex) function, various proofs
1 1
report an € convergence of — using a learning rate of —.
P ® vk S8 5 vk



Batch gradient convergence

In contrast, using the batch update method, for strongly
convex functions,

FW®) - Fw)

< ckf(w®@) - Fw™)

— Giving us the iterations to € convergence as O (log e))

For generic convex functions, iterations to € convergence
. 1
is O (—)

€

Batch gradients converge “faster”
— But SGD performs T updates for every batch update



SGD Convergence: Loss value

If:
* fis A-strongly convex, and

e at step t we have a noisy estimate of the
subgradient g, with E[||g.]|*] < G for all t,

* and we use step sizen; = 1/,
Then forany T > 1:

17G?*(1 + log(T




SGD Convergence

 We can bound the expected difference between the
loss over our data using the optimal weights w™* and

the weights w at any single iterationto O (logT(T)) for
log(T)
VT

strongly convex loss or O ( ) for convex loss

* Averaging schemes can improve the bound to O (%)

and O (\/i?)

* Smoothness of the loss is not required

50



SGD Convergence and weight
averaging

Polynomial Decay Averaging:
+ 1 + 1
w)! = (1 4 )v_vg/_l | 4 Wy
t+y t+y
With y some small positive constant, e.g.y = 3

Achieves O ( ) (strongly convex) and O (\/17)

(convex) convergence



SGD example

K=10
0 S S S SR S

0.035

0.03

0.025

0.02 |

0.015 |

0.01

Error from Best K-Means Objective Function Value

0.005 |-

' SGD K-Means seses
Batch K-Means ==

0
0.0001 0.001 0.01 0.1 1 10

Training CPU secs

 Asimpler problem: K-means
* Note: SGD converges faster

— Buttoa poorer minimum

* Also note the rather large variation between runs
— Let’s try to understand these results..

100

1000
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Poll 2

PIAZZA @529

Select all that are true

e SGD is an online version of batch updates

e SGD can have oscillatory behavior if we do not randomize the order of the inputs

e SGD can converge faster than batch updates, but arrive at poorer optima

e SGD convergence to the global optimum can only be guaranteed if step sizes shrink
across iterations, but sum to infinity in the limit
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Poll 2

Select all that are true [all correct]

e SGD is an online version of batch updates

e SGD can have oscillatory behavior if we do not randomize the order of the inputs

e SGD can converge faster than batch updates, but arrive at poorer optima

e SGD convergence to the global optimum can only be guaranteed if step sizes shrink
across iterations, but sum to infinity in the limit
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Recall: Modelling a function

Y = F(X; W) %

* To learn a network f(X; W) to model a function g(X) we
minimize the expected divergence

—

W = argmin f div(f(X; W), g(X))P(X)dX
w X

= argmin E|div(f (X; W), g(X))]
w
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Recall: The Empirical risk

In practice, we minimize the empirical risk (or loss)

’ N
Loss(W ) = Nz div(f(X; W), d;)
i=1

W = argmin Loss(W)
%

The expected value of the empirical risk is actually the expected divergence
E[Loss(W)] = E[div(f(X; W), g(X))]

56



Recall: The Empirical risk

In practice, we minimize the empirical risk (or loss)

’ N
Loss(W) = Nz div(f(X; W), d;)

The empirical risk is an unbiased estimate of the expected divergence

Though there is no guarantee that minimizing it will minimize the
expected divergence

E[Loss(W)] = E[div(f(X; W), g(X))]




Recall: The Empirical risk

/

//

/

N

<_

The variance of the empirical risk: var(Loss) = 1/N var(div)
The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that
minimizes the empirical risk will differ significantly from the W that

minimizes the expected divergence

) N
Loss(W) = Nz div(f(X; W), d;)

The empirical risk is an unbiased estimate of the expected divergence
Though there is no guarantee that minimizing it will minimize the

expected divergence

E[Loss(W)] = E[di‘l;(f(X; W);Q(X))] '




SGD

e At each iteration, SGD focuses on the divergence
of a single sample div(f (X;; W), d;)

* The expected value of the sample error is still the
expected divergence E [div( fx;w),gx ))] .




SGD

The sample divergence is also an unbiased estimate of the expected error

e At each iteration, SGD focuses on the divergence
of a single sample div(f (X;; W), d;)

* The expected value of the sample error is still the
expected divergence E [div( fx;w),gx ))]




SGD

_— _—
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s X N |

The variance of the sample divergence is the variance of the divergence itself:
var(div). This is N times the variance of the empirical average minimized by
batch update

N\ -

The sample divergence is also an unbiased estimate of the expected error

e At each iteration, SGD focuses on the divergence
of a single sample div(f (X;; W), d;)

* The expected value of the sample error is still the
expected divergence E [div( fx;w),gx ))]




Explaining the variance

g(x)

fl W)

v

 The blue curve is the function being approximated
* The red curve is the approximation by the model at a given W

 The heights of the shaded regions represent the point-by-point error
— The divergence is a function of the error
— We want to find the W that minimizes the average divergence
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Explaining the variance

fl W)

X

 Sample estimate approximates the shaded area with the
average length of the lines
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Explaining the variance

* Sample estimate approximates the shaded area
with the average length of the lines

* This average length will change with position of
the samples
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Explaining the variance

* Sample estimate approximates the shaded area
with the average length of the lines

* This average length will change with position of
the samples
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Explaining the variance
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* Having more samples makes the estimate more

robust to changes in the position of samples

— The variance of the estimate is smaller
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Explaining the variance

With only one sample
/

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly



Explaining the variance

With only one sample

fl W)

X

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly
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Explaining the variance

With only one sample

X

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly



SGD example

K=10
0.04

Batch K-Means
0.035 |

0.03

0.025

0.02 |

0.015 |

0.01

Error from Best K-Means Objective Function Value

0.005 |-

" SGD K-Means s

U | i B o b s
0.0001 0.001 0.01 0.1 1 10 100
Training CPU secs

* Asimpler problem: K-means
* Note: SGD converges faster
* But also has large variation between runs

1000
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SGD vs batch

* SGD uses the gradient from only one sample
at a time, and is consequently high variance

* But also provides significantly quicker updates
than batch

* |sthere a good medium?



Alternative: Mini-batch update
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Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data



Alternative: Mini-batch update
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Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data



Alternative: Mini-batch update
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Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data
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Alternative: Mini-batch update
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Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data
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Incremental Update: Mini-batch
update

Given (Xli dl), (Xz, dz),..., (XT, dT)
Initialize all weights W, W,, ..., Wy, j=0
Do:

— Randomly permute (X;,dq), (X,,d5),..., (X7, dr)
— Fort = 1:b:T

e j=j+1
* For every layer k:
— AWk - 0

* Fort' =t:t+b-1
— For every layer k:
» Compute Vy, Div(Yy, d;)
» AWk = AWk + %VWkDiU(Yt, dt)T

e Update
— For every layer k:

Wk = Wk — T]]AWR

Until Err has converged
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Incremental Update: Mini-batch
update

Given (X{,d,), (X,,d5),..., X7, d7)
Initialize all weights W, W,, ..., Wy, j=0
Do:
— Randomly permute (X;,d;), (X;,d5),..., (X7, dt)
— Fort =1
.« j=j+1 Mini-batch size
* For every layer k:

— AW, =0 Shrinking step size
* Fort'=t:t+b-1
— For every layer k:
» Compute Vi, Div(Y:, d;)

» AW, = AW, kDiv(Yt, d)"

* Update

— For every layer k:

Wk — Wk @Wk

Until E7r has converged
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Mini Batches

Mini-batch updates compute and minimize a batch loss

b
1
MiniBatchLoss(W) = Ez div(f(X; W), d;)

=1

The expected value of the batch loss is also the expected divergence
E[MiniBatchLoss(W)] = E|div(f(X; W), g(X))]
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Mini Batches

The minibatch loss is also an unbiased estimate of the expected loss

* Mini-batch updates compute and minimize a batch loss

b
1
MiniBatchLoss(W) = Ez div(f(X; W), d;)

=1

* The expected value of the batch loss is also the expected divergence
E[MiniBatchLoss(W)] = E|div(f (X; W), g(X))]




Mini Batches

/ /

A V4

The variance of the minibatch loss: var(BatchlLoss) = 1/b var(div)

This will be much smaller than the variance of the sample error in SGD

The minibatch loss is also an unbiased estimate of the expected error

* Mini-batch updates compute and minimize a batch loss

b
1
MiniBatchLoss(W) = EZ div(f (X W), d;)
i=1

* The expected value of the batch loss is also the expected divergence
E[MiniBatchLoss(W)] = E|div(f (X; W), g(X))]




Minibatch convergence

For convex functions, convergence rate for SGD is O (\/iE)
For mini-batch updates with batches of size b, the

. 1 1
convergence rate is 0 (\/ﬁ + E)

— Apparently an improvement of Vb over SGD

— But since the batch size is b, we perform b times as many
computations per iteration as SGD

— We actually get a degradation of \/b

However, in practice

— The objectives are generally not convex; mini-batches are more
effective with the right learning rates

— We also get additional benefits of vector processing



SGD example

K=10
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0.035

0.03
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0.015 |

0.01
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0.005 | e,
g

0

SGD K-Means sesms

Batch K-Means

Mini-Batch K-Means (b=1000) 3@ |

| | [
0.0001 0.001 0.01 0.1 1
Training CPU secs

|
10

Rk
100

1000

* Mini-batch performs comparably to batch

training on this simple problem

— But converges orders of magnitude faster
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Measuring Loss

* Convergence is generally
defined in terms of the
overall training loss

iction Value

om Best K-Means Objective Fun

— Not sample or batch loss ;|

* |nfeasible to actually measure the overall training loss
after each iteration

* More typically, we estimate is as
— Divergence or classification error on a held-out set

— Average sample/batch loss over the past N
samples/batches



Training and minibatches

* |n practice, training is usually performed using mini-
batches

— The mini-batch size is generally set to the largest that your
hardware will support (in memory) without compromising
overall compute time

* Larger minibatches = less variance
* Larger minibatches = few updates per epoch

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error plateaus,
then reduce learning rate by a fixed factor (e.g. 10)

— Advanced methods: Adaptive updates, where the learning
rate is itself determined as part of the estimation



Poll 3

PIAZZA @531

Select all that are true

e Minibatch descent is an online version of batch updates

e Minibatch descent is faster than SGD when the batch size is 1

e The variance of minibatch updates decreases with batch size

e Minibatch gradient approaches batch updates in variance, but SGD in efficiency
when we use vector processing and large batches
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Poll 3

Select all that are true

e Minibatch descent is an online version of batch updates

e Minibatch descent is faster than SGD when the batch size is 1 [false]

e The variance of minibatch updates decreases with batch size

e Minibatch gradient approaches batch updates in variance, but SGD in efficiency
when we use vector processing and large batches
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Story so far

SGD: Presenting training instances one-at-a-time can be more effective
than full-batch training

— Provided they are provided in random order

For SGD to converge, the learning rate must shrink sufficiently rapidly with
iterations

— Otherwise the learning will continuously “chase” the latest sample

SGD estimates have higher variance than batch estimates

Minibatch updates operate on batches of instances at a time
— Estimates have lower variance than SGD
— Convergence rate is theoretically worse than SGD
— But we compensate by being able to perform batch processing



Training and minibatches

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error
plateaus, then reduce learning rate by a fixed
factor (e.g. 10)

— Advanced methods: Adaptive updates, where the
learning rate is itself determined as part of the
estimation
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Moving on: Topics for the day

Incremental updates

Revisiting “trend” algorithms

Generalization

Tricks of the trade
— Divergences..

— Activations

— Normalizations



Recall: Momentum Update

Plain gradient update With momentum

= &=

 The momentum method maintains a running average of all gradients until
the current step

AW ® = AW =D — 7, Loss(w ®-D)"
W& = wk-1 L A &)

— Typical § valueis 0.9
 The running average steps

— Get longer in directions where gradient retains the same sign
— Become shorter in directions where the sign keeps flipping



Recall: Momentum Update

E=»

e The momentum method
AW = pAW *=D — ni7, Loss(W =17

* At any iteration, to compute the current step:
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Recall: Momentum Update

&>

e The momentum method
AW = pAW *=D — ni7, Loss(W =17

* At any iteration, to compute the current step:

— First compute the gradient step at the current location
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Recall: Momentum Update

>

e The momentum method
AW = pAW *=D — ni7, Loss(W =17

* At any iteration, to compute the current step:

— First compute the gradient step at the current location

— Then add in the scaled previous step

 Which is actually a running average
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Recall: Momentum Update

e The momentum method

AW = pAW *=D — niy, Loss(W k=D)T

e At any iteration, to compute the current step:

— First compute the gradient step at the current location
— Then add in the scaled previous step

* Which is actually a running average

— To get the final step
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Momentum update

el

* Momentum update steps are actually computed in two stages
— First: We take a step against the gradient at the current location
— Second: Then we add a scaled version of the previous step

 The procedure can be made more optimal by reversing the order of
operations..




Nestorov’s Accelerated Gradient

&=

* Change the order of operations

e At any iteration, to compute the current step:
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Nestorov’s Accelerated Gradient

&

—

* Change the order of operations

e At any iteration, to compute the current step:

— First extend the previous step
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Nestorov’s Accelerated Gradient

=

 Change the order of operations

U

e At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position
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Nestorov’s Accelerated Gradient

&>

 Change the order of operations

e At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position
— Add the two to obtain the final step
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Nestorov’s Accelerated Gradient

C—»

e Nestorov’s method
AW®E = paw =1 — ni7, Loss(W &~ 4 paw k=D)T
W& = wk-1 L AW k)
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Nestorov’s Accelerated Gradient

e Comparison with momentum (example from
Hinton)

* Converges much faster
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Momentum and incremental updates

> SGD instance
or minibatch
loss

e The momentum method /

AW = BAW *=D — np,, Loss(W*-D)"

* |Incremental SGD and mini-batch gradients tend to have
high variance

* Momentum smooths out the variations

— Smoother and faster convergence
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Momentum: Mini-batch update

* Given (Xq,dq), (X5,d5),..., X7, d7)
* Initialize all weights W, W,, ..., Wy, j =0, AW, =0
* Do:
— Randomly permute (X{,d,), (X5, d>5),..., X7,dr)
— Fort = 1:b:T
c j=j+1

For every layer k:

— Vy, Loss =0
Fort'=t:t+b-1
— For every layer k:
» Compute Vy, Div(Y:, d;)

» VWkLOSS += % VWkDi‘U(Yt, dt)

Update
— For every layer k:
AWy, = BAW}, — n;(Vy, Loss)"
W, = Wy + AW,

e Until Loss has converged 103



Nestorov’s Accelerated Gradient

=

e At any iteration, to compute the current step:

— First extend the previous step
— Then compute the gradient at the resultant position
— Add the two to obtain the final step
* This also applies directly to incremental update methods

— The accelerated gradient smooths out the variance in the
gradients
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Nestorov’s Accelerated Gradient

SGD instance
or minibatch
I

* Nestorov’s method / 0S8

AW ) = BAW =1 — ni. Loss(W k=D 4 gAWw (k=1)T
Wk = wk-1D L AW k)
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Nestorov: Mini-batch update

* Given (Xll dl)l (Xz, dZ)l"-r (XTr dT)
* Initialize all weights W;, W5, ..., Wx,; j=0,AW, =0

* Do:
— Rand0m|y permute (Xll dl)l (Xz, dz),..., (XT, dT)
— Fort = 1:b:T
.« j=j+1

* For every layer k:
- W, =W, + AW,
- Vw,Loss=0
* Fort'=t:t+b-1
— For every layer k:
» Compute Vy, Div(Y;, d;)
» Vy,Loss += %VWkDiv(Yt, de)

* Update
— Forevery layer k:
Wy = Wy —n;Vy, Loss™
AWy = BAW, —n;Vy,, Loss™

 Until Loss has converged
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The other term in the update

e Standard gradient descent rule

* Gradient descent invokes two terms for updates
— The derivative

— and the learning rate



The other term in the update

e Standard gradient descent rule
W — W — WWL(W)}

* Gradient descent invokes two terms for updates
— The derivative

— and the learning rate

 Momentum methods fix this term to reduce
unstable oscillation
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The other term in the update

Standard gradient descent rule

W —w -nYwlW)

Gradient descent invokes two terms for updates
— The derivative

— and the learning rate

Momentum methods fix this term to reduce
unstable oscillation

What about this term?
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Adjusting the learning rate

Sequence of
gradients

v -

VS

A

|

Y

|

|

With separate learning rates
in each direction, which should
have the lowest learning rate
in the vertical direction?

Have separate learning rates for each component

Directions in which the derivatives swing more should likely have lower

learning rates

— Is likely indicative of more wildly swinging behavior

Directions of greater swing are indicated by total movement

— Direction of greater movement should have lower learning rate
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Smoothing the trajectory
s [xcmmn |

1 1 +2.5
2 1 -3

3 2 +2.5
4 1 -2

5 1.5 1.5

 Observation: Steps in “oscillatory” directions show large total movement

— In the example, total motion in the vertical direction is much greater than in
the horizontal direction

* Solution: Lower learning rate in the vertical direction than in the
horizontal direction

— Based on total motion
— As gquantified by RMS value 111



RMS Prop

* Notation:
— Formulae are by parameter

— Derivative of loss w.r.t any individual parameter w is shown as d,,D
* Batch or minibatch loss, or individual divergence for batch/minibatch/SGD

— The squared derivative is 02D = (9,,D)?
» Short-hand notation represents the squared derivative, not the second derivative

— The mean squared derivative is a running estimate of the average squared
derivative. We will show this as E[02 D]

 Modified update rule: We want to
— scale down learning rates for terms with large mean squared derivatives
— scale up learning rates for terms with small mean squared derivatives
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RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale learning rate of the parameter by the inverse of the root
mean squared derivative

E[05D] = YE[05D]x—1 + (1 — y) (85 D)y,

n
Wil = Wi — OwD
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RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale learning rate of the parameter by the inverse of the root
mean squared derivative

E[05D] = YE[05D]x—1 + (1 — y) (85 D)y,

n
Wil = Wi — OwD

Note similarity to RPROP
The magnitude of the derivative is being normalized out




RMS Prop (updates are for each
o weight of each layer)

— Randomly shuffle inputs to change their order
— Initialize: k = 1; for all weights w in all layers, E[02D],, = 0
— Forallt = 1:B: T (incrementing in blocks of B inputs)

* For all weights in all layers initialize (d,,D); = 0

+ Forb =0:B—1

— Compute

» Output Y(X;,p)

dDiv(Y (X¢+p) de+p)

dw
1dDiv(Y(X¢+p).de+b)
B dw

» Compute gradient

» Compute(d, D), +=
* update:forallw € {W{";i}‘v’i,j,k}

E|o;D], = vE|o3D], _, + (1 —y)(9;D),
n Typical values:

W =Y gDl e r oot
n= 0.

c k=k+1

Until loss has converged
115



All the terms in gradient descent

e Standard gradient descent rule

W —w @l

* RMSprop only adapts the learning rate

— by total movement

* Momentum only smooths the gradient



All the terms in gradient descent
Standard gradient descent rule

w HW—

RMSprop only adapts the learning rate

— by total movement

Momentum only smooths the gradient

How about combining both?



ADAM: RMSprop with momentum

RMS prop only adapts the learning rate
Momentum only smooths the gradient
ADAM combines the two

Procedure:
— Maintain a running estimate of the mean derivative for each parameter
— Maintain a running estimate of the mean squared value of derivatives for each
parameter

— Scale update of the parameter by the inverse of the root mean squared
derivative

my = 6my_1 + (1 —38)(0,,D )i
Vi = yVp_1 + (1 —y)(05D)y
my ~ Uk

1— o6k’ Uk T Tk

T/T\lk:

U] .

Wig1 = W — —F——My
\/ﬁk + €
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ADAM: RMSprop with momentum

RMS prop only adapts the learning rate
Momentum only smooths the gradient
ADAM combines the two

Procedure:

Maintain a running estimate of the mean derivative for eac

Ensures that the
6 and y terms do
not dominate in
early
iterations

Maintain a running estimate of the mean squared val
parameter

Scale update of the parameter by the inverse of the
derivative

my = émy_1 + (1 —38)(0,D )i
Vg = YVr—1 + (1 —y)(05D)y

N myg N Uk
Tk T Tk Uk Tk
_ n ~
Wkt+1 = W —

\/:mk
U, + €
k 119



ADAM: RMSprop with momentum

Typically ty is 0 and § iscloseto 1. So (1 — 6) = 0.

Without the denominator term p;, will stay close to 0 for k = 0,1,2, ... for a long time,
resulting in minimal parameter updates

The denominator term ensures that u; = (d,,D); and updates actually
happen

For large k, the denominator just becomes 1

— Maintain a running estimate of the mean squared val
parameter

Ensures that the
6 and y terms do
not dominate in
early
iterations

— Scale update of the parameter by the inverse of th
derivative

my = édmy_q + (1 — 6)(0yD )i
Vg = YVr—1 + (1 —y)(05D)y

~ mg ~ Uk
Tk T 1§k Uk T gk
_ n ~
Wkt+1 = W — mpg

\/T/)\k‘l‘E



Other variants of the same theme

* Many:
— Adagrad
— AdaDelta
— AdaMax

* Generally no explicit learning rate to optimize
— But come with other hyper parameters to be optimized

— Typical params:
* RMSProp:n =0.001,y =0.9
« ADAM: n =0.001,6 =0.9, y = 0.999



Poll 4

PIAZZA @532

Which of the following are true

Vanilla SGD considers the long-term trends of gradients in update steps
Momentum methods consider the long-term average of derivatives to make updates

RMSprop only considers the second order moment of derivatives, but not their
average trend, to make updates

ADAM considers both the average trend and second moment of derivatives to make
updates

Trend-based optimizers like momentum, RMSprop and ADAM are important to
smooth out the variance of SGD or minibatch updates
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Poll 4

Which of the following are true

e Vanilla SGD considers the long-term trends of gradients in update steps [false]
¢ Momentum methods consider the long-term average of derivatives to make updates

e RMSprop only considers the second order moment of derivatives, but not their
average trend, to make updates

e ADAM considers both the average trend and second moment of derivatives to make
updates

e Trend-based optimizers like momentum, RMSprop and ADAM are important to
smooth out the variance of SGD or minibatch updates
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Visualizing the optimizers: Beale’s Function

* http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html



Visualizing the optimizers: Long Valley

- SGD

= Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0

* http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Saddle Point
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Story so far

* Gradient descent can be sped up by incremental
updates

— Convergence is guaranteed under most conditions

e Learning rate must shrink with time for convergence

— Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

— Mini-batch updates: update after batches. Can be more
efficient than SGD

* Convergence can be improved using smoothed updates
— RMSprop and more advanced techniques



