
HW2 Bootcamp

Logistics

•HW2P2 is significantly harder than HW1P2. Models will be harder to
develop, train, and converge. Please start early!

•Models must be written yourself and trained from scratch.

•You may use CMU Virtual Andrew (8GB Nvidia L40, 32 GB RAM) for
training.

Problem Statement

•Face Classification
•Given an image, figure out which person it is.

•Face Verification
•Given a set of images, figure out if they are of the same person.

Face Classification

Fe
at

u
re

 E
m

b
ed

d
in

g

Classification
Linear
Layer

N
-C

la
ss

 P
ro

b
ab

ili
ty

Lo

gi
ts

N
-C

la
ss

P

ro
b

ab
ili

ti
es

Softma
x

Feature
Extraction

Model

Face Verification

Fe
at

u
re

 E
m

b
ed

d
in

g
Fe

at
u

re
 E

m
b

ed
d

in
g

Similarity metric
A similarity

score

Feature
Extraction

Model

Feature
Extraction

Model

Face Verification

Fe
at

u
re

 E
m

b
ed

d
in

g

Feature
Extraction

Model

Fe
at

u
re

 E
m

b
ed

d
in

g

Cosine Similarity
for each known
image

Known
images

Unknown
image

A similarity
score from

-1 to 1

Take
argmax

Feature
Extraction

Model

Workflow

•First train a strong classification model for the classification task.

•Then, for the verification task, use the model trained on
classification.

• take the penultimate features as feature embeddings of each image.

•You should additionally train verification-specific losses such
as ArcFace, Triplet Loss to improve performance.

Building Blocks

Input Image +
Transformations

Choice of
Model

Training the
model

Building Blocks

Input Image +
Transformations

Choice of
Model

Training the
model

Color
Jitter

Random Perspective

Random Vertical Flip

Transformation Guide

URL:
https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-exa
mples-plot-transforms-py

Common Issue:

TypeError: Input tensor should be a torch tensor. Got <class

'PIL.Image.Image'>.

—> Please check the sequencing of your transforms. Read the documentation and verify

the kind of input required.

https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py

Building Blocks

Input Image +
Transformation
s

Choice of
Model

Training the
model

Residual Connections
 In traditional feedforward neural networks, data flows through each layer

sequentially: The output of a layer is the input for the next layer.

 Residual connection provides another path for data to reach latter parts

of the neural network by skipping some layers.

Residual Connections

● The residual connection first applies identity mapping to x
● Then it performs element-wise addition F(x) + x.
● The whole architecture that takes an input x and produces output

F(x) + x is usually called a residual block or a building block.
● Quite often, a residual block will also include an activation function

such as ReLU applied to F(x) + x.

How do they help??

● For feedforward neural networks, training a deep network is usually very difficult,
due to problems such as exploding gradients and vanishing gradients.

● On the other hand, the training process of a neural network with residual
connections is empirically shown to converge much more easily, even if the network
has several hundreds layers.

● It is easier to learn Zero weights than an Identity mapping, if the residual
connections aren’t present.

ResNet Block

•Remember that to understand a paper, we just really need to
understand its blocks.

•ResNet proposes 2 blocks: BasicBlock & BottleneckBlock

•The key point is residual connection

ResNet: BasicBlock

•It’s just a regular 3x3 convolution (then BN, ReLU), another 3x3
convolution (then BN).

•Then, a skip connection adding input and output, then ReLU.

ResNet: BottleneckBlock

•A bit more involved.

•A 256-channel input goes through a point-wise convolution,
reducing channels to 64.

•Then, a 3x3 regular convolution maintains channels at 64.

•Then, a point-wise convolution expands channels back to 256.

•Finally, the residual connection.

Basic and Bottleneck Block

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

Residual Connection - Basic Block

class BasicBlock(torch.nn.Module):

 def __init__(self, n_h):

 self.linear0 = torch.nn.Linear(n_h, n_h)

 self.linear1 = torch.nn.Linear(n_h, n_h)

 self.bn0 = torch.nn.BatchNorm1d(n_h)

 self.bn1 = torch.nn.BatchNorm1d(n_h)

 self.relu = torch.nn.ReLU(inplace=True)

 def forward(self, A0):

 R0 = A0

 Z0 = self.linear0(A0)

 BZ0 = self.bn0(Z0)

 A1 = self.relu(BZ0)

 Z1 = self.linear1(A1)

 BZ1 = self.bn1(Z1)

 A2 = self.relu(BZ1 + R0)

 return A2

Residual Connection - Bottleneck Block

class Bottleneck(torch.nn.Module):

 def __init__(self, n_h):

 self.residual = torch.nn.Linear(n_h, n_h*4)

 self.linear0 = torch.nn.Linear(n_h, n_h)

 self.linear1 = torch.nn.Linear(n_h, n_h)

 self.linear2 = torch.nn.Linear(n_h, n_h*4)

 self.bn0 = torch.nn.BatchNorm1d(n_h)

 self.bn1 = torch.nn.BatchNorm1d(n_h)

 self.bn2 = torch.nn.BatchNorm1d(n_h*4)

 self.relu = torch.nn.ReLU(inplace=True)

 def forward(self, A0):

 R0 = self.residual(A0)

 Z0 = self.linear0(A0)

 BZ0 = self.bn0(Z0)

 A1 = self.relu(BZ0)

 Z1 = self.linear1(A1)

 BZ1 = self.bn1(Z1)

 A2 = self.relu(BZ1)

 Z2 = self.linear2(A2)

 BZ2 = self.bn2(Z2)

 A3 = self.relu(BZ2 + R0)

 return A3

Basic and Bottleneck Block

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

Architectures

•At this point, you should have basic familiarity with convolutions
as taught in lecture.

•Now, how do we take convolutions and assemble them into a
strong architecture?

•Layers? Channel size? Stride? Kernel Size? Etc.

•We’ll cover three different types of blocks:
•Resnet blocks

•Convnext blocks

•Mobile blocks

General Architecture Flow

•CNN architectures are divided into stages, which are divided
into blocks.

•Each “stage” consists of (almost) equivalent “blocks”

•Each “block” consists of a few CNN layers, BN, and ReLUs.

•To understand an architecture, we mostly need to understand its

blocks.

•All that changes for blocks in different stages is the base # of channels

General Architecture Flow

•However, you do need to piece these blocks together into a final
model.

•The general flow is like this:
•Stem

•Stage 1

•Stage 2

•…
•Stage n

•Classification Layer

General Architecture Flow

•The stem usually downsamples the input by 4x.

•Some stages do downsample. If they do, generally, the
first convolution in the stage downsample by 2x.

•When you downsample by 2x, you usually increase channel
dimension by 2x.

•So, later stages have smaller spatial resolution, higher # of channels

ResNet: Overall
Architecture

ConvNeXt: Block

•A 7x7 depth-wise convolution.
•A point-wise convolution increasing # of channels
•A point-wise convolution decreasing # of

channels
•Residual Connection

ConvNeXt block

•This is a very new paper, a state-of-the-art architecture.

•However, its intuitions are very similar to MobileNetV2.

•Again, remember that to understand a paper, we just really need to
understand its blocks.

•Just a single block type for ConvNeXt

•Read the paper for details on stages/channel sizes, etc.
•We recommend ConvNeXt-T size which has less than 35M parameters.

ResNet vs ConvNeXt: Differences

•Note that ConvNeXt has fewer BN/ReLU
•GELU is just more advanced ReLU
• Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri. "Activation functions in deep

learning: A comprehensive survey and benchmark." Neurocomputing (2022).

https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545

ResNet vs ConvNeXt

Mobile Block

•The goal of MobileNet blocks is to be parameter efficient.

•They do so by making extensive use of depth-wise convolutions and

point-wise convolutions

A Normal
Convolution

•Considering just a single output channel

A Normal Convolution (Another Diagram)

•Considering a single output channel

A Normal
Convolution

•Considering all output channels

Depth-wise Convolutions

•Shorthand for “Depth-wise separable convolutions”

•“Depth”-wise separable, because considering channels as
“depth”, perform convolutions on them independently

Depth-wise Convolutions (Another
Diagram)

Point-wise Convolutions

•“Point”-wise convolutions because each pixel is considered
independently

•Considering just a single output channel:

Point-wise Convolutions

•“Point”-wise convolutions because each pixel is considered
independently

•Considering all output channels:

Summary

•A normal convolution mixes information from both different channels
and different spatial locations (pixels)

•A depth-wise convolution only mixes information over spatial
locations

•Different channels do not interact.

•A point-wise convolution only mixes information over
different channels

•Different spatial locations do not interact

Mobile Block

•Again, to understand an architecture, we mostly need to
understand its blocks.

•All that changes for blocks in different stages is the base # of channels

Mobile Block

•The core block has three steps:
•Feature Mixing

•Spatial Mixing

•Bottlenecking Channels

Mobile Block: Feature Mixing

•A point-wise convolution that increases the channel dimension by an
“expansion ratio”

Mobile Block: Spatial Mixing

•A depth-wise convolution that communicates information over
different spatial locations.

Mobile Block: Bottlenecking Channels

•Point-wise convolution to reduce channel dimension by the same
expansion ratio.

ConvNeXt vs MobileNetV2

ConvNeXt

•A 7x7 depth-wise
convolution.

•A point-wise convolution
increasing # of channels

•A point-wise convolution
decreasing # of channels

•Residual Connection

MobileNetV2

•A point-wise
convolution increasing #
of channels

•A 3x3 depth-wise convolution.

•A point-wise
convolution decreasing
of channels

•Residual Connection

ConvNeXt vs MobileNetV2

ConvNeXt

•A 7x7 depth-wise
convolution.

•A point-wise convolution
increasing # of channels

•A point-wise convolution
decreasing # of channels

•Residual Connection

MobileNetV2

•A point-wise
convolution increasing #
of channels

•A 3x3 depth-wise convolution.

•A point-wise
convolution decreasing
of channels

•Residual Connection

Spatial Mixing

ConvNeXt vs MobileNetV2

ConvNeXt

•A 7x7 depth-wise
convolution.

•A point-wise convolution
increasing # of channels

•A point-wise convolution
decreasing # of channels

•Residual Connection

MobileNetV2

•A point-wise
convolution increasing #
of channels

•A 3x3 depth-wise convolution.

•A point-wise
convolution decreasing
of channels

•Residual Connection

Feature M
ixing

ConvNeXt vs MobileNetV2

ConvNeXt

•A 7x7 depth-wise
convolution.

•A point-wise convolution
increasing # of channels

•A point-wise convolution
decreasing # of channels

•Residual Connection

MobileNetV2

•A point-wise
convolution increasing #
of channels

•A 3x3 depth-wise convolution.

•A point-wise
convolution decreasing
of channels

•Residual Connection
Extremely
Similar!

ConvNeXt vs MobileNetV2: Differences

•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

ConvNeXt vs MobileNetV2: Differences

•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

•The order of spatial mixing & feature mixing are flipped.
• In ConvNeXt, depth-wise convolution operates on lower # of channels.

• In MobileNetV2, operates on higher # of channels.

•Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

ConvNeXt vs MobileNetV2: Differences
•So what changed? Some things did change.

•The depth-wise convolution in ConvNeXt is larger kernel size (7x7).

•The order of spatial mixing & feature mixing are flipped.
• In ConvNeXt, depth-wise convolution operates on lower # of channels.

• In MobileNetV2, operates on higher # of channels.

•Channel Expansion Ratio in ConvNeXt is 4, MobileNetV2 is 6.

•ConvNeXt uses LayerNorm, MobileNetV2 uses BatchNorm.
•Note: You will need to normalize the data if you use LN.

•ConvNeXt recommends training via AdamW, MobileNetV2
recommends SGD

Other Interesting
Papers

Former SOTA

Building Blocks

Input Image +
Transformation
s

Choice of
Model

Training the
model

The easy bit
first….

Monitoring Training vs Validation Acc
•The standard intuition of “overfitting” is – if the training & validation
gap is too large, you should stop training as it’s overfitting.

•However, in modern DL, this intuition is not as relevant.

•XELoss != Accuracy
•Model can keep improving after training accuracy hits 100%.

•There is recent research that finds that on some problems, training accuracy
hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch
1000,
validation hits 100%.

•Of course, we can’t train for that long, but train until validation
stops improving.

•Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs”
and just let it run. □ what I prefer to do.

How to tackle overfitting?

•There are a lot of different tricks to improving your CNN model.

•From the recent ConvNeXt paper:

How to tackle overfitting?

•There are a lot of different trick to
improving your CNN model.

•From the recent ConvNeXt paper
•What we recommend trying first:

•Label Smoothing (huge boost)
•Stochastic Depth
•DropBlock (paper)
•Dropout before final classification layer

•Then you can try the others

•Check out “Bag of Tricks for Image
Classification with Convolutional Neural
Networks”

•https://arxiv.org/abs/1812.01187

Let’s get real now….

Face Classification

Fe
at

u
re

 E
m

b
ed

d
in

g

Classification
Linear
Layer

N
-C

la
ss

 P
ro

b
ab

ili
ty

Lo

gi
ts

N
-C

la
ss

P

ro
b

ab
ili

ti
es

Softma
x

Feature
Extraction

Model

Face Verification

Fe
at

u
re

 E
m

b
ed

d
in

g
Fe

at
u

re
 E

m
b

ed
d

in
g

Similarity metric
A similarity

score

Feature
Extraction

Model

Feature
Extraction

Model

CMU Virtual Andrew

https://www.cmu.edu/computing/services/endpoint/software/virtual-andrew.html

