HW2 Part 1

Convolutional Neural Networks with Numpy
Slides kindly made by Aparajith
Resampling

• For loop is not required in python
 • Look up np.kron
 • Array slicing: [start:end:step]

• Things to remember
 • Trying to compute the required shape while up sampling (some simple formula you can think of?)
 • Computing and storing the shape in forward.
 • This is because the gradient should be the same shape as the input.
Convolutions

• You can perform convolutions in 2 ways:
 • The Loopy way (Bad)
 • Tensordot (Good)

• The more for loops you use for your questions, the more time it takes to run.

• With tensordot, you don’t have to do all those broadcasting and everything given in the write-up
Tensordot

• Appendix of the write up has amazing documentation of it
• Don’t use for loops for convolution even though everything is given in the lecture slides
• Tensordot is faster and helps you (also TAs) to debug easily
• You only need 1 for loop for conv1d and 2 for loops for conv2d. If you are using more, then your implementation of tensordot is wrong even if you get the answer right
Tensordot

• Before starting ConvXd.py, open a notebook and try to understand tensordot with random examples

• Consider the shapes:
 • Input: X(A, B, C); Weight: W(P, Q, R)
 • You can do tensordot when you have matched shapes
 • If B = Q and C = R,
 • Tensordot(X, W, matched axes) -> Output(A, P)
 • You can think that the output shape will be the shape of the unmatched axes in that order
 • Make sure inputs (input and weight) to tensordot have some matching axes. Why do you need matching axes in convolution? (Hint: A filter only looks at a segment of input)

• Tip: Print shapes in your code to understand
Tensordot

(A, X, C, Y) (X, P, Q, Y) (A, C, P, Q)

(X, Y) from input 1 matches to (X, Y) from input 2
Can you think in terms of axes?

Can you find the output pattern?

Should match all the axes that you think needs to be matched. Not restricted to 2 axes
Conv1d to Conv2d

• Try to understand each step while coding conv1d
• Every step between Conv1d and Conv2d (forward and backward) are identical
• While transitioning from Conv1d to Conv2d, you just need to account for the extra dimension and do an **extra something**
Pooling

• Lectures have a basic pseudocode which can be developed
• You might need many loops for this task
 • Np.max and np.unravel_index might be useful if you want to reduce the number of loops
 • But multiple loops are acceptable for this particular task

• Backprop in both might is harder than forward, but if you know the concept behind it, it will not be that hard.
• Look at the write up for images.
Easy way to understand gradient propagation

We get 2 maps in backward for $dLdZ$. After some process for finding $dLdA$, you again get 2 maps. But A has 1 map and $dLdA$ will also have the same shape. How to understand gradient propagation?
Easy way to understand gradient propagation

Input (A) → Kernels (2) → Output (Z)

Draw the influence diagram.
Easy way to understand gradient propagation

Any small change dA will cause a change in both maps of Z.
Scanning MLP

• Appendix of HW2P1
• Tips to understand better: Draw everything
Consider that the MLP takes some input and produces 2 output features.
Scanning MLP

Input:
Scanning MLP
Scanning MLP

Kernel size=3
Scanning MLP

You did this in HW1P2 when you used a non-zero context.
Scanning MLP

Flatten

MLP
Scanning MLP

Flatten

MLP
Scanning MLP

Input:

Output:
Scanning MLP

Which gives in_channels = 3, out_channels = 2, kernel_size = 3, stride = 1

We transformed `Linear(9, 2)` to `Conv1d(3, 2, kernel_size= 3, stride= 1)`
CNN Model

- Just calling all the layers which you implemented previously
- Only thing to think about: Initialization size of the final Linear Layer?
- Errors which you may get:
 - If you have a closeness error (*true_divide error*), change to *np.tanh()*