Logistics and deadlines

- Sept 15: AWS Credit form
- Sept 15: Kaggle Setup Form - Piazza @82
- Sept 23: HW1P1 and HW1P2
- Study groups mentors - Piazza @346 (Change in group - check @346)
Recap from Lecture

- Neural Networks (NN) consist of parameters, mainly weights W and biases b.

Recap from Lecture

- Neural Networks (NN) consist of parameters, mainly weights W and biases b.
- Update Rule: $W = W - \eta \frac{dL}{dW}$
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Recap from Lecture

- Neural Networks (NN) consist of parameters, mainly weights W and biases b.
- Update Rule: $W = W - \eta \frac{dL}{dW}$
- How do we compute derivatives $\frac{dL}{dW}$?
Symbolic Differentiation

Given Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]
Symbolic Differentiation

Given Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

Goal

Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2} \) (at the point \(x_1, x_2 \)).
Symbolic Differentiation

Given Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

Goal

Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1} \), \(\frac{\partial y}{\partial x_2} \) (at the point \(x_1, x_2 \)).

Partial Derivatives

\[\frac{\partial y}{\partial x_1} = \frac{1}{x_1} + x_2 \]
\[\frac{\partial y}{\partial x_2} = x_1 - \cos(x_2) \]

Substitute the values of \(x_1, x_2 \),
Symbolic Differentiation

Given Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

Goal

Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2} \) (at the point \(x_1, x_2 \)).

Partial Derivatives

\[\frac{dy}{dx_1} = \frac{1}{x_1} + x_2 \]
Symbolic Differentiation

Given Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

Goal

Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2} \) (at the point \(x_1, x_2 \)).

Partial Derivatives

\[
\frac{dy}{dx_1} = \frac{1}{x_1} + x_2 \\
\frac{dy}{dx_2} = x_1 - \cos(x_2)
\]

Substitute the values of \(x_1, x_2 \).
Numerical Differentiation

Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Numerical Differentiation

Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

- Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1} \) (at the point \(x_1, x_2 \))
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Numerical Differentiation

Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

- Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1} \) (at the point \(x_1, x_2 \))

Procedure

- Use the limit formula:
\[
\lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}
\]
- Select a small \(h \) (10\(^{-5}\))
Function

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

- Given \(x_1, x_2 \) as inputs, calculate \(\frac{\partial y}{\partial x_1} \) (at the point \(x_1, x_2 \))

Procedure

- Use the limit formula:
 \[
 \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}
 \]
- Select a small \(h \) (10\(^{-5}\))
- Substitute the values of \(x_1, x_2, h \)
Questions?
Why Not Use Symbolic Differentiation for NNs?

Function Model

\[y = MLP(W, b, x) \]
Why Not Use Symbolic Differentiation for NNs?

Function Model

\[y = MLP(W, b, x) \]

- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))
Why Not Use Symbolic Differentiation for NNs?

Function Model

\[y = \text{MLP}(W, b, x) \]

- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges

- What happens when we have 1 billion parameters?
Why Not Use Symbolic Differentiation for NNs?

Function Model

\[y = MLP(W, b, x) \]

- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges
- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
Why Not Use Symbolic Differentiation for NNs?

Function Model

\[y = \text{MLP}(W, b, x) \]

- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges

- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
- Each equation involves nearly 1 billion floating-point operations
Why Not Use Symbolic Differentiation for NNs?

Function Model

\[y = MLP(W, b, x) \]

- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges

- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
- Each equation involves nearly 1 billion floating-point operations
- Roughly \(1 \times 10^{18} \) FLOPS for a single gradient update
Why Not Use Numerical Differentiation?

\[y = \text{MLP}(W, b, x) \]

Goal

- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges

- Numerical instability and inaccuracy. How do you choose the most appropriate \(h \)?
- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
- Each equation involves nearly 1 billion floating-point operations
- Roughly \(1 \times 10^{18} \) FLOPS for a single gradient update

Dheeraj Pai and Miya Sylvester
Computing Derivatives & Autograd
Why Not Use Numerical Differentiation?

\[y = \text{MLP}(W, b, x) \]

Goal
- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges
- Numerical instability and inaccuracy. How do you choose the most appropriate \(h \)?
Why Not Use Numerical Differentiation?

\[y = \text{MLP}(W, b, x) \]

Goal
- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges
- Numerical instability and inaccuracy. How do you choose the most appropriate \(h \)?
- What happens when we have 1 billion parameters?
Why Not Use Numerical Differentiation?

\[y = \text{MLP}(W, b, x) \]

Goal
- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges
- Numerical instability and inaccuracy. How do you choose the most appropriate \(h \)?
- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Why Not Use Numerical Differentiation?

\[y = MLP(W, b, x) \]

Goal
- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges
- Numerical instability and inaccuracy. How do you choose the most appropriate \(h \)?
- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
- Each equation involves nearly 1 billion floating-point operations
Why Not Use Numerical Differentiation?

\[y = \text{MLP}(W, b, x) \]

Goal
- Given \(x, W, b \) as inputs, calculate \(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial W}, \frac{\partial y}{\partial b} \) (at the point \(x, W, b \))

Challenges
- Numerical instability and inaccuracy. How do you choose the most appropriate \(h \)?
- What happens when we have 1 billion parameters?
- Leads to 1 billion equations
- Each equation involves nearly 1 billion floating-point operations
- Roughly \(1 \times 10^{18} \) FLOPS for a single gradient update
Table of Contents

1 Differentiation methods
2 Automatic differentiation
3 Automatic differentiation Libraries
4 HW1P1 Autograd
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g(x)) \]
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g(x)) \]

Key Question

- Can we compute \(\frac{dY}{dx} \) from \(\frac{dh}{dg} \) and \(\frac{dg}{dx} \)?
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g(x)) \]

Key Question

- Can we compute \(\frac{dY}{dx} \) from \(\frac{dh}{dg} \) and \(\frac{dg}{dx} \)?

Chain Rule

- Decompose complex derivatives into simpler parts.
 - \(\frac{dY}{dx} = \frac{dh}{dg} \times \frac{dg}{dx} \)
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g(x)) \]

Key Question

- Can we compute \(\frac{dY}{dx} \) from \(\frac{dh}{dg} \) and \(\frac{dg}{dx} \)?

Chain Rule

- Decompose complex derivatives into simpler parts.
 - \(\frac{dY}{dx} = \frac{dh}{dg} \times \frac{dg}{dx} \)
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g_1(x), g_2(x)) \]
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g_1(x), g_2(x)) \]

Key Question

- Can we compute \(\frac{dY}{dx} \) ?
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g_1(x), g_2(x)) \]

Key Question

- Can we compute \(\frac{dY}{dx} \)?

Chain Rule

- Decompose complex derivatives into simpler parts.
- \[\frac{dY}{dx} = \frac{dh}{dg_1} \times \frac{dg_1}{dx} + \frac{dh}{dg_2} \times \frac{dg_2}{dx} \]
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x) = h(g_1(x), g_2(x)) \]

Key Question

- Can we compute \(\frac{dY}{dx} \)?

Chain Rule

- Decompose complex derivatives into simpler parts.

 \[\frac{dY}{dx} = \frac{dh}{dg_1} \times \frac{dg_1}{dx} + \frac{dh}{dg_2} \times \frac{dg_2}{dx} \]
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x_1, x_2, \ldots, x_n) = h(g_1(x_1, x_2, \ldots, x_n), g_2(x_1, x_2, \ldots, x_n)) \]
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x_1, x_2, \ldots, x_n) = h(g_1(x_1, x_2, \ldots, x_n), g_2(x_1, x_2, \ldots, x_n)) \]

Key Question

- Can we compute \(\frac{dY}{dx_1} \ldots \frac{dY}{dx_n} \)
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x_1, x_2, \ldots, x_n) = h(g_1(x_1, x_2, \ldots, x_n), g_2(x_1, x_2, \ldots, x_n)) \]

Key Question

- Can we compute \(\frac{dY}{dx_1} \ldots \frac{dY}{dx_n} \)
- Answer: Yes.
Basic Idea - Chain rule

Function Decomposition

\[Y = f(x_1, x_2, \ldots, x_n) = h(g_1(x_1, x_2, \ldots, x_n), g_2(x_1, x_2, \ldots, x_n)) \]

Key Question

- Can we compute \(\frac{dY}{dx_1} \ldots \frac{dY}{dx_n} \)?
- Answer: Yes.

Chain Rule

- Decompose complex derivatives into simpler parts.
Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
\[v_2 = x_2 \]

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1v_2 \]

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
Autodiff Example

Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1v_2 \]
\[v_5 = \sin(v_2) \]

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Decompose with intermediate variables

\[y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2) \]

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]

Examples adapted from: https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example

Intermediate Variables

\[
\begin{align*}
v_1 &= x_1 \\
v_2 &= x_2 \\
v_3 &= \ln(v_1) \\
v_4 &= v_1 v_2 \\
v_5 &= \sin(v_2) \\
v_6 &= v_3 + v_4 \\
v_7 &= v_6 - v_5 \\
y &= v_7 = v_6 - v_5
\end{align*}
\]

Can you compute all the derivatives \(\frac{dy}{dv_i} \)? By looking at only one equation at a time.
Questions?
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example - Graph computation

Intermediate Variables

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Example - Graph computation

Intermediate Variables

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]
Autodiff Computation (Advantage)

Complex Model

\[y = \text{MLP}(W, b, x) \]

Computational Cost

- 1 Billion parameters
Autodiff Computation (Advantage)

Complex Model

\[y = MLP(W, b, x) \]

Computational Cost

- 1 Billion parameters
- Forward pass = 1B FLOPS
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Autodiff Computation (Advantage)

Complex Model

\[y = MLP(W, b, x) \]

Computational Cost

- 1 Billion parameters
- Forward pass = 1B FLOPS
- Backward pass = 1B FLOPS

Total Cost

Total = 2B FLOPS \(\llll\) \(1e+18\)
When is automatic differentiation a bad idea?
When is automatic differentiation a bad idea?

Hint: Think about the memory to store the variables. What if you need the derivative of just one variable?
Question

When is symbolic differentiation a good idea?
Question

When is symbolic differentiation a good idea?

Hint: Integrals?
Automatic Differentiation in Practice

- Generate the computational graph while forward propagation
- Store each intermediate variable
- Chain rule to compute the derivatives.
- Optimize, parallelize based on variable dependencies
- Many more additional blocks - Accumulate Grad etc.

Images from https://dlsyscourse.org/slides/4-automatic-differentiation.pdf
Questions?
Table of Contents

1. Differentiation methods
2. Automatic differentiation
3. Automatic differentiation Libraries
4. HW1P1 Autograd
Automatic Differentiation Libraries
Static Vs Dynamic Graphs execution
Static Graph Automatic Differentiation Execution

1. Define the graph
2. Optimize the graph
3. Start a session
4. Update params
5. Backprop on reverse graph
6. Send the data (forward)
Optimization Techniques

- Dead Code Elimination
- Common Subexpression Elimination
- Operator Fusion
- Memory Optimization
- Graph Pruning
- Kernel Fusion
- Data Layout Optimization
- Batching Optimization
- Pipeline Optimization
- Device Placement
Dynamic graph Automatic differentiation execution

- Initial Node (Tensor Variable/Data tensor)
- Build graph dynamically during forward pass
- Destroy the graph
- Update Model Weights
- Run Back-propagation

Dheeraj Pai and Miya Sylvester
Computing Derivatives & Autograd
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]

Dheeraj Pai and Miya Sylvester
Computing Derivatives & Autograd
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

\[v_1 = x_1 \]
\[v_2 = x_2 \]
\[v_3 = \ln(v_1) \]
\[v_4 = v_1 v_2 \]
\[v_5 = \sin(v_2) \]
\[v_6 = v_3 + v_4 \]
\[y = v_7 = v_6 - v_5 \]
\(v_1 = x_1 \)
\(v_2 = x_2 \)
\(v_3 = \ln(v_1) \)
\(v_4 = v_1 v_2 \)
\(v_5 = \sin(v_2) \)
\(v_6 = v_3 + v_4 \)
\(y = v_7 = v_6 - v_5 \)
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Dynamic Graph execution

\[\nu_1 = x_1 \]
\[\nu_2 = x_2 \]
\[\nu_3 = \ln(\nu_1) \]
\[\nu_4 = \nu_1 \nu_2 \]
\[\nu_5 = \sin(\nu_2) \]
\[\nu_6 = \nu_3 + \nu_4 \]
\[y = \nu_7 = \nu_6 - \nu_5 \]
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)

- Dynamic graphs:
 - Flexible and intuitive for researchers
 - Easier debugging
 - Slower performance
 - Higher memory consumption
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**
 - Flexible and intuitive for researchers
 - Easier debugging
 - Slower performance
 - Higher memory consumption
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**
 - Flexible and intuitive for researchers
 - Easier debugging
 - Slower performance
 - Higher memory consumption
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**

Dheeraj Pai and Miya Sylvester
Computing Derivatives & Autograd
Static graph vs Dynamic graph

Static graphs:
- Optimization-friendly
- Easy parallelization
- Hard to debug (compiled graph)
- Limited flexibility for conditionals

Dynamic graphs:
- Flexible and intuitive for researchers
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**
 - Flexible and intuitive for researchers
 - Easier debugging
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**
 - Flexible and intuitive for researchers
 - Easier debugging
 - Slower performance
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**
 - Flexible and intuitive for researchers
 - Easier debugging
 - Slower performance
 - Higher memory consumption
Static graph vs Dynamic graph

- **Static graphs:**
 - Optimization-friendly
 - Easy parallelization
 - Hard to debug (compiled graph)
 - Limited flexibility for conditionals

- **Dynamic graphs:**
 - Flexible and intuitive for researchers
 - Easier debugging
 - Slower performance
 - Higher memory consumption
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

- ADOL-C, Autograd, TAPENADE: 1980s-1990s
- CppAD, Stan: Early 2000s
- PyTorch, JAX, TF 2.0: 2016-Present
- FairScale, Horovod, DeepSpeed, Ray, PySyft: 2020-Present

- 1980s - 1990s: Mostly C/FORTRAN based. Static graphs
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

- 1980s - 1990s: Mostly C/FORTRAN based. Static graphs
- 2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

- 1980s - 1990s: Mostly C/FORTRAN based. Static graphs
- 2010 - 2018: Python wrappers for other C/CUDA/Lua libraries (GPU support)
- 2015 - TF/Pytorch - C/Cuda DL focused optimizations.

Dheeraj Pai and Miya Sylvester
Computing Derivatives & Autograd
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

- **1980s - 1990s**: Mostly C/FORTRAN based. Static graphs
- **2010 - 2018**: Python wrappers for other C/CUDA/Lua libraries (GPU support)
- **2015 - TF/Pytorch**: C/Cuda DL focused optimizations.
- **2016 - Pytorch**: Dynamic graphs
- **2018 - JAX**: Duck typing of numpy, TF 2.0
- **2020 - Present**: FairScale, Horovod, DeepSpeed, Ray, PySyft
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

History of Autodiff Libraries

- **1980s-1990s**: Mostly C/FORTRAN based. Static graphs
- **2010 - 2018**: Python wrappers for other C/CUDA/Lua libraries (GPU support)
- **2015 - TF/Pytorch**: C/Cuda DL focused optimizations.
- **2016 - Pytorch**: Dynamic graphs
- **2018 - JAX**: Duck typing of numpy, TF 2.0
- **2020 - Present**: FairScale, Horovod, DeepSpeed, DeepSpeed, PyTorch distributed, PySfyt

Dheeraj Pai and Miya Sylvester
Computing Derivatives & Autograd
History of Autodiff Libraries

- **1980s-1990s**: Mostly C/FORTRAN based. Static graphs
- **2010-2018**: Python wrappers for other C/CUDA/Lua libraries (GPU support)
- **2015**: TF/Pytorch - C/Cuda DL focused optimizations.
- **2016**: Pytorch - dynamic graphs
- **2018**: JAX - duck typing of numpy, TF 2.0
- **2020**: Fairscale, DeepSpeed, NCLL, Pytorch distributed
Evolution of Autodiff Libraries in 2010s and 2020s

2010s: diverging philosophies
- Static graphs: TensorFlow 1.x, Caffe - industry
- Dynamic graphs: PyTorch 0.x - research
Differentiation methods
Automatic differentiation
Automatic differentiation Libraries
HW1P1 Autograd

Evolution of Autodiff Libraries in 2010s and 2020s

- **2010s: diverging philosophies**
 - Static graphs: TensorFlow 1.x, Caffe - industry
 - Dynamic graphs: PyTorch 0.x - research

- **2020s (PyTorch ≈ TensorFlow):**
 - PyTorch:
 - Optimizations for nn.Modules
 - Torch compile
 - Optimized with caching
 - TensorFlow:
 - Eager execution
Evolution of Autodiff Libraries in 2010s and 2020s

- **2010s: diverging philosophies**
 - Static graphs: TensorFlow 1.x, Caffe - industry
 - Dynamic graphs: PyTorch 0.x - research

- **2020s (PyTorch ≈ TensorFlow):**
 - PyTorch:
 - Optimizations for nn.Modules
 - Torch compile
 - Optimized with caching
 - TensorFlow:
 - Eager execution
 - Industry:
 - Distributed training: Fairscale, Deepspeed,

[Rajbhandari, Samyam, et al. "ZeRO: Memory optimizations toward training trillion parameter models."]
Distributed AD: PyTorch, FairScale & DeepSpeed

- **PyTorch:**
 - Native support for data parallelism, AccumulateGrad
 - Distributed Data Parallel (DDP) for multi-GPU training

- **FairScale:**
 - Optimization techniques like ZeRO, Sharded DDP (Sharded models)
 - Memory vs communication optimizations

- **DeepSpeed:**
 - Specialized for very large models (100B+ parameters)
 - ZeRO-3 for extreme memory efficiency
 - Pipeline parallelism for layer distribution

- **Common Features:**
 - Activation Checkpointing
 - Sharded models, distributed training, compensate compute and network against memory
References

- https://dlsyscourse.org/
- Fairscale: https://github.com/facebookresearch/fairscale
Table of Contents

1. Differentiation methods
2. Automatic differentiation
3. Automatic differentiation Libraries
4. HW1P1 Autograd
HW1P1 Autograd Overview

- Create an Automatic Differentiation library using Numpy.
HW1P1 Autograd Overview

- Create an Automatic Differentiation library using Numpy.
- Implement an engine *Autograd* that stores every operation in sequence (equivalent to a computation graph!).
HW1P1 Autograd Overview

- Create an Automatic Differentiation library using Numpy.
- Implement an engine *Autograd* that stores every operation in sequence (equivalent to a computation graph!).
- Build activations, losses, layers using primitive operations.
Create an Automatic Differentiation library using Numpy.

Implement an engine *Autograd* that stores every operation in sequence (equivalent to a computation graph!).

Build activations, losses, layers using primitive operations.

Run MLP using your Autograd engine.
HW1P1 Autograd Overview

- Create an Automatic Differentiation library using Numpy.
- Implement an engine Autograd that stores every operation in sequence (equivalent to a computation graph!).
- Build activations, losses, layers using primitive operations.
- Run MLP using your Autograd engine.
- 50 Marks (Largest HW part 1 Bonus)
Some Tips for Autograd HW

- You don’t need to implement the graph for HW; a Python list will do the job.
Some Tips for Autograd HW

- You don’t need to implement the graph for HW; a Python list will do the job.
- Explicitly add operations and nodes to the list.
Some Tips for Autograd HW

- You don’t need to implement the graph for HW; a Python list will do the job.
- Explicitly add operations and nodes to the list.
- Define minimal primitive backward functions - `mul_backwards`, `matmul_backwards`, etc.
Some Tips for Autograd HW

- You don’t need to implement the graph for HW; a Python list will do the job.
- Explicitly add operations and nodes to the list.
- Define minimal primitive backward functions - `mul_backward`, `matmul_backward`, etc.
- Extremely simple if you read the writeup and all the comments in the handout.
File Structure

- Build these files on their own first, and then put it into your Part 1 homeworks, if you want

2 MyTorch Structure

In HW1P1, your implementation of MyTorch worked at the granularity of a single layer - thus, stacking several Linear Layers followed by activations (and, optionally, BatchNorm) allowed you to build your very own MLP. In this bonus assignment, we will build an alternative implementation of MyTorch based on a popular Automatic Differentiation framework called Autograd that works at the granularity of a single operation. As you will discover, this alternate implementation more closely resembles the internal working of popular Deep Learning frameworks such as PyTorch and TensorFlow (version 2.0 onwards), and offers more flexibility in building arbitrary network architectures. For Homework 1 Bonus, MyTorch will have the following structure:

```
handout
• mytorch/
  – autograd_engine.py
  – util.py
  – sandbox.py
  – nn/
    • functional.py
    • modules/
      • activation.py
      • linear.py
      • loss.py
• hw1_bonus/
  – data
  – mlp.py
  – mlp_runner.py
• autograder/
  – runner.py
  – helpers.py
  – test_activation.py
  – test_autograd.py
  – test_functional.py
  – test_linear.py
  – test_loss.py
• create_tarball.sh
```
Autograd Implementation

- Take advantage of ordering
- Backpropagation is to iterate backwards on an operation list

3 Autograd

3.1 Background : Automatic Differentiation
Automatic Differentiation [1], or “Autodiff”, is a framework that allows us to calculate the derivatives of any arbitrarily complex mathematical function. It does so by repeatedly applying the chain rule of differentiation since all computer functions can be rewritten in the form of nested differentiable operations. Autodiff, which is different from Symbolic Differentiation, and Numerical Differentiation, has several desirable properties: two that we care most about are computational efficiency, and numerical accuracy. In practice, there are several different ways to implement autodiff, which can be broadly categorised into two types - forward accumulation, or forward mode (which computes the derivatives of the chain rule from inside to outside) and reverse accumulation, or reverse mode (which computes the derivatives of the chain rule from outside to inside). “Autograd” is just one such implementation of reverse mode automatic differentiation, which is most widely used in the context of machine learning applications.

3.2 Autograd and Backprop
Recall from Lecture 2, “The neural network as a universal approximator”, that neural networks are just large, large functions. Also recall from Lecture 3, that in order to train a neural network, we need to calculate the derivatives (or gradients) of this large function (with respect to its inputs) - which is the backpropagation algorithm - and use these gradients in an optimisation algorithm such as gradient descent to update the parameters of the network. Finally, recall from earlier in this writeup that autodiff provides an efficient way to compute exactly these required gradients by repeatedly applying the chain rule. The Autograd framework keeps track of the sequence of operations that are performed on the input data leading up to the final loss calculation. It then performs backpropagation and calculates all the necessary gradients.
3.3 Implementation Details

While several popular implementations of Autograd deal with complex data structures (such as computational graphs), our implementation will be far simpler and resemble a single “linear” sequence of operations going forward and backward. This is based on the key observation that regardless of the actual network architecture that one constructs (a graph, or otherwise) there is a sequential order in which all operations can be performed in order to achieve the correct result. (Readers who have a CS background may draw an analogy with the concept of serialized transactions/operations in distributed/parallel computing). We break down our implementation into two main classes - the Operation, and the Autograd classes - and a single helper class (GradientBuffer).
3.3 Implementation Details

While several popular implementations of Autograd deal with complex data structures (such as computational graphs), our implementation will be far simpler and resemble a single “linear” sequence of operations going forward and backward. This is based on the key observation that regardless of the actual network architecture that one constructs (a graph, or otherwise) there is a sequential order in which all operations can be performed in order to achieve the correct result. (Readers who have a CS background may draw an analogy with the concept of serialized transactions/operations in distributed/parallel computing). We break down our implementation into two main classes - the Operation, and the Autograd classes - and a single helper class (GradientBuffer).

\[
\frac{dL}{dh} = \frac{dL}{dy} \frac{dy}{dx}
\]

\[
\frac{dL}{db} = \frac{dL}{dy} \frac{dy}{db}
\]
3.3 Implementation Details

While several popular implementations of Autograd deal with complex data structures (such as computational graphs), our implementation will be far simpler and resemble a single “linear” sequence of operations going forward and backward. This is based on the key observation that regardless of the actual network architecture that one constructs (a graph, or otherwise) there is a sequential order in which all operations can be performed in order to achieve the correct result. (Readers who have a CS background may draw an analogy with the concept of serialized transactions/operations in distributed/parallel computing). We break down our implementation into two main classes - the Operation, and the Autograd classes - and a single helper class (GradientBuffer).
3.3.1 Operation Class

The objects of this class represent every operation that is performed in the network. Thus, for every operation that you perform on the data (say, multiplication, or addition), you will need to initialize a new Operation object that specifies the type of operation being performed. Note that to calculate the derivative of any operation in the network, we need to know the inputs that were passed to this node, and the outputs that were generated. Storing the type of operation, the inputs, and the outputs are the primary responsibilities of the Operation class.

Class attributes:

- **inputs**: The inputs to the operation.
- **outputs**: The output(s) generated by applying the operation to the inputs.
- **gradients_to_update**: These are the gradients corresponding to the operation inputs that must be updated on the backward pass.
- **backward_function**: A backward function implemented for a specific operation (ex: add_backward for operation add - see section 4.1.2 for more details). This function is called during backward pass to calculate and update the gradients for operation inputs.
3.3.2 Autograd Class

This is the main class for autograd engine that is responsible for keeping track of the sequence of operations being performed, and kicking off the backprop algorithm once the forward pass is complete.

Class attributes:

- **gradient_buffer**: An instance of the GradientBuffer class, used to store a mapping between input data and their gradients.

- **operation_list**: A Python list that is used to store sequence of operations that are performed on the input data. Concretely, this stores Operation objects.

Class methods:

- **add_operation** (inputs, output, gradients_to_update, backward_operation): Initialise a new instance of Operation with given arguments, and adds it to operation_list.

- **backward**(divergence): Kicks off backpropagation. Traverses the operation_list in reverse and calculates the gradients at every node.

For this assignment, you will need to implement add_operation and backward methods.
GradientBuffer Class

3.3.3 GradientBuffer Class

This is a simple wrapper class around a Python dictionary with a few useful methods that allow for storing and updating the gradients. While it's not necessary to modify this class for your assignment, we strongly recommend familiarizing yourself with the class attributes and methods to gain a better understanding of its functionality.

Class attributes:

- `memory`: A Python dictionary that holds the NumPy array corresponding to its gradient. For a given NumPy array `np_array`, the key is the memory location of `np_array` and the value is the gradient array associated with `np_array`. Note: Using the memory location as a key is a simple trick that eliminates the need to perform extra bookkeeping of maintaining unique keys for all gradients.

Class methods:

- `get_memory_loc(np_array)`: Returns the memory location of `np_array`, used in other functions to get keys.
- `is_in_memory(np_array)`: Checks if a gradient array corresponding to `np_array` is already in memory.
- `add_spot(np_array)`: Allocates a zero gradient array corresponding to `np_array` in memory.
- `update_param(np_array, gradient)`: Increments the gradient array corresponding to `np_array` by the amount of `gradient`.
- `get_param(np_array)`: Returns the gradient array corresponding to `np_array`.
- `clear()`: Clears the memory dictionary.
3.4 Example Walkthrough

Suppose that we are building a single layer MLP. Therefore, we perform the following operations on input data x:

$$h = x \ast W$$

$$y = h + b$$

(1)

(2)

The following steps need to be executed for this simple operation:

- First, we need to create an instance of autograd engine using:
  ```python
  autograd = autograd_engine.Autograd()
  ```

- For equation (1), we need to add a node to the computation graph performing multiplication, which would be done in the following way:
  ```python
  autograd_engine.add_operation(
      inputs = [x, W], output = h,
      gradients_to_update = [None, dw],
      backward_operation = matmul_backward
  )
  ```

- Similarly for equation (2),
  ```python
  autograd_engine.add_operation(
      inputs = [h, b], output = y,
      gradients_to_update = [None, db],
      backward_operation = add_backward
  )
  ```

- Invoke backpropagation by:
  ```python
  autograd_engine.backward(divergence)
  ```

dW and db should be updated after this.

The concept above could be leveraged in building more complex computation steps (with few lines of code).
3.4 Example Walkthrough

Suppose that we are building a single layer MLP. Therefore, we perform the following operations on input data \(x \):

\[
\begin{align*}
 h &= x \ast W \\
 y &= h + b
\end{align*}
\]

The following steps need to be executed for this simple operation:

```
import numpy as np
from mytorch.nn.functional import matmul_backward, add_backward

class Linear():
    def __init__(self, in_features, out_features, autograd_engine):
        self.W = np.random.uniform(-np.sqrt(1 / in_features), np.sqrt(1 / in_features),
                                    size=(out_features, in_features))
        self.b = np.random.uniform(-np.sqrt(1 / in_features), np.sqrt(1 / in_features),
                                    size=(out_features, 1))
        self.dW = np.zeros(self.W.shape)
        self.db = np.zeros(self.b.shape)
        self.momentum_W = np.zeros(self.W.shape)
        self.momentum_b = np.zeros(self.b.shape)
        self.autograd_engine = autograd_engine

    def __call__(self, x):
        return self.forward(x)
```

- Invoke backpropagation by:

```
autograd_engine.backward(divergence)
```

\(dW \) and \(db \) should be updated after this.

The concept above could be leveraged in building more complex computation steps (with few lines of code).
def add_backward(grad_output, a, b):
 a_grad = grad_output * np.ones(a.shape)
 b_grad = grad_output * np.ones(b.shape)
 return a_grad, b_grad

def sub_backward(grad_output, a, b):
 # TODO: implement the backward function for subtraction.
 raise NotImplementedError

def matmul_backward(grad_output, a, b):
 # TODO: implement the backward function for matrix product.
 raise NotImplementedError

def outer_backward(grad_output, a, b):
 assert a.shape[0] == 1 or a.ndim == 1
 assert b.shape[0] == 1 or b.ndim == 1
 # TODO: implement the backward function for outer product.
 raise NotImplementedError

def mul_backward(grad_output, a, b):
 # TODO: implement the backward function for multiply.
 raise NotImplementedError

def div_backward(grad_output, a, b):
 # TODO: implement the backward function for division.
 raise NotImplementedError

3.3.1 Operation Class

The objects of this class represent every operation that is performed in the network. Thus, for every operation that you perform on the data (say, multiplication, or addition), you will need to initialize a new Operation object that specifies the type of operation being performed. Note that to calculate the derivative of any operation in the network, we need to know the inputs that were passed to this node, and the outputs that were generated. Storing the type of operation, the inputs, and the outputs are the primary responsibilities of the Operation class.

Class attributes:

- **inputs**: The inputs to the operation.
- **outputs**: The output(s) generated by applying the operation to the inputs.
- **gradients_to_update**: These are the gradients corresponding to the operation inputs that must be updated on the backward pass.
- **backward_function**: A backward function implemented for a specific operation (ex: add_backward for operation add - see section 4.1.2 for more details). This function is called during backward pass to calculate and update the gradients for operation inputs.
No backward in Linear.py & Activation.py

```python
def __call__(self, x):
    return self.forward(x)

def forward(self, x):
    
    Computes the affine transformation forward pass of the Linear Layer
    
    Args:
        - x (np.ndarray): the input array,

    Returns:
        - (np.ndarray), the output of this forward computation.

    # TODO: Use the primitive operations to calculate the affine transformat
    # of the linear layer
    # TODO: Remember to use add_operation to record these operations in
    # the autograd engine after each operation

    # TODO: remember to return the computed value
    raise Not Implemented Error

class Identity(Activation):
    
    Identity function (already implemented).

    # This class is a gimme as it is already implemented for you

def __init__(self, autograd_engine):
    super(Identity, self).__init__(autograd_engine)

def forward(self, x):
    raise NotImplementedError

class Sigmoid(Activation):

def __init__(self, autograd_engine):
    super(Sigmoid, self).__init__(autograd_engine)

def forward(self, x):
    raise NotImplementedError

class Tanh(Activation):

def __init__(self, autograd_engine):
    super(Tanh, self).__init__(autograd_engine)

def forward(self, x):
    raise NotImplementedError

class ReLU(Activation):

def __init__(self, autograd_engine):
    super(ReLU, self).__init__(autograd_engine)

def forward(self, x):
    raise NotImplementedError
```
class SoftmaxCrossEntropy(LossFN):
 def __init__(self, autograd_engine):
 super(SoftmaxCrossEntropy, self).__init__(autograd_engine)

 def forward(self, y, y_hat):
 # TODO: calculate loss value and set self.loss_val
 # To simplify things, add a single operation corresponding to the
 # backward function created for this loss

 # self.loss_val = ...
 # return self.loss_val
 raise NotImplemented