
11-785 Introduction to Deep Learning
 - Fall 2023 -

Recitation 8: RNN Basics

Carnegie Mellon University

Shreyas Piplani & Meng Zhou

Objectives

Understanding why we need RNNs1

Understanding the working principles of RNNs2

Implementation of LSTMs in PyTorch3

Variants of RNNs4

5 RNNs from a Perspective of Graphical Models

6 Normalization/Dropout in RNNs

Why Recurrent Neural Network (RNNs)?

● RNNs learn the sequential characteristics in data inputs
and makes predictions of the next possible outcomes

● RNNs have the ability to process temporal information
present in sequential data

● RNNs have hidden states which act as the memory of the
neural network which remembers information on data
sequence

Sequential Data
● Consecutive data inputs which are dependent on each other

● Data input n is dependent on n-1 and n-1 dependent on n-2…

● Example:
○ Text: (Where are you off to?)
○ Audio/speech
○ Video
○ Time Series data (stock price, weather data)

Application of RNN
● Intelligent stock prediction systems

● Machine translation

● Speech Recognition systems

● Language modeling and Text generation

● Video Tagging

● Image captioning

● Text Summarization

Software applications: Google translate, Trading
bots, Siri, Cortana, voice search

Data Modeling
Types of Recurrent Neural Network

Image Classification (ref)
Image Captioning (ref)

https://media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs40537-021-00444-8/MediaObjects/40537_2021_444_Fig7_HTML.png
https://media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs40537-021-00444-8/MediaObjects/40537_2021_444_Fig7_HTML.png

Data Modeling
Types of Recurrent Neural Network

Sentiment Analysis (Movie Review)
The Batman (2022) is everything a
superhero movie should be. (Positive)

Machine Translation
“How are you?” -> “எப்படி
இருக்கிறரீ்கள்?"

Object Tracking in videos
Video

https://www.youtube.com/watch?v=zB_2q-UUZ4s&t=17s

Recurrent Neural Networks

● Feeds the output of previous layer without
activation to the input of next layer

● Looping Network (output of network depend
on previous input of the sequence)

● Parameter sharing across timesteps

● Derivatives is aggregated across all the
timesteps

● Backpropagation through time (BPTT)

Recurrent Neural Networks

At any given time t, the current input is a combination of input at x(t) and the output
from the previous hidden layer h(t-1)

Problems with RNN

Vanishing gradient

Gradient back propageted through time
becomes too small and loose information

Potential solutions:
● Weight initialization

● Choosing the right activation

● Long Short-Term Memory Networks
(LSTMs)

Exploding gradient

Gradient tends to grow exponentially instead
of decaying and cannot be contained

Potential solutions:
● Identity Initialization

● Truncated backpropagation

● Gradient clipping

To avoid these gradient problems we need to decide the amount of information we would need
to retain for prediction

Long Short-Term Memory (LSTMs)

● Capable of retaining information over a long period of time
● The most popular and efficient way of dealing with gradient problems
● LSTMs have chain-like structure repeating each cell
● Each LSTM cell have a defined structure depending on the variant
● LSTM Variants: +> LSTM Classic, LSTM Peephole connection
● Gated Recurrent Unit (GRU)

RNN LSTM

Classic LSTM

Gates

Forget gate

Input gate

Output gate

Variables

it ot

(Gers and Schmidhuber 2000: Recurrent Nets that Time and Count)

Peephole LSTM

Gates

Forget gate

Input gate

Output gate

Variables

LSTM PyTorch Implementation

Caution PyTorch Implementation

Questions:
1. What are weight_ih and weight_hh?
2. How to interpret the dimensions?
3. Which version of LSTM is this?
4. How should you use initialization (e.g. Xavier, Kaiming)?

Caution PyTorch Implementation

Questions:
1. What are weight_ih and weight_hh? Input weights and hidden weights
2. How to interpret the dimensions? Input, forget, cell, and output weights stacked

(reference)
3. Which version of LSTM is this? Wikipedia version (no peephole connection)
4. How should you use initialization (e.g. Xavier, Kaiming)? We initialize each one of

four (three if GRU) matrices separately

https://discuss.pytorch.org/t/lstm-gru-gate-weights/2807

Performance per LSTM Component

(Greff et al. 2017: LSTM: A Search Space
Odyssey)

CIFG: GRU, NP: No peepholes, FGR: Full gate recurrence, NOG: No output gate, NIG: No input gate, NFG: No forget gate,
NIAF: No input activation function, NOAF: No output activation function)

Performance per LSTM Component

(Jozefowicz et al. 2015: An Empirical Exploration of Recurrent Network Architectures)

Gated Recurrent Unit (GRU)

Gates

reset gate

update gate

Variables

Bidirectional RNN

Actual Network with BRNNs

RNNs: A Perspective from Graphical Models

h1

x1

h2

x2

…

…

hN

xN

● Recall: Hidden Markov Models (HMMs)

○ A sequence of hidden variables hi and a sequence of observations xi

○ Conditional independence

○ The hidden variable h is discrete

● Was very popular for sequential tasks

RNNs: A Perspective from Graphical Models

h1

x1

h2

x2

…

…

hN

xN

● State Space Model (SSMs): “continuous” version of HMMs

○ More complex than it sounds like

○ Implications: different inference algorithms

● A specific instance of SSMs: linear dynamical system

○ ht= Aht-1 + Bwt-1 (Transition)

○ Xt = Cht + vt (Observation)

○ A and C are two matrices

○ wt and vt are two noise terms

RNNs: A Perspective from Graphical Models

h1

x1

h2

x2

…

…

hN

xN

● State Space Model

○ ht= Aht-1 + Bwt (Transition)

○ Xt = Cht + vt (Observation)

● An estimator of the true hidden variables (Kalman Filter)

○ ht= A’ht-1 + B’Xt

● What about a non-linear estimator?

○ ht = f(ht-1, Xt)

○ We get RNN!

RNNs + Normalization?
● Applying BN to RNNs

○ The statistics could be different for different time steps

○ Typically does not work well

● Recurrent Batch Normalization [1]

○ Separate BN for recurrent term and input term

○ Separate statistics for different time step

■ But what if the length of test data is longer than all of the training data?

○ Initialization of gain matters

● Layer Normalization [2]

○ Proposed for RNNs but still not very common for RNNs

○ Widely used in other scenarios, e.g. Transformers

[1] Cooijmans, Tim, et al. "Recurrent batch normalization." arXiv preprint arXiv:1603.09025 (2016).

[2] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016).

RNNs + Dropout?

● `dropout` in PyTorch nn.LSTM

○ No effect if num_layers=1

○ Most common

● Two Types of Connections in RNNs

○ Layer-to-Layer

○ Hidden-to-Hidden

Variational RNNs, a.k.a. Locked Dropout
● Locked Dropout [1]

○ Key idea: keep the dropout mask fixed

○ Note: the implementation in torchnlp is slightly different

■ Only applied to layer-to-layer connection

[1] Gal, Yarin, and Zoubin Ghahramani. "A theoretically grounded application of dropout in recurrent neural networks." Advances in neural information
processing systems 29 (2016).

Weight-dropped LSTM
● Weight-dropped LSTM [1]

○ Essentially, “DropConnect”. Dropout applied to weight matrices

[1] Merity, Stephen, Nitish Shirish Keskar, and Richard Socher. "Regularizing and optimizing LSTM language models." arXiv preprint arXiv:1708.02182 (2017).

Dropout DropConnect

Language Model Demo: Shakespeare

