
Deep Learning
Recurrent Networks:
Modelling Language

Sequence-to-Sequence models

1

Sequence-to-sequence modelling
• Problem:

– A sequence ଵ ே goes in
– A different sequence ଵ ெ comes out

• E.g.
– Speech recognition: Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes
out

– Dialog : User statement goes in, system response comes out
– Question answering : Question comes in, answer goes out

• In general
– No synchrony between and .

2

Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

3

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Can you check if your computer is plugged in?”

4

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

DONE

Sequence to sequence

• Sequence goes in, sequence comes out
• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

– Or even seem related to the input
• E.g. “My screen is blank”  “Can you check if your computer is plugged in?”

5

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

v

A different kind of problem

• Input and output may not have
correspondence…

6

But first – a brief detour…

7

Which open source project?

8

Related math. What is it talking
about?

9

And a Wikipedia page explaining it all

10

The unreasonable effectiveness of
recurrent neural networks..

• All previous examples were generated blindly
by a recurrent neural network..
– With simple architectures

• http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

11

Modern text generation is a lot more
sophisticated that that

• ChatGPT…

12

Brief detour: Language models

• Modelling language using recurrent nets

• More generally language models and
embeddings..

13

Language Models

• LMs model the probability distribution of
token sequences in the language
– Word sequences, if words are the tokens

• Can be used to
– Compute the probability of a given token

sequence
– Generate sequences from the distribution of the

language

14

Language Models

• The actual target is to model the probabilities of entire word sequences
• However, we typically use Bayes rule to compute this incrementally

– Language models generally perform next symbol prediction
– Always predicting the next symbol, given all previous symbols

• However, never forget, they actually model the probability of entire
sequences
– Sentences, paragraphs, books
– They model language

15

Language modelling through next-
word prediction using RNNs

• Problem: Given a sequence of words (or
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??

16

Language modelling: Representing
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) order

• E.g. [A AARDVARK AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

• E.g. “AARDVARK”  [0 1 0 0 0 …]
• E.g. “AARON”  [0 0 1 0 0 0 …]

• Characters can be similarly represented
– English will require about 100 characters, to include both cases,

special characters such as commas, hyphens, apostrophes, etc.,
and the space character

17

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

௡ ଴ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

18

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

௡ ଴ ௡ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

19

The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit
cube
– Actual volume of space used = 0

• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: ே

௥ಿ

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)

20

Why one-hot representation

• The one-hot representation makes no assumptions about the relative
importance of words
– All word vectors are the same length

• It makes no assumptions about the relationships between words
– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)

21

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

(1,0,0)

(0,1,0)

(0,0,1)

22

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– Or more generally, a linear transform into a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

௥ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

(1,0,0)

(0,1,0)

(0,0,1)

23

The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊௜ by 𝑃𝑊௜

– 𝑃 is an 𝑀 × 𝑁 matrix
– 𝑃𝑊௜ is now an 𝑀-dimensional vector
– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

௡ ଴ ଶ ௡ିଵ

Four score and seven years ???
0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

଴

ଵ

௡ିଵ

௡

(1,0,0)

(0,1,0)

(0,0,1)

24

“Projection”

• P is a simple linear transform
• A single transform can be implemented as a linear layer with M outputs

– The same linear layer applies to all inputs
– Also viewable as a network with identical subnets (shared parameter network)

௡ ଵ ଶ ௡ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

0
1
⋮
0
0

௡

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

ଵ

ଶ

௡ିଵ

25

Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003
– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional
representations of words

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴

26

Alternative models to learn
projections

• Soft bag of words: Predict word based on words
in immediate context
– Without considering specific position

• Skip-grams: Predict adjacent words based on
current word

𝑃

Mean pooling

𝑊ଵ

𝑃

𝑊ଶ

𝑃

𝑊ଷ

𝑃

𝑊ହ

𝑃

𝑊଺

𝑃

𝑊଻

𝑊ସ

𝑃

𝑊଻

𝑊ହ 𝑊଺ 𝑊଼ 𝑊ଽ 𝑊ଵ଴𝑊ସ

Color indicates
shared parameters

27

Embeddings: Examples

• From Mikolov et al., 2013, “Distributed Representations of Words
and Phrases and their Compositionality” 28

Poll 1 (@1131)

29

Select all that are true

 The distance between any two non-identical one-hot vectors is the same
 Words are represented as one-hot embeddings because these do not

impose any a priori assumption about which words are closer than others
 Word embeddings derived from language models are lower-dimensional

real-valued representations where the distance between words is a
meaningful representation of their closeness

 Low dimensional word embeddings enable you to find representations for
words that were not part of your training vocabulary

Poll 1

30

Select all that are true

 The distance between any two non-identical one-hot vectors is the same
 Words are represented as one-hot embeddings because these do not impose any a priori

assumption about which words are closer than others
 Word embeddings derived from language models are lower-dimensional real-valued

representations where the distance between words is a meaningful representation of their
closeness

 Low dimensional word embeddings enable you to find representations for words that were not
part of your training vocabulary

Modelling language

• The hidden units are (one or more layers of) LSTM units
• Trained via backpropagation from a lot of text

– No explicit labels in the training data: at each time the next
word is the label.

ଵ ଶ ଷ ସ ହ ଺ ଻ ଼ ଽ

ହ ଺ ଻ ଼ ଽ ଵ଴ଶ ଷ ସ

31

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ

32

ସ
ଵ

ସ
ଶ

ସ
ே

௧
௜

௧ ௜ ଵ ௧ିଵ

The probability that the t-th word in the
sequence is the i-th word in the vocabulary
given all previous t-1 words

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ

33

ସ
ଵ

ସ
ଶ

ସ
ே

௧
௜

௧ ௜ ଵ ௧ିଵ

The probability that the t-th word in the
sequence is the i-th word in the vocabulary
given all previous t-1 words

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ସ

34

ହ
ଵ

ହ
ଶ

ହ
ே

௧
௜

௧ ௜ ଵ ௧ିଵ

The probability that the t-th word in the
sequence is the i-th word in the
vocabulary given all previous t-1 words

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହସ

35

ହ
ଵ

ହ
ଶ

ହ
ே

௧
௜

௧ ௜ ଵ ௧ିଵ

The probability that the t-th word in the
sequence is the i-th word in the
vocabulary given all previous t-1 words

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହ ଺ ଻ ଼ ଽ ଵ଴ସ

36

Which open source project?

Trained on linux source code

Actually, uses a character-level
model (predicts character sequences)

37

Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/38

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word by sampling from the output probability distribution

• More generally: When do we stop?
39

ଵ ଶ ଷ

ହ ଺ ଻ ଼ ଽ ଵ଴ସ

A note on beginnings and ends
• A sequence of words by itself does not indicate if it is a

complete sentence or not

… four score and eight …
– Unclear if this is the start of a sentence, the end of a

sentence, or both (i.e. a complete sentence)

• To make it explicit, we will add two additional symbols
(in addition to the words) to the base vocabulary
– <sos> : Indicates start of a sentence

– <eos> : Indicates end of a sentence

40

A note on beginnings and ends
• Some examples:

four score and eight
– This is clearly the middle of sentence

<sos> four score and eight
– This is a fragment from the start of a sentence

four score and eight <eos>
– This is the end of a sentence

<sos> four score and eight <eos>
– This is a full sentence

• In situations where the start of sequence is obvious, the <sos> may not be needed,
but <eos> is required to terminate sequences

• Sometimes we will use a single symbol to represent both start and end of
sentence, e.g just <eos> , or even a separate symbol, e.g. <s>

41

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word by sampling from the output probability distribution

• Continue this process until we draw an <eos>
– Or we decide to terminate generation based on some other criterion

ଵ ଶ ଷ

ହ ଺ ଻ ଼ ଽ ଵ଴ସ

42

Poll 2 (@1132)

43

Which of the following is a complete sentence

<sos> Hello World <eos>

<sos> Hello World

Hello World <eos>

Hello World

Poll 2

44

Which of the following is a complete sentence

<sos> Hello World <eos>

<sos> Hello World

Hello World <eos>

Hello World

Returning to our problem: Sequence
to sequence modelling

• Sequence goes in, sequence comes out
• Cases

– 1 : order correspondence between input and output
• The nth output corresponds to the nth segment of the input

– 2 : No correspondence between input and output
• May even not even maintain order of symbols

– E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

• Or may even even seem unrelated to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

45

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

Returning to our problem: Sequence
to sequence modelling

• Sequence goes in, sequence comes out
• Cases

– 1 : order correspondence between input and output
• The nth output corresponds to the nth segment of the input

– 2 : No correspondence between input and output
• May even not even maintain order of symbols

– E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

• Or may even even seem unrelated to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

46

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

Returning to our problem: Sequence
to sequence modelling

• Sequence goes in, sequence comes out
• Cases

– 1 : order correspondence between input and output
• The nth output corresponds to the nth segment of the input

– 2 : No correspondence between input and output
• May even not even maintain order of symbols

– E.g. “I ate an apple”  “Ich habe einen apfel gegessen”

• Or may even even seem unrelated to the input
• E.g. “My screen is blank”  “Please check if your computer is plugged in.”

47

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

Modelling the problem

• Delayed sequence to sequence

48

Modelling the problem

• Delayed sequence to sequence

49

First process the input
and generate a hidden
representation for it

Pseudocode
First run the inputs through the network

Assuming h(-1,l) is available for all layers

for t = 0:T-1 # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)

H = h(T-1)

50

“RNN_input” may be
a multi-layer RNN of
any kind

Modelling the problem

• Delayed sequence to sequence

51

Then use it to generate
an output

First process the input
and generate a hidden
representation for it

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
for t = 0:T-1 # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>

52

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
for t = 0:T-1 # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>

53

The output at each time is a probability distribution
over symbols.
We draw a word from this distribution

Modelling the problem

• Problem: Each word that is output depends only on
current hidden state, and not on previous outputs

54

Then use it to generate
an output

First process the input
and generate a hidden
representation for it

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
for t = 0:T-1 # Including both ends of the index

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>

55

Changing this output at time t does not affect the output at t+1

E.g. If we have drawn “It was a” vs “It was an”, the probability
that the next word is “dark” remains the same (dark must ideally
not follow “an”)

This is because the output at time t does not influence the
computation at t+1

The RNN recursion only considers the hidden
state h(t-1) from the previous time and not the
actual output word yout(t-1)

Modelling the problem

• Delayed sequence to sequence
– Delayed self-referencing sequence-to-sequence 56

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

57

I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

58

I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

59

<sos>

Ich

I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

60

Ich habe

Ich<sos>I ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

61

<sos>

Ich habe einen

Ich habeI ate an apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure
• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs
– The output at each time becomes the input at the next time
– Output production continues until an <eos> is produced

62

<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

The “simple” translation model

63

<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

Note that drawing a different word here

Would result in a different word being input here, and as a
result the output here and subsequent outputs would all change

• We will illustrate with a single hidden layer, but the
discussion generalizes to more layers

64

I ate an apple <sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessen

I ate an apple <eos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessen

<eos>

<sos>

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
65

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
66

Drawing a different word at t will change the
next output since yout(t) is fed back as input

The “simple” translation model

• The recurrent structure that extracts the hidden
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation
to produce the output sequence is the decoder

67

ENCODER

DECODER
<sos>

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos>

The “simple” translation model

• A more detailed look: The one-hot word
representations may be compressed via embeddings
– Embeddings will be learned along with the rest of the net
– In the following slides we will not represent the projection

matrices
68

Ich habe einen apfel gegessen <eos>

I ate an apple <sos> Ich habe einen apfel gegessen

ଵ ଵ ଵ ଵ ଵ ଶ ଶ ଶ ଶ ଶଶ

<eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

69

I ate an apple <sos>

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

<eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

70

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦

Ich

I ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

71

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

Ich

IchI ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

72

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

Ich

IchI ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

73

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

Ich

Ich

habe

I ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

74

Ich habe

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

Ich

Ich

habe

I ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

75

Ich habe

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

Ich

Ich

habe

I ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

76

Ich habe

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

Ich

Ich

habe einen

I ate an apple <sos><eos>

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary
– 𝑦௞

௪ = 𝑃 𝑂௞ = 𝑤|𝑂௞ିଵ, … , 𝑂ଵ, 𝐼ଵ, … , 𝐼ே

– The probability given the entire input sequence 𝐼ଵ, … , 𝐼ே and the partial output sequence 𝑂ଵ, … , 𝑂௞ିଵ until 𝑘

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time

77

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦வ

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <sos><eos>

Generating an output from the net

• At each time the network produces a probability distribution over words, given the
entire input and entire output sequence so far

• At each time a word is drawn from the output distribution
• The drawn word is provided as input to the next time
• The process continues until an <eos> is drawn 78

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessen

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦வ

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦வ

I ate an apple <sos><eos>

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = draw_word_from(y(t))

until yout(t) == <eos>
79What is this magic operation?

The probability of the output

ଵ ௅ ଵ ே

ଵ ଵ…ே ே ଶ ଵ ଵ ே ଷ ଵ ଶ ଵ ே ௅ ଵ ௅ିଵ ଵ ே

ଵ
ைభ

ଶ
ைమ

௅
ைಽ

80

O1 O2 O3 O4 O5 <eos>

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦வ

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦வ

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦

O1 O2 O3 O4 O5I ate an apple <sos><eos>

The probability of the output

• The objective of drawing: Produce the most likely output (that ends in an <eos>)

ைభ,…,ைಽ

ଵ ௅ ଵ
௜௡

ே
௜௡

ைభ,…,ைಽ
ଵ
ைభ

ଶ
ைమ

௅
ைಽ

81

O1 O2 O3 O4 O5 <eos>

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦வ

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦வ

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦வ

O1 O2 O3 O4 O5I ate an apple <sos><eos>

Greedy drawing

• So how do we draw words at each time to get the most likely word
sequence?

• Greedy answer – select the most probable word at each time

82

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦வ

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦வ

Objective:

ைభ,…,ைಽ
ଵ
ைభ

ଶ
ைమ

௅
ைಽ

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <sos><eos>

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = argmaxi(y(t,i))

until yout(t) == <eos>
83Select the most likely output at each time

Greedy drawing

• Cannot just pick the most likely symbol at each time
– That may cause the distribution to be more “confused” at the next time
– Choosing a different, less likely word could cause the distribution at the next

time to be more peaky, resulting in a more likely output overall
84

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦வ

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦வ

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢

Objective:

ைభ,…,ைಽ
ଵ
ைభ

ଵ
ைమ

ଵ
ைಽ

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <sos><eos>

Greedy is not good

• Hypothetical example (from English speech recognition : Input is speech, output
must be text)

• “Nose” has highest probability at t=2 and is selected
– The model is very confused at t=3 and assigns low probabilities to many words at the next

time
– Selecting any of these will result in low probability for the entire 3-word sequence

• “Knows” has slightly lower probability than “nose”, but is still high and is selected
– “he knows” is a reasonable beginning and the model assigns high probabilities to words such

as “something”
– Selecting one of these results in higher overall probability for the 3-word sequence

85

T=0 1 2 T=0 1 2w1 w2 w3 wV…

𝑃
(𝑂

ଷ
|𝑂

ଵ
,𝑂

ଶ
,𝐼

ଵ
,…

,𝐼
ே

)

w1 w2 w3 wV…

𝑃
(𝑂

ଷ
|𝑂

ଵ
,𝑂

ଶ
,𝐼

ଵ
,…

,𝐼
ே

)

Greedy is not good

• Problem: Impossible to know a priori which word leads to
the more promising future
– Should we draw “nose” or “knows”?
– Effect may not be obvious until several words down the line
– Or the choice of the wrong word early may cumulatively lead to

a poorer overall score over time
86

T=0 1 2
w1 w2 w3 wV…

𝑃
(𝑂

ଶ
|𝑂

ଵ
,𝐼

ଵ
,…

,𝐼
ே

)What should we
have chosen at t=2??

Will selecting “nose”
continue to have a
bad effect into the
distant future?

nose knows

Greedy is not good

• Problem: Impossible to know a priori which word leads to the more
promising future
– Even earlier: Choosing the lower probability “the” instead of “he” at T=0 may

have made a choice of “nose” more reasonable at T=1..

• In general, making a poor choice at any time commits us to a poor future
– But we cannot know at that time the choice was poor

87

T=0 1 2
w1 the w3 he…

𝑃
(𝑂

ଵ
|𝐼

ଵ
,…

,𝐼
ே

)

What should we
have chosen at t=1??

Choose “the” or “he”?

Drawing by random sampling

• Alternate option: Randomly draw a word at each
time according to the output probability
distribution

88

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦வ

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦வ

Objective:

ைభ,…,ைಽ
ଵ
ைభ

ଵ
ைమ

ଵ
ைಽ

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>

Pseudocode
First run the inputs through the network
Assuming h(-1,l) is available for all layers
t = 0
do

[h(t),..] = RNN_input_step(x(t),h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1))
yout(t) = sample(y(t))

until yout(t) == <eos>
89

Randomly sample from the output distribution.

Drawing by random sampling

• Alternate option: Randomly draw a word at each time according to the
output probability distribution
– Unfortunately, not guaranteed to give you the most likely output
– May sometimes give you more likely outputs than greedy drawing though

90

଴
௜௖௛

଴
௕௜௘௥

଴
௔௣௙௘௟

଴
ழ௘௢௦வ

ଵ
௜௖௛

ଵ
௕௜௘௥

ଵ
௔௣௙௘௟

ଵ
ழ௘௢௦வ

ଶ
௜௖௛

ଶ
௕௜௘௥

ଶ
௔௣௙௘௟

ଶ
ழ௘௢௦வ

ଷ
௜௖௛

ଷ
௕௜௘௥

ଷ
௔௣௙௘௟

ଷ
ழ௘௢௦

ସ
௜௖௛

ସ
௕௜௘௥

ସ
௔௣௙௘௟

ସ
ழ௘௢௦

ହ
௜௖௛

ହ
௕௜௘௥

ହ
௔௣௙௘௟

ହ
ழ௘௢௦வ

Objective:

ைభ,…,ைಽ
ଵ
ைభ

ଵ
ைమ

ଵ
ைಽ

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <sos><eos>

Poll 3 (@1133, @1134, @1135)

91

For greedy decoding, we choose the word that has been assigned the
highest probability at each time (T/F)
• True
• False

In decoding through random sampling we randomly choose the next
word according to the probability assigned to it by the decoder (T/F)
• True
• False

The procedure used for randomly sampling a word from a distribution
has been presented in today’s class (T/F)
• True
• False

Poll 3

92

For greedy decoding, we choose the word that has been assigned the highest probability at each time
(T/F)

 True
 False

In decoding through random sampling we randomly choose the next word according to the probability
assigned to it by the decoder (T/F)

 True
 False

The procedure used for randomly sampling a word from a distribution has been presented in today’s
class (T/F)

 True
 False

Your choices can get you stuck

• Problem: making a poor choice at any time
commits us to a poor future
– But we cannot know at that time the choice was poor

• Solution: Don’t choose..
93

T=0 1 2
w1 the w3 he…

𝑃
(𝑂

ଵ
|𝐼

ଵ
,…

,𝐼
ே

)

What should we
have chosen at t=1??

Choose “the” or “he”?

Optimal Solution: Multiple choices

• Retain all choices and fork the network
– With every possible word as input

94

I

He

We

The

<sos>

Problem: Multiple choices

• Problem: This will blow up very quickly
– For an output vocabulary of size , after output steps

we’d have forked out branches
95

I

He

We

The

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

96

I

He

We

The

௄ ଵ ଵ ே

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

97

I

He

We

The

௄ ଵ ଵ ே

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

98

He

The

௄ ଶ ଵ ଵ ே

Note: based on product

௄ ଶ ଵ ଵ ே ଵ ଵ ே

I

Knows

…

I

Nose

…

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

99

He

The

௄ ଶ ଵ ଵ ே

Note: based on product

௄ ଶ ଵ ଵ ே ଵ ଵ ே

I

Knows

…

I

Nose

…

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

100

He

The

௄ ଷ ଵ ଶ ଵ ே

ଶ ଵ ଵ ே

ଵ ଵ ே

Knows

Nose

…

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

101

He

The

௄ ଶ ଵ ଶ ଵ ே

ଶ ଵ ଵ ே

ଵ ଵ ே

Knows

Nose

…

<sos>

Solution: Prune

• Solution: Prune
– At each time, retain only the top K scoring forks

102

He

The

௄ ௡ ଵ ௡ିଵ ଵ ே

௡

௧ୀଵ

Knows

Nose

<sos>

Terminate

• Terminate
– When the current most likely path overall ends in <eos>

• Or continue producing more outputs (each of which terminates in <eos>) to
get N-best outputs 103

He

The

Knows

<eos>

Nose

<sos>

Termination: <eos>

• Terminate
– Paths cannot continue once the output an <eos>

• So paths may be different lengths
– Select the most likely sequence ending in <eos> across all terminating sequences 104

He

The

Knows

<eos>

Nose

<eos>

<eos>

Example has K = 2

<sos>

Pseudocode: Beam search
Assuming encoder output H is available
path = <sos>
beam = {path}
pathscore = [path] = 1
state[path] = h[0] # Output of encoder
do # Step forward

nextbeam = {}
nextpathscore = []
nextstate = {}
for path in beam:

cfin = path[end]
hpath = state[path]
[y,h] = RNN_output_step(hpath,cfin)
for c in Symbolset

newpath = path + c
nextstate[newpath] = h
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition

end
end
beam, pathscore, state, bestpath = prune(nextstate,nextpathscore,nextbeam,bw)

until bestpath[end] = <eos>

105

Pseudocode: Prune
Note, there are smarter ways to implement this

function prune (state, score, beam, beamwidth)
sortedscore = sort(score)
threshold = sortedscore[beamwidth]

prunedstate = {}
prunedscore = []
prunedbeam = {}

bestscore = -inf
bestpath = none
for path in beam:

if score[path] > threshold:
prunedbeam += path # set addition
prunedstate[path] = state[path]
prunedscore[path] = score[path]
if score[path] > bestscore

bestscore = score[path]
bestpath = path

end
end

end
return prunedbeam, prunedscore, prunedstate, bestpath

106

Poll 4 (@1136, @1137)

107

“Theoretically correct” decoding requires you to evaluate the entire tree
representing every possible word sequence to select the best one (T/F)

 True
 False

Beam search is theoretically correct decoding (T/F)

 True
 False

Poll 4

108

“Theoretically correct” decoding requires you to evaluate the entire tree representing every possible
word sequence to select the best one (T/F)

 True
 False

Beam search is theoretically correct decoding (T/F)

 True
 False

Training the system

• Must learn to make predictions appropriately
– Given “I ate an apple <eos>”, produce “Ich habe

einen apfel gegessen <eos>”.

109

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

Training : Forward pass

• Forward pass: Input the source and target sequences,
sequentially
– Output will be a probability distribution over target symbol set

(vocabulary)

110

<sos> Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

I ate an apple <eos>

Training : Backward pass

• Backward pass: Compute the divergence
between the output distribution and target word
sequence

111

Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

Div Div Div Div Div Div

<sos>I ate an apple <eos>

Training : Backward pass

• Backward pass: Compute the divergence between the output
distribution and target word sequence

• Backpropagate the derivatives of the divergence through the
network to learn the net

112

Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

Div Div Div Div Div Div

<sos>I ate an apple <eos>

Training : Backward pass

• In practice, if we apply SGD, we may randomly sample words from the
output to actually use for the backprop and update
– Typical usage: Randomly select one word from each input training instance

(comprising an input-output pair)
• For each iteration

– Randomly select training instance: (input, output)
– Forward pass
– Randomly select a single output y(t) and corresponding desired output d(t) for backprop 113

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

Div Div Div Div Div Div

Ich habe einen apfel gegessen<sos>I ate an apple <eos>

Overall training

• Given several training instance
• For each training instance

– Forward pass: Compute the output of the network for

• Note, both and are used in the forward pass

– Backward pass: Compute the divergence between
selected words of the desired target and the actual
output

• Propagate derivatives of divergence for updates

• Update parameters

114

Trick of the trade: Reversing the input

• Standard trick of the trade: The input
sequence is fed in reverse order
– Things work better this way

115

Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

Div Div Div Div Div Div

Iateanapple<eos> <sos>

Trick of the trade: Reversing the input

• Standard trick of the trade: The input
sequence is fed in reverse order
– Things work better this way

116

Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

Div Div Div Div Div Div

Iateanapple<eos> <sos>

Trick of the trade: Reversing the input

• Standard trick of the trade: The input sequence is fed
in reverse order
– Things work better this way

• This happens both for training and during inference on
test data

117

Ich habe einen apfel gegessen

଴ ଵ ଶ ଷ ସ ହ

Ich habe einen apfel gegessen <eos>

Iateanapple<eos> <sos>

Overall training

• Given several training instance
• Forward pass: Compute the output of the

network for with input in reverse order
– Note, both and are used in the forward pass

• Backward pass: Compute the divergence
between the desired target and the actual
output
– Propagate derivatives of divergence for updates

118

Applications

• Machine Translation
– My name is Tom  Ich heisse Tom/Mein name ist

Tom
• Automatic speech recognition

– Speech recording  “My name is Tom”
• Dialog

– “I have a problem”  “How may I help you”
• Image to text

– Picture  Caption for picture

119

Machine Translation Example

• Hidden state clusters by meaning!
– From “Sequence-to-sequence learning with neural networks”,

Sutskever, Vinyals and Le 120

Machine Translation Example

• Examples of translation
– From “Sequence-to-sequence learning with neural networks”,

Sutskever, Vinyals and Le 121

Human Machine Conversation: Example

• From “A neural conversational model”, Orin Vinyals and Quoc Le
• Trained on human-human converstations
• Task: Human text in, machine response out 122

Generating Image Captions

• Not really a seq-to-seq problem, more an image-to-sequence problem
• Initial state is produced by a state-of-art CNN-based image classification

system
– Subsequent model is just the decoder end of a seq-to-seq model

• “Show and Tell: A Neural Image Caption Generator”, O. Vinyals, A. Toshev, S. Bengio, D.
Erhan

123

CNN

Image

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

124

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

125

A

଴
௔

଴
௕௢௬

଴
௖௔௧

<sos>

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

126

A boy

A

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

<sos>

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

127

A boy on

A boy

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

ଶ
௔

ଶ
௕௢௬

ଶ
௖௔௧

<sos>

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

128

A boy on a

A boy on

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

ଶ
௔

ଶ
௕௢௬

ଶ
௖௔௧

ଷ
௔

ଷ
௕௢௬

ଷ
௖௔௧

<sos>

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

129

A boy on a surfboard

A boy on a

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

ଶ
௔

ଶ
௕௢௬

ଶ
௖௔௧

ଷ
௔

ଷ
௕௢௬

ଷ
௖௔௧

ସ
௔

ସ
௕௢௬

ସ
௖௔௧

<sos>

Generating Image Captions

• Decoding: Given image
– Process it with CNN to get output of classification layer
– Sequentially generate words by drawing from the conditional

output distribution
– In practice, we can perform the beam search explained earlier

130

A boy on a surfboard<eos>

A boy on a surfboard

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

ଶ
௔

ଶ
௕௢௬

ଶ
௖௔௧

ଷ
௔

ଷ
௕௢௬

ଷ
௖௔௧

ସ
௔

ସ
௕௢௬

ସ
௖௔௧

ହ
௔

ହ
௕௢௬

ହ
௖௔௧

<sos>

Training

• Training: Given several (Image, Caption) pairs
– The image network is pretrained on a large corpus, e.g. image net

• Forward pass: Produce output distributions given the image and caption
• Backward pass: Compute the divergence w.r.t. training caption, and backpropagate

derivatives
– All components of the network, including final classification layer of the image classification net are

updated
– The CNN portions of the image classifier are not modified (transfer learning) 131

CNN

Image

• Training: Given several (Image, Caption) pairs
– The image network is pretrained on a large corpus, e.g. image net

• Forward pass: Produce output distributions given the image and caption
• Backward pass: Compute the divergence w.r.t. training caption, and backpropagate

derivatives
– All components of the network, including final classification layer of the image classification net are

updated
– The CNN portions of the image classifier are not modified (transfer learning) 132

A boy on a surfboard

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

ଶ
௔

ଶ
௕௢௬

ଶ
௖௔௧

ଷ
௔

ଷ
௕௢௬

ଷ
௖௔௧

ସ
௔

ସ
௕௢௬

ସ
௖௔௧

ହ
௔

ହ
௕௢௬

ହ
௖௔௧

<sos>

• Training: Given several (Image, Caption) pairs
– The image network is pretrained on a large corpus, e.g. image net

• Forward pass: Produce output distributions given the image and caption
• Backward pass: Compute the divergence w.r.t. training caption, and backpropagate

derivatives
– All components of the network, including final classification layer of the image classification net are

updated
– The CNN portions of the image classifier are not modified (transfer learning) 133

A boy on a surfboard<eos>

A boy on a surfboard

଴
௔

଴
௕௢௬

଴
௖௔௧

ଵ
௔

ଵ
௕௢௬

ଵ
௖௔௧

ଶ
௔

ଶ
௕௢௬

ଶ
௖௔௧

ଷ
௔

ଷ
௕௢௬

ଷ
௖௔௧

ସ
௔

ସ
௕௢௬

ସ
௖௔௧

ହ
௔

ହ
௕௢௬

ହ
௖௔௧

Div Div Div Div Div Div

<sos>

Examples from Vinyals et al.

134

Variants

135
<sos>

Iateanapple<eos>

<sos>

A better model: Encoded
input embedding is input to
all output timesteps

A boy on a surfboard

A boy on surfboarda <eos>

Ich habe einen apfel gegessen <eos>

Translating Videos to Natural Language Using Deep
Recurrent Neural Networks

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015.

136

Pseudocode
Assuming encoded input H (from text, image, video)
is available
Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H # Encoder embedding

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1), H)
yout(t) = generate(y(t)) # Beam search, random, or greedy

until yout(t) == <eos>

137

Pseudocode
Assuming encoded input H (from text, image, video)
is available
Now generate the output yout(1),yout(2),…
t = 0
hout(0) = H # Encoder embedding

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
yout(0) = <sos>
do

t = t+1
[y(t),hout(t)] = RNN_output_step(hout(t-1), yout(t-1), H)
yout(t) = generate(y(t)) # Beam search, random, or greedy

until yout(t) == <eos>

138

Also consider
encoder embedding

But wait…

• We are overloading this guy
• How can we do better?
• Next class

139

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

