Deep Learning

Diffusion Models and Normalizing Flows

11-785 - Fall 2023

Abuzar Khan
Open Question

1. Say we have a data distribution p that is a mixture of two 2D gaussians as shown below in red. We want to approximate this with one gaussian estimate q using KL-divergence. Which of the following three will result from optimizing $D_{KL}(p \parallel q)$
2. and which from $D_{KL}(q \parallel p)$?
Open Question

1. Say we have a data distribution p that is a mixture of two 2D gaussians as shown below in red. We want to approximate this with one gaussian estimate q using KL-divergence. Which of the following three will result from optimizing $D_{KL}(p || q)$

2. and which from $D_{KL}(q || p)$?
Background

1. Generative Models and Discriminative models
2. Autoencoders
3. Variational Autoencoders
 1. Reparameterization trick
 2. ELBO
Sandcastles

How to create a sandcastle:

Step 1: Take a sandcastle

Step 2: Destroy the sandcastle

Step 3: Remember how you destroyed the sandcastle

Step 4: Reverse the process

Key Idea

Once you know how to reconstruct sandcastles, you can start with some different “sand”, apply this process, and end up with a different “sandcastle”
Part 1

Diffusion Models
ELBO Recap

Why use ELBO?
Directly maximizing $p(x)$ is very difficult:
• it involves either marginalizing over the entire latent space Z (intractable for complex models) OR
• It involves having access to the ground truth latent encoder $p(z|x)$

ELBO:

$$\log(p(x)) \geq \mathbb{E}_{q_\phi(z \mid x)} \left[\log \frac{p(x, z)}{q_\phi(z \mid x)} \right]$$

Question: Why does the \geq show up here? → With the derivation in the appendix, we see a $D_{KL}(q_\phi(z \mid x) \mid \mid p(z \mid x))$ term show up which is always ≥ 0.

Applying chain-rule of probabilities:

$$ELBO = \mathbb{E}_{q_\phi(z \mid x)} \left[\log p_\theta(x \mid z) \right] - D_{KL}(q_\phi(z \mid x) \mid \mid p(z))$$

Reconstruction Prior matching
Variational Autoencoder Recap

Latent variable sampling: $z \sim \mathcal{N}(z; \mu_\phi(x), \sigma^2_\phi(x))$

Reparameterization trick: $z = \mu_\phi(x) + \sigma_\phi(x) \odot \epsilon, \ \epsilon \sim \mathcal{N}(0, I)$

Training:
- Jointly optimize θ and ϕ
- Maximize ELBO

Empirically, we found that two things make VAEs work really well:
1. Increasing the depth of the networks
2. Introducing a hierarchy of latent variables (latent variables of latent variables)

$x \leftarrow z_1 \leftarrow z_2 \leftarrow \ldots \leftarrow z_T$, such that each latent is conditioned on all previous latents.

We are particularly interested in such HAVEs that where the process is a Markovian chain - MHVAE
Markovian Hierarchical Variational Autoencoder

Joint probability:
\[p(x, z_{1:T}) = p(z_T)p_\theta(x \mid z_1) \prod_{t=2}^T p_\theta(z_{t-1} \mid z_t) \]

Posterior probability:
\[q_\phi(z_{1:T} \mid x) = q_\phi(z_1 \mid x) \prod_{t=2}^T q_\phi(z_t \mid z_{t-1}) \]

Updated ELBO:
\[\log(p(x)) \geq \mathbb{E}_{q_\phi(z_{1:T} \mid x)} \left[\log \frac{p(x, z_{1:T})}{q_\phi(z_{1:T} \mid x)} \right] \]
Diffusion Models

Diffusion models are essentially **MHVAEs** with **3 restrictions:**

1. Latent dimension is the same as the data dimension
2. The encoder has no parameters to be learnt. It is defined to be a linear gaussian such that the t^{th} gaussian is centered around the previous latent z_{t-1}
3. The parameters for the gaussians are scheduled such that the final latent is a standard gaussian.

$$z_T \sim \mathcal{N}(z_T; 0, I)$$

The first restriction allows for some mild abuse of notation:

$$q_\phi(x_{1:T} | x_0) = \prod_{t=1}^{T} q_\phi(x_t | x_{t-1})$$

$$p(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_\theta(x_{t-1} | x_t)$$
The first restriction allows for some mild abuse of notation:

\[
q_\phi(x_{1:T} \mid x_0) = \prod_{t=1}^{T} q_\phi(x_t \mid x_{t-1})
\]

\[
p(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_\theta(x_{t-1} \mid x_t)
\]
Diffusion Models – Diffusion Process

Following the second restriction, we now define the linear gaussian for the encoding (diffusion) process:

\[
q(x_t | x_{t-1}) = \mathcal{N}(x_t; \mu_t(x_{t-1}), \Sigma_t I)
\]

\[
\mu_t(x_{t-1}) = \sqrt{1 - \beta_t} x_{t-1}, \quad \Sigma_t = \beta_t
\]

We additionally define \(\alpha_t = 1 - \beta_t \).

\(\beta_t \) is defined to preserve variance across the diffusion steps.

We can now write

\[
q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{\alpha_t} x_{(t-1)}(1 - \alpha_t)I)
\]

Using the reparameterization trick:

\[
x_t = \sqrt{\alpha_t} x_{(t-1)} + (\sqrt{1 - \alpha_t}) \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)
\]

This takes us from time step 0 to \(t \) in one step!

From the third restriction, we get

\(\alpha_T \to 0 \)

Sum of two gaussians is another gaussian with mean as the sum of the two means and variance as the sum of the two variances.

\[
(1 - \alpha_t) \epsilon \to \mathcal{N}(\epsilon; 0, 1 - \alpha_t I)
\]

Define

\[
\bar{\alpha}_t = \prod_{s=1}^{t} \alpha_s
\]
Diffusion Models – Diffusion Process

\[q(x_t|x_{t-1}) = \sqrt{\alpha_t}x_{(t-1)} + (\sqrt{1 - \alpha_t})\epsilon, \quad \epsilon \sim \mathcal{N}(0,I) \]

This formulation essentially paints a picture of this process to be incrementally adding noise till we reach \(x_T \) which is defined to be pure noise.
Diffusion Models – Generative Process

From the third assumption, we can write the exact prior on the final step x_T:

$$p(x_T) = \mathcal{N}(x_T; 0, I)$$

For all other steps, we can write a learned distribution:

$$p_\theta(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t), \Sigma_t I)$$

Neural Network: U-Net
Denoising network

Exactly tractable variance

$$p_\theta(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_\theta(x_{t-1}|x_t)$$
Diffusion Models – Updated ELBO

\[
\log p(x) = \log \int p(x_{0:T}) dx_{0:T}
\]

\[
= \mathbb{E}_{q(x_1 | x_0)}[\log p_\theta(x_0 | x_1)] - \mathbb{E}_{q(x_{T-1} | x_0)}[D_{KL}(q(x_T | x_{T-1}) || p(x_T))]
\]

\[
- \sum_{t=1}^{T-1} \mathbb{E}_{q(x_{t-1}, x_{t+1} | x_0)}[D_{KL}(q(x_{t} | x_{t-1}) || p_\theta(x_{t} | x_{t+1}))]
\]

This has 2 random variables for each \(t \), this makes the computation slightly hard. We would prefer for there to be need for just 1!

We can arbitrarily modify the diffusion process distribution to

\[
q(x_t | x_{t-1}, x_0) = \frac{q(x_{t-1} | x_t, x_0)q(x_t | x_0)}{q(x_{t-1} | x_0)}
\]
Diffusion Models – Updated ELBO

\[\log p(x) = \log \int p(x_{0:T}) dx_{0:T} \]

\[\ldots * \]

\[= \mathbb{E}_{q(x_1 \mid x_0)}[\log p_\theta(x_0 \mid x_1)] - D_{KL}(q(x_T \mid x_0) \mid \mid p(x_T)) - \sum_{t=2}^{T} \mathbb{E}_{q(x_t \mid x_0)}[D_{KL}(q(x_{t-1} \mid x_t, x_0) \mid \mid p_\theta(x_{t-1} \mid x_t))] \]

Reconstruction

Prior matching

Denoising

- **Reconstruction**: Reconstruction from least noisy version (hyperparameter choice can make this arbitrarily small)
- **Prior matching**: Moving the posterior closer to the true prior on the final noisy step (0 for diffusion models)
- **Denoising**: Divergence between approximate denoising (p_θ) and true denoising (q) steps

$q(x_{t-1} \mid x_t, x_0)$ is **tractable** and can be calculated **exactly** without any approximation:

\[q(x_{t-1} \mid x_t, x_0) = \mathcal{N}(x_{t-1} ; \bar{\mu}_t, \Sigma_t) \]

\[\bar{\mu}_t = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})x_t + \sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)x_0}{1 - \alpha_t}, \quad \Sigma_t = \frac{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{1 - \alpha_t} \]
Diffusion Models – Loss formulation

Loss can focus on the denoising term. Decomposing for each timestep, we can have the tth loss term:

\[L_t = D_{KL}(q(x_{t-1}|x_t, x_0) \ || p_\theta(x_{t-1}|x_t)) + C \]

Since both inputs of the divergence are gaussians, this further simplifies to:

\[L_t = \mathbb{E}_q \left[\frac{1}{2\Sigma_t} \|\bar{\mu}_t - \mu_\theta(x_t, t)\|^2 \right] + C \]
Diffusion Models – Loss formulation

Further, we have $x_t = \sqrt{\alpha_t}x_{(t-1)} + (\sqrt{1 - \alpha_t})\epsilon, \; \epsilon \sim \mathcal{N}(0, I)$ from definition.

This lets us rewrite the true mean of the denoising process as:

$$\bar{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{(1 - \alpha_t)}{\sqrt{1 - \alpha_t}} \epsilon \right)$$

We can also write the predicted mean as:

$$\mu_\theta(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{(1 - \alpha_t)}{\sqrt{1 - \alpha_t}} \epsilon_\theta(x_t, t) \right)$$

This lets us reformulate the loss to present a noise prediction problem:

$$L_{t-1} = \mathbb{E}_{x_0, \epsilon} \left[\frac{(1 - \alpha_t)^2}{2 \sum_t \alpha_t (1 - \bar{\alpha}_t)} ||\epsilon - \epsilon_\theta(x_t, t)||^2 \right] + C$$
How do we tell the model what timestep we are on?
Temporal encodings in the form of sinusoids (or anything, really)
Diffusion models - Summary

- Diffusion models are **Markovian Hierarchical VAEs** with extra restrictions
- The loss is the vanilla VAE ELBO loss with an added denoising term
- The encoder has **0 parameters**
- The true denoising posterior can be **exactly calculated**
- The problem can be reformulated as a noise prediction problem
- There’s a ton of math underlying a rather simple intuition
Part 2

Normalizing Flows
Sandcastles

How to create a sandcastle:

Step 1: Take a sandcastle
Step 2: Destroy the sandcastle
Step 3: Remember how you destroyed the sandcastle
Step 4: Reverse the process

Key Idea

Once you know how to reconstruct sandcastles, you can start with some different “sand”, apply this process, and end up with a different “sandcastle”
Normalizing Flows – Motivation

- In VAEs we are faced with an intractable likelihood calculation
- We use an ELBO instead as a surrogate objective to MLE
- What if we wanted to do MLE exactly?
- That would require us to go from sandcastle to sand, and back, without any approximation or estimation!

We would need for all the steps we do to be **invertible!**

It follows that $f^{-1} = g$
Normalizing Flows – Log likelihood

Bijection (and invertibility) allow us to directly compute the likelihood:

\[
\int p_x(x)dx = \int p_z(g(x))dz
\]

In multiple dimensions, we generalize to the determinant of the Jacobian

\[
p_x(x) = p_z(g(x)) \left| \frac{dg(x)}{dx} \right| \rightarrow p_z(g(x))|\text{det. } J(g(x))|
\]

\[
\log p_x(x) = \log p_z(g(x)) + \log |\text{det. } J(g(x))|
\]

Intuitively

\(z = g(x) \) determines where a point in x-space maps to z-space (where to move grains of sand)

\(|\text{det. } J(g(x))| \) describes how much probability mass (sand) gets moved in a local neighborhood.
Normalizing Flows – Closer look at the Jacobian

\[z = g(a) = f^{-1}(a) \]

\[J_{g(a)} = \begin{bmatrix}
\frac{dz_1}{da_1} & \cdots & \frac{dz_1}{da_k} \\
\vdots & \ddots & \vdots \\
\frac{dz_k}{da_1} & \cdots & \frac{dz_k}{da_k}
\end{bmatrix} \]
Normalizing Flows – Compositions

Bijections allow for composing several functions together!
This follows that we can now define:

\[z \sim p(z) \]
\[x = f_T \circ f_{T-1} \circ \cdots \circ f_1 (z) \]

\[\log p_x(x) = \log p_z(z_0) + \sum_{t=1}^{T} \log |det J_{z_t}(g(z_{t-1}))|, \quad z_T = x, \; z_0 = z \]

Inverse: \[z = g_1 \circ g_2 \circ \cdots \circ g_T(x) \]
Normalizing Flows – Characteristics

For a good (efficient) flow, we must have functions (steps) that are:

1. Expressive
2. Invertible
3. Offer cheap to compute Jacobian determinants

Computing a determinant is a cubic operation, but some special cases of matrices can make it very cheap. Especially, diagonal matrices:

For a diagonal matrix, the determinant is simply the product of its diagonal elements. Same applies for any triangular matrix!

In linear algebra, a diagonal matrix is a matrix (usually a square matrix) in which the entries outside the main diagonal (\(____\) are all zero. The diagonal entries themselves may or may not be zero. Thus, the matrix \(D = (d_{ij})\) with \(n\) columns and \(n\) rows is diagonal if:

\[
d_{i,j} = 0 \text{ if } i \neq j \forall i, j \in \{1, 2, \ldots, n\}
\]

For example, the following matrix is diagonal:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{bmatrix}
\]
Normalizing Flows – Construction

Affine transform:

\[z_2 = \alpha x_2 + \beta \]
Is there a problem here?
Normalizing Flows – Construction with a shuffle

Affine transform:
\[z_2 = \alpha x_2 + \beta \]

This the most popular type of flow called as **Coupling Flow** – Used in implementations such as NICE and GLOW.
Normalizing Flows – In practice for images

- Multiscale architecture
- Split along channels
- Employ CNNs
- Perform permutations using 1x1 Conv layers

Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.
References

- Didrik Nielsen’s lecture, https://www.youtube.com/watch?v=2tVHbcUP9b8
- Hans van Gorp’s lecture, https://www.youtube.com/watch?v=yxVcnuRrKqQ&t=17s
- Tim Salimans’ lecture, https://www.youtube.com/watch?v=pea3sH6orMc
Appendix
Vanilla VAE ELBO optimization derivation

The KL divergence term that shows up tries to match the learned posterior q to the true posterior p.

Since KL divergence is always positive, we can ignore that term and replace the equality with the inequality.

\[
\log p(x) = \log p(x) \int q_\phi(z|x)dz \\
= \int q_\phi(z|x)(\log p(x))dz \\
= \mathbb{E}_{q_\phi(z|x)}[\log p(x)] \\
= \mathbb{E}_{q_\phi(z|x)} \left[\log \frac{p(x, z)}{q_\phi(z|x)} \right] \\
= \mathbb{E}_{q_\phi(z|x)} \left[\log \frac{p(x, z)}{q_\phi(z|x)} \right] + \mathbb{E}_{q_\phi(z|x)} \left[\log \frac{q_\phi(z|x)}{p(z|x)} \right] \\
= \mathbb{E}_{q_\phi(z|x)} \left[\log \frac{p(x, z)}{q_\phi(z|x)} \right] + D_{KL}(q_\phi(z|x) \| p(z|x)) \\
\geq \mathbb{E}_{q_\phi(z|x)} \left[\log \frac{p(x, z)}{q_\phi(z|x)} \right]
\]
Initial ELBO optimization derivation for diffusion models

$$\log p(x) = \log \int p(x_{0:T}) q(x_{1:T} | x_0) \, dx_{1:T}$$

$$= \log \mathbb{E}_{q(x_{1:T} | x_0)} \left[\frac{p(x_{0:T})}{q(x_{1:T} | x_0)} \right]$$

$$\geq \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_{0:T})}{q(x_{1:T} | x_0)} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_T) \prod_{t=1}^{T-1} p(x_{t-1} | x_t)}{\prod_{t=1}^{T-1} q(x_t | x_{t-1})} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_T) \prod_{t=1}^{T-1} p(x_{t-1} | x_t)}{q(x_T | x_{T-1}) \prod_{t=1}^{T-1} q(x_t | x_{t-1})} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_T) \prod_{t=1}^{T-1} p(x_{t-1} | x_t)}{q(x_T | x_{T-1}) \prod_{t=1}^{T-1} q(x_t | x_{t-1})} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_T) p(x_0 | x_1)}{q(x_T | x_{T-1})} \right] + \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \prod_{t=1}^{T-1} \frac{p(x_t | x_{t+1})}{q(x_t | x_{t-1})} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log p(x_0 | x_1) \right] + \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_T)}{q(x_T | x_{T-1})} \right] + \mathbb{E}_{q(x_{1:T} | x_0)} \left[\sum_{t=1}^{T-1} \log \frac{p(x_t | x_{t+1})}{q(x_t | x_{t-1})} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log p(x_0 | x_1) \right] + \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_T)}{q(x_T | x_{T-1})} \right] + \sum_{t=1}^{T-1} \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log \frac{p(x_t | x_{t+1})}{q(x_t | x_{t-1})} \right]$$

$$= \mathbb{E}_{q(x_{1:T} | x_0)} \left[\log p(x_0 | x_1) \right] - \mathbb{E}_{q(x_{T-1} | x_0)} \left[D_{KL}(q(x_T | x_{T-1}) \ || \ p(x_T)) \right]$$

$$- \sum_{t=1}^{T-1} \mathbb{E}_{q(x_{t-1:T} | x_0)} \left[D_{KL}(q(x_t | x_{t-1}) \ || \ p(x_t | x_{t+1})) \right]$$

reconstruction term

prior matching term

consistency term
Modified ELBO optimization derivation for diffusion models

Only involves one random variable per expectation term!