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Agenda

e Differentiation Methods
e Automatic Differentiation
e P1 Autograd Walkthrough



Recap: Training by Backprop

lterate:

1. Forward pass
2. Backward pass
3. Update parameters



Recap: Training by Backprop
Initialize weights W) for all layers k =1... K

Do: (Gradient descent iterations)

Initialize Loss = 0; for all i,j, k, initialize 295 = 0

dw'®)
1
For all t = 1: T (lterate over training instances):

Forward pass:

Compute Output Yy
Loss+ = Div( Y, dt)

Backward pass: For all /., k:

Compute R}
dw.(/f)
1J
dLoss dDiv(Y:, dt)
P R

For all /,/, k, update:

W(k) B w(k) B EdLoss
T T g
i

Until Loss has converged



Differentiation Methods



A simple network for illustration

+b1 + b

1
» Activation Function: Sigmoid o(z) = 15 ez



Forward Pass

» Hidden Layer Output:
h = O'(Zl) = J(W1X —+ bl)
» QOutput Layer Output:

y = 0'(22) — O'(Wgh—l— b2)



Method 1: Hand-coding Derivatives (P1 style)

» Definition: Compute derivatives analytically using calculus

rules.
» Process:
dy 0Oy Oh
> C t , , . etc.
ompute Sv’ O’ D etc

» Use chain rule to combine derivatives.

» Example:
dy Oy 0z

o Oz Ows

= o'(z)h



Pros and Cons of Hand-coding

MY PATIENCE WHEN
DEBUGGING P1 BATCHNORM

Exact Error prone

Fast if well implemented | Wasteful if you need
generalizable
functionality (like in a
library)

Time consuming to
code
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Method 2: Numerical Differentiation

» Definition: Approximate derivatives using finite differences.

» Formula:
9y _y(wte)—y(w—e)
ow 2€

» Considerations:

» Easy to code
» Choice of € affects accuracy.
» Computationally expensive for high-dimensional problems.
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Recap: Neural Nets are just Nested Functions

z; = f1(x)

y1 = g1(z1)
z = f(y1)
y2 = g2(22)

yn = gn(fn(yn—1))
D = D(yn)
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Recap: Chain Rule for Differentiating Nested Functions

Chain Rule

D =D (yn (zv (yn—1 (znv=1 (- - - y1 (21(x)))))))

Gradient Calculation (Backward Pass)

VxD = VyND Vz/\/yN Vy/\/_lzN Vz,\/_l.yN—l - Vzy1 V2
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Method 3: Automatic Differentiation

Forward Pass: Tracking Operations

» Input Data: Start with input x.

» Primitive Operations: Each layer applies a simple operation
(addition, multiplication, activation functions).

» Track Computations: Store a computational graph—keep
track of all operations and intermediate results.

» Intermediate Variables: For each operation, save the result
for use in the backward pass (e.g., layer outputs, activations).
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Method 3: Automatic Differentiation

Backward Pass: Chain Rule to Compute Gradients

>

>

Gradient Calculation: Starting from the final output, apply
chain rule backwards to each primitive operation.

Propagate Gradients: At each step, propagate gradients
through the graph to the previous operations.

Use Intermediate Values: Reuse the saved intermediate
variables from the forward pass to compute gradients.

Update Parameters: Once gradients are computed, update
the model parameters (e.g., using gradient descent).
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Automatic Differentiation



Computational graph

y = f(x4,x5) = In(x;) + x1x, — sinx,
Forward evaluation trace

X1 171:X1=2
172 =x2 - 5
y v3 =Inv; =In2 = 0.693
Vy=11 X v, =10
vs = sinv, = sin5 = —0.959
X2

Vg = V3 + Vy = 10.693
vy = vg — vs = 10.693 + 0.959 = 11.652
y=wy=11.652

Each node represent an (intermediate) value in the
computation. Edges present input output relations.
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Forward mode automatic differentiation (AD)

y = f(x1,x3) = In(xy) + x1x, — sinx,

Forward evaluation trace

V1 =X1 = 2

Vo =% =5

vz =Ilnv; =In2 = 0.693

Vp =11 X Uy = 10

vs = sinv, = sin5 = —0.959

Ve = V3 + v, = 10.693

vy = Vg — Vs = 10.693 + 0.959 = 11.652
y = v, = 11.652

;s
Define v; = oxs
We can then compute the v; iteratively in the forward

topological order of the computational graph

Forward AD trace

V=1

7j2=0

U3 =1j1/171= 0.5

Vg =V +11, =1%X5+0Xx2=5
Vs = vpcosv, = 0 X cos5=0

Vg =V3+1Y;,=054+5=055

Uy = VYg— Vg =55—-0=55

) )
Now we have % =1, = 5.5
axl 17



Limitation of forward mode AD

For f:R™ —» R¥, we need n forward AD passes to get the gradient with respect to
each input.

We mostly care about the cases where k = 1 and large n..

In order to resolve the problem efficiently, we need to use another kind of AD.
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Reverse mode automatic differentiation(AD)

. PPN
y = f(x1, x2) = In(x1) + x1x, — sinx, Define adjoint 7; = a_gi

We can then compute the v; iteratively in the reverse
topological order of the computational graph

Reverse AD evaluation trace

—_ Oy
. 7—6177—1
Forward evaluation trace e 121
6 %7 Ve_ 7 -
v =X =2 v,
V =X, =5 5:1776—1]:: 7 X (=) =-1
v3 =Inv; =1n2 = 0.693 —4:1,—6%:—6“:1
Vyp = V1 X v2=10 az:
vs = sinv, = sin5 = —0.959 _3:77_66_173:_6X1:1
v6 = 173 + Vy = 10693 e __6175 _6174 e IR
=VUso—+Us7 - =Vs XCOSV, +Uy XV =—0.284+2=1.716
vy = Vg — Vs = 10.693 + 0.959 = 11.652 27 v, tov, 0 chliian
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Dynamic vs Static Graphs

e Static graphs:
o  Built before execution (forward pass)
o Pros
m Easier to Optimize
m Better Performance
o Cons
m Less flexible
m Harder to debug
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Dynamic vs Static Graphs

Graph
Creation

Graph
Optimization

Initial Node

Build Graph
during forward
pass

Backward Update

Forward Pass Pass Params

Backward Update Destroy
Pass Params Graph
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Dynamic vs Static Graphs

e Dynamic graphs:
o  Built during execution (forward pass)
o Pros
m  More flexible
m Easy to debug
o Cons
m Slower than static graphs
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Dynamic vs Static Graphs

Frameworks using Static Graphs:

e TensorFlow 1.x
e (Caffe

Frameworks using Dynamic Graphs:

e PyTorch
e TensorFlow 2.x
o JAX
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Additional Readings

e htitps://dlsyscourse.org/

e https://qgithub.com/jax-ml/jax

e Baydin, Atilim Gunes, et al. "Automatic differentiation in machine learning: a
survey." Journal of Machine Learning Research 18 (2018): 1-43.
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https://dlsyscourse.org/
https://github.com/jax-ml/jax

Code Walkthrough
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