Carnegie Lab 4: Computing Derivatives
Mellon and Autograd

University

Andy Ye, Leo Xu, Alex Gichamba

20/09/2024

Agenda

e Differentiation Methods
e Automatic Differentiation
e P1 Autograd Walkthrough

Recap: Training by Backprop

lterate:

1. Forward pass
2. Backward pass
3. Update parameters

Recap: Training by Backprop
Initialize weights W) for all layers k =1... K

Do: (Gradient descent iterations)

Initialize Loss = 0; for all i,j, k, initialize 295 = 0

dw'®)
1
For all t = 1: T (lterate over training instances):

Forward pass:

Compute Output Yy
Loss+ = Div(Y, dt)

Backward pass: For all /., k:

Compute R}
dw.(/f)
1J
dLoss dDiv(Y:, dt)
P R

For all /,/, k, update:

W(k) B w(k) B EdLoss
T T g
i

Until Loss has converged

Differentiation Methods

A simple network for illustration

+b1 + b

1
» Activation Function: Sigmoid o(z) = 15 ez

Forward Pass

» Hidden Layer Output:
h = O'(Zl) = J(W1X —+ bl)
» QOutput Layer Output:

y = 0'(22) — O'(Wgh—l— b2)

Method 1: Hand-coding Derivatives (P1 style)

» Definition: Compute derivatives analytically using calculus

rules.
» Process:
dy 0Oy Oh
> C t , , . etc.
ompute Sv’ O’ D etc

» Use chain rule to combine derivatives.

» Example:
dy Oy 0z

o Oz Ows

= o'(z)h

Pros and Cons of Hand-coding

MY PATIENCE WHEN
DEBUGGING P1 BATCHNORM

Exact Error prone

Fast if well implemented | Wasteful if you need
generalizable
functionality (like in a
library)

Time consuming to
code

) ““‘Q .

imn IMMA ﬁEAD ou

Method 2: Numerical Differentiation

» Definition: Approximate derivatives using finite differences.

» Formula:
9y _y(wte)—y(w—e)
ow 2€

» Considerations:

» Easy to code
» Choice of € affects accuracy.
» Computationally expensive for high-dimensional problems.

10

Recap: Neural Nets are just Nested Functions

z; = f1(x)

y1 = g1(z1)
z = f(y1)
y2 = g2(22)

yn = gn(fn(yn—1))
D = D(yn)

11

Recap: Chain Rule for Differentiating Nested Functions

Chain Rule

D =D (yn (zv (yn—1 (znv=1 (- - - y1 (21(x)))))))

Gradient Calculation (Backward Pass)

VxD = VyND Vz/\/yN Vy/\/_lzN Vz,\/_l.yN—l - Vzy1 V2

12

Method 3: Automatic Differentiation

Forward Pass: Tracking Operations

» Input Data: Start with input x.

» Primitive Operations: Each layer applies a simple operation
(addition, multiplication, activation functions).

» Track Computations: Store a computational graph—keep
track of all operations and intermediate results.

» Intermediate Variables: For each operation, save the result
for use in the backward pass (e.g., layer outputs, activations).

13

Method 3: Automatic Differentiation

Backward Pass: Chain Rule to Compute Gradients

>

>

Gradient Calculation: Starting from the final output, apply
chain rule backwards to each primitive operation.

Propagate Gradients: At each step, propagate gradients
through the graph to the previous operations.

Use Intermediate Values: Reuse the saved intermediate
variables from the forward pass to compute gradients.

Update Parameters: Once gradients are computed, update
the model parameters (e.g., using gradient descent).

14

Automatic Differentiation

Computational graph

y = f(x4,x5) = In(x;) + x1x, — sinx,
Forward evaluation trace

X1 171:X1=2
172 =x2 - 5
y v3 =Inv; =In2 = 0.693
Vy=11 X v, =10
vs = sinv, = sin5 = —0.959
X2

Vg = V3 + Vy = 10.693
vy = vg — vs = 10.693 + 0.959 = 11.652
y=wy=11.652

Each node represent an (intermediate) value in the
computation. Edges present input output relations.

16

Forward mode automatic differentiation (AD)

y = f(x1,x3) = In(xy) + x1x, — sinx,

Forward evaluation trace

V1 =X1 = 2

Vo =% =5

vz =Ilnv; =In2 = 0.693

Vp =11 X Uy = 10

vs = sinv, = sin5 = —0.959

Ve = V3 + v, = 10.693

vy = Vg — Vs = 10.693 + 0.959 = 11.652
y = v, = 11.652

;s
Define v; = oxs
We can then compute the v; iteratively in the forward

topological order of the computational graph

Forward AD trace

V=1

7j2=0

U3 =1j1/171= 0.5

Vg =V +11, =1%X5+0Xx2=5
Vs = vpcosv, = 0 X cos5=0

Vg =V3+1Y;,=054+5=055

Uy = VYg— Vg =55—-0=55

))
Now we have % =1, = 5.5
axl 17

Limitation of forward mode AD

For f:R™ —» R¥, we need n forward AD passes to get the gradient with respect to
each input.

We mostly care about the cases where k = 1 and large n..

In order to resolve the problem efficiently, we need to use another kind of AD.

18

Reverse mode automatic differentiation(AD)

. PPN
y = f(x1, x2) = In(x1) + x1x, — sinx, Define adjoint 7; = a_gi

We can then compute the v; iteratively in the reverse
topological order of the computational graph

Reverse AD evaluation trace

—_ Oy
. 7—6177—1
Forward evaluation trace e 121
6 %7 Ve_ 7 -
v =X =2 v,
V =X, =5 5:1776—1]:: 7 X (=) =-1
v3 =Inv; =1n2 = 0.693 —4:1,—6%:—6“:1
Vyp = V1 X v2=10 az:
vs = sinv, = sin5 = —0.959 _3:77_66_173:_6X1:1
v6 = 173 + Vy = 10693 e __6175 _6174 e IR
=VUso—+Us7 - =Vs XCOSV, +Uy XV =—0.284+2=1.716
vy = Vg — Vs = 10.693 + 0.959 = 11.652 27 v, tov, 0 chliian

[EnN

0 0 1
1

Dynamic vs Static Graphs

e Static graphs:
o Built before execution (forward pass)
o Pros
m Easier to Optimize
m Better Performance
o Cons
m Less flexible
m Harder to debug

20

Dynamic vs Static Graphs

Graph
Creation

Graph
Optimization

Initial Node

Build Graph
during forward
pass

Backward Update

Forward Pass Pass Params

Backward Update Destroy
Pass Params Graph

21

Dynamic vs Static Graphs

e Dynamic graphs:
o Built during execution (forward pass)
o Pros
m More flexible
m Easy to debug
o Cons
m Slower than static graphs

22

Dynamic vs Static Graphs

Frameworks using Static Graphs:

e TensorFlow 1.x
e (Caffe

Frameworks using Dynamic Graphs:

e PyTorch
e TensorFlow 2.x
o JAX

23

Additional Readings

e htitps://dlsyscourse.org/

e https://qgithub.com/jax-ml/jax

e Baydin, Atilim Gunes, et al. "Automatic differentiation in machine learning: a
survey." Journal of Machine Learning Research 18 (2018): 1-43.

24

https://dlsyscourse.org/
https://github.com/jax-ml/jax

Code Walkthrough

25

