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Agenda

● Differentiation Methods
● Automatic Differentiation
● P1 Autograd Walkthrough
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Recap: Training by Backprop

Iterate:

1. Forward pass
2. Backward pass
3. Update parameters

3



Recap: Training by Backprop
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Differentiation Methods

5



A simple network for illustration
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Forward Pass
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Method 1: Hand-coding Derivatives (P1 style)
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Pros and Cons of Hand-coding
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Pros Cons

Exact

Fast if well implemented

Error prone

Wasteful if you need 
generalizable 
functionality (like in a 
library)

Time consuming to 
code



Method 2: Numerical Differentiation
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Recap: Neural Nets are just Nested Functions
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Recap: Chain Rule for Differentiating Nested Functions
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Method 3: Automatic Differentiation
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Method 3: Automatic Differentiation
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Automatic Differentiation
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Automatic differentiation
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Dynamic vs Static Graphs

● Static graphs:
○ Built before execution (forward pass)
○ Pros

■ Easier to Optimize
■ Better Performance

○ Cons
■ Less flexible
■ Harder to debug
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Dynamic vs Static Graphs

● Dynamic graphs:
○ Built during execution (forward pass)
○ Pros

■ More flexible
■ Easy to debug

○ Cons
■ Slower than static graphs
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Dynamic vs Static Graphs

Frameworks using Static Graphs:

● TensorFlow 1.x
● Caffe

Frameworks using Dynamic Graphs:

● PyTorch
● TensorFlow 2.x
● JAX
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Additional Readings

● https://dlsyscourse.org/
● https://github.com/jax-ml/jax
● Baydin, Atilim Gunes, et al. "Automatic differentiation in machine learning: a 

survey." Journal of Machine Learning Research 18 (2018): 1-43.
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https://dlsyscourse.org/
https://github.com/jax-ml/jax


Code Walkthrough
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