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Neural Networks:
What can a network represent

Deep Learning, Fall 2024



Topics for the day

* What can neural networks represent

* And what are the restrictions
— In terms of “depth”, “width” and “activations”
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over Al
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why does winching up an anchor raise the anchor instead of pulling the ship down

Bing, M

Winching up an anchor raises the anchor instead of pulling the ship down because of several factors,
such as:

+ The design of the windlass, which s the device that operates the anchor cable. The windlass is not
meant to haul the ship, but only to lft the anchor and reduce the tension in the cable. The windlass
motor s the “weak link" in the anchoring system and can be damaged by excessive force 1. Therefore,
the windlass is used carefully and slowly, and the ship is maneuvered towards the anchor to assist the
recovery process 2

+ The weight of the anchor and the cable, which are much smaller than the weight of the ship. The
anchor and the cable together may weigh a few tons, while a typical ship may weigh a few hundred or
thousand tons. Therefore, the force exerted by the windlass on the anchor is not enough to overcome
the inertia and buoyancy of the ship.

+ The friction between the anchor and the sea bottom, which resists the pull of the windlass. The anchor
works by digging into the sea bottom with its fluke or pointed projection, creating a strong grip. To
break out the anchor, the chain has to be locked in a chain stopper and the ship has to move in a way
that pulls out the anchor from the sea bottom 2 . If the anchor is stuck or buried too deep, it may be
difficult to retrieve it with the windlass alone 3. .

+ The angle of the cable, which affects the direction of the force applied by the windlass. The cable

should be vertical or "up and down" when heaving up the anchor, so that the force is directed upwards
If the cable is inclined or horizontal, it means that the ship s too far from the anchor and that the force is

* Tasks that are made possible by NNs, aka deep learning

— Tasks that were once assumed to be purely in the human domain of
expertise

"Aharlequin dancing in a field on a sunny beautiful day in a beau.



So what are neural networks??

Voice

. Text caption
signal

Transcription Image

Game
State

Next move

 What are these boxes?
— Functions that take an input and produce an output
— What are these functions?



The human perspective

"> Transcription Image ) [ Text caption

* [n a human, those functions are computed by
the brain...



Recap : NNets and the brain

* |In their basic form, NNets mimic the
networked structure in the brain



Recap : The brain

* The Brain is composed of networks of neurons



Recap : Nnets and the brain

Inputs  Weights

Output

> Y input layer

Threshold T

* Neural nets are composed of networks of
computational models of neurons called perceptrons



Recap: the perceptron

A ';‘\S\/%/l e
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X Output .
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y 7 —
{

Threshold T O else

e A threshold unit

— “Fires” if the weighted sum of inputs exceeds a
threshold

— Electrical engineers will call this a threshold gate
* A basic unit of Boolean circuits



A better figure

Linear vs Affine?

Z=ZWiXi+b
[

_J1ifz=0
Y 0 else

e A threshold unit

— “Fires” if the affine function of inputs is positive

* The bias is the negative of the threshold T in the previous
slide
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The “soft” perceptron (logistic)

z=Zwixi+b
i

1
1+ exp(—2)

Y

* A “squashing” function instead of a threshold
at the output

— The sigmoid “activation” replaces the threshold

* Activation: The function that acts on the weighted
combination of inputs (and bias)



Other “activations”

—Softplus
|~ Rectifier

L)

cR log(1 + e?%)

/

* Does not always have to be a squashing function
— We will hear more about activations later

 We will continue to assume a “threshold” activation in this lecture
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Poll 1

* Mark all true statements
— 3x + 7y is a linear combination of xand y
— 3x+ 7y +4is alinear combination of xand y
— 3x + 7y is an affine function of x and y
— 3x+ 7y + 4 is an affine function of xand y



Poll 1

* Mark all true statements
— 3x + 7y is a linear combination of x and y
— 3x+ 7y +4is alinear combination of xand y
— 3x + 7y is an affine function of x and y
— 3x+ 7y + 4 is an affine function of x and y
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The multi-layer perceptron

Deep neural network

hidden layer 1  hidden layer 2 hidden layer 3

input layer

* A network of perceptrons

— Perceptrons “feed” other
perceptrons

— We give you the “formal” definition of a layer later

15



Defining “depth”

Deep neural network

hidden layer 1 hidden layer 2

input layer

hidden layer 3

* What is a “deep” network

16



MLSP

Deep Structures

* |n any directed graph with input source nodes and
output sink nodes, “depth” is the length of the longest
path from a source to a sink

— A “source” node in a directed graph is a node that has only
outgoing edges
— A “sink” node is a node that has only incoming edges

oo oLme

 Left: Depth = 2. Right: Depth =3

17



MLSP

Deep Structures

Deep structure
— The input is the “source”,
— The output nodes are “sinks”

Input to another layer above 1
(image with 8 channels)

B g Number of output
A Q‘.,.‘ channels =8
o

LR

One layer

Number of input
channels =3

Image Size = 200

18

 “Deep” LI Depth of output neurons is greater than 2



MLSP

What is a layer?

* A “layer” is the set of neurons that are all at the
same depth with respect to the input (sink)

— “Depth” of a layer — the depth of the neurons in the
layer w.r.t. input

Input:

Layer 1:
Layer 2:
Layer 3:
Layer 4:

 “Deep” L] At least 3 layers
— Output layer depth is at least 3 19



MLSP

What is a layer?

* A “layer” is the set of neurons that are all at the
same depth with respect to the input (sink)

— “Depth” of a layer — the depth of the neurons in the
layer w.r.t. input

Input: Black
Layer 1: Red
Layer 2: Green
Layer 3: Yellow
Layer 4: Blue

 “Deep” L] At least 3 layers
— Output layer depth is at least 3 20



The multi-layer perceptron

* |nputs are real or Boolean stimuli
e Qutputs are real or Boolean values
— Can have multiple outputs for a single input

 What can this network compute?
— What kinds of input/output relationships can it model?

21



MLPs approximate functions

((ARX&Z)|(A&Y))&((X & Y)|(X&Z))

A [\

* MLPs can compose Boolean functions
* MLPs can compose real-valued functions

e What are the limitations?

22



Today

* Multi-layer Perceptrons as universal Boolean
functions

— The need for depth

e MLPs as universal classifiers
— The need for depth

* MLPs as universal approximators
* A discussion of optimal depth and width

23



Today

* Multi-layer Perceptrons as universal Boolean
functions

— The need for depth

e MLPs as universal classifiers
— The need for depth

* MLPs as universal approximators
* A discussion of optimal depth and width
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The MLP as a Boolean function

e How well do MLPs model Boolean functions?

25



The perceptron as a Boolean gate

X 1
_1 _
XAY X X
1
Y
X 1
XVY
1
Values in the circles are thresholds
Y Values on edges are weights

* A perceptron can model any simple binary
Boolean gate

26



Perceptron as a Boolean gate

X1

X>

E L N

X; /\Xi A /\ X;
X111 i=1 i=L+1

Will fire only if X, .. X, are all 1
and X, .. X areall O

L+1°

* The universal AND gate

— AND any number of inputs
* Any subset of who may be negated

27



Perceptron as a Boolean gate

X1
X>
: L N
XL \/Xl VvV \/ Xi
X111 i=1 i=L+1

Will fire only if any of X, .. X, are 1
orany of X, .. X, are 0

+1°

* The universal OR gate

— OR any number of inputs
* Any subset of who may be negated
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Perceptron as a Boolean Gate
X1
X3

Will fire only if at least K inputs are 1

Xy
* Generalized majority gate
— Fire if at least K inputs are of the desired polarity

29



Perceptron as a Boolean Gate

Will fire only if the total number of
of X, .. X thatare 1 and X, .. X, that
are O is at least K

* Generalized majority gate
— Fire if at least K inputs are of the desired polarity

30



The perceptron is not enough

XDY

* Cannot compute an XOR

31



Multi-layer perceptron

Hidden Layer

* MLPs can compute the XOR



Multi-layer perceptron XOR

Thanks to Gerald Friedland

* With 2 neurons
— 5 weights and two thresholds



Multi-layer perceptron

((ARX&Z)|(A&Y))&((X & YV)|(X&Z))

1 Q | | e 1
ete oﬁe
LT

* MLPs can compute more complex Boolean functions

 MLPs can compute any Boolean function

— Since they can emulate individual gates

* MLPs are universal Boolean functions

34



MLP as Boolean Functions

((ARX&Z)|(A&Y))&((X & Y)|(X&Z))

3

hidden layer

1  hidden layer 2

hidden layer

Deep neural network

* MLPs are universal Boolean functions
— Any function over any number of inputs and any number of outputs

e But how many “layers” will they need?

35



How many layers for a Boolean MLP?

Truth table shows all input combinations
for which output is 1

Truth Table
%, X, %, 1%, % |
O 0 1 1 0 1
O 1 0 1 1 1
O 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

* A Boolean function is just a truth table

36



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm- Y = X, X, X5 X, Xs + Xy Xo X Xu Xs + X, X, X5 X, X +

X, XoXaX o Xs 4+ X1 Xy X3 X Xs + X Xo X2 X, X<

0 1 1 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y '*‘ X1X2X3X4Xs + X1 X, X3X4 X5 +

X1 X X3 X4 X5 + X1 Xp X3 X4 X5 + X1 X5 X3X4 X5

O 0 1 1 0 1
o 1 o0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 1 0 O 1 1

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
for which output is 1

Truth Table
EEEEE- ¥ = XXX X, Xs XX, X3 %o Xs +
0 1 1 1 X1 X2 X3X4 X5 + X1 X3 X3X4 X5 + X1 X2 X3X4Xs
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
(I NG T A I 1 %.
1 1 0 0 1 1 v

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm- Y = XXX Xa s + Xy X XX, X5 AKX Xy XD+

X1X2X3X4X5 + X1X2X3X4X5 + X1X2X3X4X5

0 1 1 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
for which output is 1

Truth Table
mmmmm- V = X1 XoXo X, Xs + X1 X, X3 X, X5 + X1 X, X3 X, X5 +
0 1 1 1 X1X2X3X4Xs + X1 X2 X3X4 X5
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
for which output is 1

Truth Table
mmmmm- V = X1 X2X3X4 X5 + X X5 + X1 X3 X3 X4 X5 +
0 11 1 X1 X, X3X,Xs X1 X, X3 X4 Xs
O 1 o0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
for which output is 1

Truth Table
mmmmm- Y = X1X2X3X4X5 + X1X2X3X4X5 + X X, Xc +
0 1 1 1 X1 X5 X3 X0 X + X1 Xy X3 X4 X5 +
O 1 0 1 1 1
O 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

e Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y = X1)Zz)f3)f4)?5 + X1)£2X3X4X5 + X1X2)f3)z4)?5 +

X, XoXaXoXs 4+ X1 Xy XaXoXs + X Xo X3 X, Xs

O 0 1 1 0 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm- Y = X, X, X5 X, Xs + Xy Xo X Xu Xs + X, X, X5 X, X +

X, XoXaX o Xs 4+ X1 Xy X3 X Xs + X Xo X2 X, X<

- = B O O O

1
1
1
1
1
1

R O O Kk, R
O B O LB O B
O B O O Kk B
= N = N B

* Any truth table can be expressed in this manner!
* A one-hidden-layer MLP is a Universal Boolean Function
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How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y = X1 X,X3X4Xs + X1 X5 X3 X0 Xs + X1 X, X3 X4 X5 +

X1 Xo X3 Xy X5 + X1 Xo X3 X4 X5 + X1 X X3 X4 X5

R B P, O O O
) O O KB K,k O
O B O LB O B
O B O O Kk B
R R B, O Kk O
N N

* Any truth table can be expressed in this manner!
* A one-hidden-layer MLP is a Universal Boolean Function

But what is the largest number of perceptrons required in the
single hidden layer for an N-input-variable function? 46




Reducing a Boolean Function

YZ
WX o0 01 11 10

This is a "Karnaugh Map”

00
It represents a truth table as a grid

01 Filled boxes represent input combinations
for which output is 1; blank boxes have
output O

11
Adjacent boxes can be "grouped” to reduce
the complexity of the DNF formula for the

10
table

* DNF form:
— Find groups

— Express as reduced DNF

47



Reducing a Boolean Function

YZ
WX o0 01 11 10

00 Basic DNF formula will require 7 terms

01

11

10

48



Reducing a Boolean Function
Y

JA
WX £Q 01 11 10 e
' ) O=YZ+WXY +XYZ
00 \1\
ANAE

01 )

¥4’-/

11

o )

N4 |
e Reduced DNF form:

— Find groups

— Express as reduced DNF

49



Reducing a Boolean Function

YZ
WX

pQ 01 11 10

00

0

11

N

¥4’-/

'\1\ ) O=YZ+WXY +XYZ
~—

)

e Reduced DNF form:

o )

\_ l
W X Y VA

Find groups
Express as reduced DNF

Boolean network for this function needs only 3 hidden units
* Reduction of the DNF reduces the size of the one-hidden-layer network

50



Largest irreducible DNF?

YZ
WX OO0 01 11 10

00

01

11

10

 What arrangement of ones and zeros simply
cannot be reduced further?

51



Largest irreducible DNF?

Y/
WX OO0 01 11 10
Red=0, white=1

 What arrangement of ones and zeros simply
cannot be reduced further?

52



Largest irreducible DNF?

WX \G 00 01 11 10 How many neurons

in a DNF
(one-hidden-layer)
MLP for this
Boolean function?

 What arrangement of ones and zeros simply
cannot be reduced further?

53



Width of a one-hidden-layer Boolean MLP

Red=0, white=1

gy00 01 11 10 0 VZ
* How many neurons in a DNF
(one-hidden-layer) MLP for this Boolean
function of 6 variables? y



Width of a one-hidden-layer Boolean MLP

YZ

WX

NN

Can be generalized: Will require 2N
perceptrons in hidden layer
Exponential in N

10
11

00
UV OO0 01 11 10 YZ

* How many neurons in a DNF
(one-hidden-layer) MLP for this Boolean

function

55



Poll 2

How many neurons will be required in the hidden layer of a one-hidden-layer
network that models a Boolean function over 10 inputs, where the output for
two input bit patterns that differ in only one bit is always different? (l.e. the
checkerboard Karnaugh map)

20
256
512
1024



Poll 2

How many neurons will be required in the hidden layer of a one-hidden-layer
network that models a Boolean function over 10 inputs, where the output for
two input bit patterns that differ in only one bit is always different? (l.e. the
checkerboard Karnaugh map)

20
256
« 512

1024



Width of a one-hidden-layer Boolean MLP

YZ
WX

NN
Can be generalized: Will require 2N

perceptrons in hidden layer
Exponential in N

1U

11

00
UVOO 01 11 10 YZ

How many units if we use multiple hidden
layers?

function &




Size of a deep MLP

WX 00 01 11 10

WX

0 vz

uy 00 01 11 10

O=WOXDYDZ O=UDVOWDXDYDZ
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Multi-layer perceptron XOR

Hidden Layer

* An XOR takes three perceptrons

60



Size of a deep MLP

WX 00 01 11 10

9 perceptrons

O=WOXDYDZ

* An XOR needs 3 perceptrons

* This network will require 3x3 = 9 perceptrons
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Size of a deep MLP

WX

uy 00 01 11 10

u Vv W X Y Z 15 perceptrons

* An XOR needs 3 perceptrons

00 vz

O=UDPVOWPHXDPYDZ

* This network will require 3x5 = 15 perceptrons
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Size of a deep MLP

WX

00
\7:
uy 00 01 11 10

O=UDPVOWPHXDPYDZ

More generally, the XOR of N
u v WX ¥ £ variables will require 3(N-1)
perceptronsl!

* An XOR needs 3 perceptrons

* This network will require 3x5 = 15 perceptrons

63



One-hidden layer vs deep Boolean MLP

YZ
WX

NN

Single hidden layer: Will require 2N-1+1
perceptrons in all (including output unit)
Exponential in N

10
11

Will require 3(N-1) perceptrons in a deep
network

Linear in NIl

Can be arranged in only 2log,(N) layers

T ATTGOWVUIWVII




A better representation

_— el
»‘4 Pl
. 9 €. 9 &9 @9
% % %

123222822220 2220

0=X1 DX, D-- DXy

 Only 2log, N layers

— By pairing terms (KD X)) B (Ko X)) B
0 = X1 Xz X3 X4
— 2 layers per XOR (XD Xs) ® (XD Xg))) D (((..
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XOR

XOR

XOR

XOR

A better representation

<

L
-

PP

—
!
X1

 Only 2log, N layers
— By pairing terms
— 2 layers per XOR

[ —— ——
.9 & 9 & 9 & ¢
% % %

0=X1@X2@@XN

5

XN

0 = (X1 X3) © (X3 X4)) ©
(XsD X¢) D (X7 Xg))) D (((..
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The challenge of depth

0=X1DX,D-- DXy

XOR | gy =Z1DZ,D - DZy
Pad

X1 XN

igiuinininies

‘e Usingonly K hidden layers will require O(2N) neurons in the Kth layer, where
C = 2_(K_1)/2
— Because the output is the XOR of all the N/2¥2/2 values output by the K-1th hidden layer
— lLe. reducing the number of layers below the minimum will result in an exponentially sized network

to express the function fully
— A network with fewer than the minimum required number of neurons cannot model the function

67



The actual number of parameters in a
network

* The actual number of parameters in a network is the number of
connections

— In this example there are 30

* This is the number that really matters in software or hardware
implementations

* Networks that require an exponential number of neurons will
require an exponential number of weights..



Recap: The need for depth

* Deep Boolean MLPs that scale linearly with the
number of inputs ...

e ... can become exponentially large if recast
using only one hidden layer



The need for depth
f

aPbDcPHdDeDf

occur anywherel

The XORs could [
a

* An MLP for any function that can eventually be expressed as the XOR of a number of
intermediate variables will require depth.
— The XOR structure could occur in any layer
— If you have a fixed depth from that point on, the network can grow exponentially in size.

* Having a few extra layers can greatly reduce network size
70



Depth vs Size in Boolean Circuits

« The XOR is really a parity problem

* Any Boolean parity circuit of depth d using

AND,OR and NOT gates with unbounded fan-in

, nl/d

must have size 2

— Parity, Circuits, and the Polynomial-Time Hierarchy,
M. Furst, J. B. Saxe, and M. Sipser, Mathematical

Systems Theory 1984
— Alternately stated: parity ¢ AC°

» Set of constant-depth polynomial size circuits of unbounded
fan-in elements

71



Caveat 1: Not all Boolean functions..

 Not all Boolean circuits have such clear depth-vs-size
tradeoff

 Shannon’s theorem: For n > 2, there is a Boolean function
of n variables that requires at least 2™ /n Boolean gates

— More correctly, for large n, almost all n-input Boolean functions
need more than 2™ /n Boolean gates

* Regardless of depth

* Note: If all Boolean functions over n inputs could be
computed using a circuit of size that is polynomial in n,
P =NP!
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Network size: summary

e An MLP is a universal Boolean function

e But can represent a given function only if
— It is sufficiently wide
— It is sufficiently deep

— Depth can be traded off for (sometimes) exponential growth of the
width of the network

* Optimal width and depth depend on the number of variables and
the complexity of the Boolean function
— Complexity: minimal number of terms in DNF formula to represent it



Story so far

* Multi-layer perceptrons are Universal Boolean Machines

* Even a network with a single hidden layer is a universal
Boolean machine

— But a single-layer network may require an exponentially large
number of perceptrons

* Deeper networks may require far fewer neurons than
shallower networks to express the same function
— Could be exponentially smaller



Caveat 2

e Used a simple “Boolean circuit” analogy for explanation

* We actually have threshold circuit (TC) not, just a Boolean circuit (AC)
— Specifically composed of threshold gates

* More versatile than Boolean gates (can compute majority function)
— E.g. “atleast K inputs are 1” is a single TC gate, but an exponential size AC

— For fixed depth, Boolean circuits C threshold circuits (strict subset)

— A depth-2 TC parity circuit can be composed with O(n?) weights
» But a network of depth log(n) requires only O(n) weights

— But more generally, for large n, for most Boolean functions, a threshold
circuit that is polynomial in n at optimal depth d may become
exponentially largeatd — 1

e Other formal analyses typically view neural networks as arithmetic
circuits

— Circuits which compute polynomials over any field

* So, let’s consider functions over the field of reals 75



Today

* Multi-layer Perceptrons as universal Boolean
functions

— The need for depth

e MLPs as universal classifiers
— The need for depth

* MLPs as universal approximators
* A discussion of optimal depth and width

76




Recap: The MLP as a classifier

24
& o

784 dimensions
(MNIST)

Not 2

784 dimensions

 MLP as a function over real inputs

 MLP as a function that finds a complex “decision
boundary” over a space of reals

77



A Perceptron on Reals

Inputs  Weights

Output 1
X w1x1+w2x2=T

v
.
,
’
.
.
.
.
.
.

Threshold T

y— 1iwa,;xi2T

0 else

* A perceptron operates on
real-valued vectors

— This is a linear classifier




Boolean functions with a real
perceptron

* Boolean perceptrons are also linear classifiers
— Purple regions are 1

79



Poll 3

 An XOR network needs two hidden neurons
and one output neuron, because we need one
hidden neuron for each of the two boundaries
of the XOR region, and an output neuron to
AND them. True or false?
— True
— False



Poll 3

 An XOR network needs two hidden neurons
and one output neuron, because we need one
hidden neuron for each of the two boundaries
of the XOR region, and an output neuron to
AND them. True or false?
— True
— False



Composing complicated “decision”

boundaries
A

« Can now be composed into
2 “networks” to compute arbitrary

/\ classification "boundaries”
>

N\ /

* Build a network of units with a single output
that fires if the input is in the coloured area
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Booleans over the reals

* The network must fire if the input is in the
coloured area

83



Booleans over the reals

* The network must fire if the input is in the
coloured area
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Booleans over the reals

* The network must fire if the input is in the
coloured area

85



Booleans over the reals

-z
!

* The network must fire if the input is in the
coloured area
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Booleans over the reals

* The network must fire if the input is in the
coloured area
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Booleans over the reals

* The network must fire if the input is in the coloured area

— The AND compares the sum of the hidden outputs to 5
* NB: What would the pattern be if it compared it to 4?
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More complex decision boundaries

* Network to fire if the input is in the yellow area
— “OR” two polygons
— A third layer is required

89



Complex decision boundaries
@

 Can compose arbitrarily complex decision

boundaries

90



Complex decision boundaries

 Can compose arbitrarily complex decision

boundaries
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Complex decision boundaries

— With only one hidden layer!

* Can compose arbitrarily complex decision boundaries
— How?

92



Exercise: compose this with one
hidden layer

x1 X1 X2

How would you compose the decision
ooundary to the left with only one hidden
ayer?
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Composing a Square decision
boundary

* The polygon net

94



Composing a pentagon

* The polygon net



Composing a hexagon




How about a heptagon

* What are the sums in the different regions?

— A pattern emerges as we consider N > 6..
* N is the number of sides of the polygon

97



16 sides

 What are the sums in the different regions?
— A pattern emerges as we consider N > 6..
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64 sides

 What are the sums in the different regions?
— A pattern emerges as we consider N > 6..
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1000 sides

 What are the sums in the different regions?
— A pattern emerges as we consider N > 6..
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Polygon net

e Increasing the number of sides reduces the area outside the
N
polygon that have > < Vi< N
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In the limit
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— Value of the sum at the output unit, as a function of distance from center, as N increases

* For smallradius, it’s a near perfect cylinder

— Nin the cylinder, N/2 outside
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Composing a circle

* The circle net
— Very large number of neurons
— Sum is N inside the circle, N/2 outside almost everywhere

— Circle can be at any location
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Composing a circle

* The circle net
— Very large number of neurons
— Sum is N/2 inside the circle, O outside almost everywhere

— Circle can be at any location
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|
Adding circles @@
N

B

* The “sum” of two circles sub nets is exactly N/2 inside
either circle, and 0 almost everywhere outside
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Composing an arbitrary figure

Y=g 20
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 Just fit in an arbitrary number of circles

— More accurate approximation with greater number of
smaller circles

— Can achieve arbitrary precision
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MLP: Universal classifier
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* MLPs can capture any classification boundary

* A one-hidden-layer MLP can model any
classification boundary

 MLPs are universal classifiers
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Depth and the universal classifier

* Deeper networks can require far fewer neurons
— 12 vs. ~infinite hidden neurons in this example
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Optimal depth..

« Formal analyses typically view these as category of
arithmetic circuits

— Compute polynomials over any field

* Valiant et. al: A polynomial of degree n requires a network of
depth log?(n)
— Cannot be computed with shallower networks

— The majority of functions are very high (possibly o) order polynomials

* Bengio et. al: Shows a similar result for sum-product networks
— But only considers two-input units

— Generalized by Mhaskar et al. to all functions that can be expressed as a
binary tree

— Depth/Size analyses of arithmetic circuits still a research
problem
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Special case: Sum-product nets

6 =224+ 224+ 22+ 3(2172 + 7123 + T223) = g(T1, X2, T3)
1 1 2 3 {

9 2
G = x5+ 2172
+Z123 + Tax3

i 9
b = zi + 7172
+I1T3 + ToT3

e “Shallow vs deep sum-product networks,” Oliver
Dellaleau and Yoshua Bengio
— For networks where layers alternately perform either sums

or products, a deep network may require an exponentially
fewer number of layers than a shallow one
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Depth in sum-product networks

Theorem 5

A certain class of functions F of n inputs can be represented using a deep
network with O(n) units, whereas it would require O(2V") units for a
shallow network.

Theorem 6

For a certain class of functions G of n inputs, the deep sum-product
network with depth k can be represented with O(nk) units, whereas it
would require O((n — 1)*) units for a shallow network.
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Optimal depth in generic nets

* We look at a different pattern:
— “worst case” decision boundaries

 For threshold-activation networks
— Generalizes to other nets



Optimal depth
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* A naive one-hidden-layer neural network will
require infinite hidden neurons
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Optimal depth

* Two hidden-layer network: 56 hidden neurons
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Optimal depth
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* Two-hidden-layer network: 56 hidden neurons
— 16 neurons in hidden layer 1
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* Two-hidden-layer network: 56 hidden neurons
— 16 in hidden layer 1
— 40 in hidden layer 2
— 57 total neurons, including output neuron
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Optimal depth
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Optimal depth

2

h BUt thIS iSjUSt Y]_ @ YZ @ *ee @ Y16
— The XOR net will require 16 + 15x3 = 61 neurons
* 46 neurons if we use a two-neuron XOR model
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Optimal depth
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e Grid formed from 64 lines

— Network must output 1 for inputs in the yellow regions
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Actual linear units
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* 64 basic linear feature detectors
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Optimal depth
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: 608 hidden neurons

— 64 inlayer 1

— 544 in layer 2
* 609 total neurons (including output neuron)

* Two hidden layers
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Optimal depth
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— 190 neurons with 2-gate XOR
The difference in size between the deeper optimal (XOR) net and shallower

XOR network (12 hidden layers): 253 neurons

nets increases with increasing pattern complexity and input dimension
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Network size?

*e |Nn this problem the 2-layer net

was quadraticin the number of 2
lines 32EcSIass
: : ; ¥ii22iaisite
— |(N + 2)?/8] neurons in 2" hidden layer N3333333333333288Y é
0.5 000000600000 *®
— Not exponential N33 :::gg:mm % i
— Even though the patternis an XOR os PP Ee33333322523323232232:
— Why? ) ittt
: : Srrriiey
* The data are two-dimensionall! 3338
-2-2 1.5 -1 0.5 0 0.5 1 1.5 2

— Only two fully independent features
— The pattern is exponential in the dimension of the input (two)!

* For general case of N mutually intersecting hyperplanesin D dimensions,

D
we will need 0 ( ) weights (assuming N > D).

(D-1)!
— Increasing input dimensions can increase the worst-case size of the shallower

network exponentially, but not the XOR net

* The size of the XOR net depends only on the number of first-level linear detectors (N)
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Depth: Summary

* The number of neurons required in a shallow
network is potentially exponential in the
dimensionality of the input
— (this is the worst case)

— Alternately, exponential in the number of
statistically independent features



Story so far

Multi-layer perceptrons are Universal Boolean Machines
— Even a network with a single hidden layer is a universal Boolean machine

Multi-layer perceptrons are Universal Classification Functions
— Even a network with a single hidden layer is a universal classifier

But a single-layer network may require an exponentially large
number of perceptrons than a deep one

Deeper networks may require far fewer neurons than shallower
networks to express the same function

— Could be exponentially smaller

— Deeper networks are more expressive
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Today

* Multi-layer Perceptrons as universal Boolean
functions

— The need for depth

e MLPs as universal classifiers
— The need for depth

* MLPs as universal approximators

* A discussion of optimal depth and width
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MLP as a continuous-valued regression

* Asimple 3-unit MLP with a “summing” output unit can
generate a “square pulse” over an input
— Outputis 1 only if the input lies between T, and T,

— T,and T, can be arbitrarily specified
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MLP as a continuous-valued regression
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* Asimple 3-unit MLP can generate a “square pulse” over an input

* An MLP with many units can model an arbitrary function over an input

— To arbitrary precision

e Simply make the individual pulses narrower

* A one-hidden-layer MLP can model an arbitrary function of a single input
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For higher dimensions

* An MLP can compose a cylinder
— N /2 in the circle, 0 outside
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MLP as a continuous-valued function

—, Sy "
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* MLPs can actually compose arbitrary functions in any number of
dimensions!

— Even with only one hidden layer
* As sums of scaled and shifted cylinders

— To arbitrary precision
* By making the cylinders thinner

— The MLP is a universal approximator!
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Poll 4

Any real valued function can be modelled
exactly by a one-hidden layer network with

infinite neurons in the hidden layer, true or
false?

— False
— True



Poll 4

Any real valued function can be modelled
exactly by a one-hidden layer network with
infinite neurons in the hidden layer, true or
false?

— False

— True

Explanation: (it can only be approximated)



Caution: MLPs with additive output
units are universal approximators
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 MLPs can actually compose arbitrary functions
* But explanation so far only holds if the output unit
only performs summation

— i.e. does not have an additional “activation”
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“Proper” networks: Outputs with
activations

Weights

e Output neuron may have actual “activation”
— Threshold, sigmoid, tanh, softplus, rectifier, etc.

 What is the property of such networks?
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The network as a function

f:{0,13"- {0,1} Boolean

f:RN -{0,1} Threshold

f:RYN - (0,1) Sigmoid

f:RN - (-1,1) Tanh

f:RN > [0, ) Rectifier,softrectifier

e Output unit with activation function
— Threshold or Sigmoid, or any other

* The network is actually a universal map from the entire domain of input values to
the entire range of the output activation
— All values the activation function of the output neuron
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The network as a function
f f:{0,13"- {0,1} Boolean

f:RN -{0,1} Threshold

f:RYN - (0,1) Sigmoid

f:RN - (-1,1) Tanh

f:RN - [0,) Rectifier,softrectifier

The MLP is a Universal Approximator for the entire class of functions (maps)
it represents!

A B S B L R VICTT OTCCTVOTCTOTT JOUTTCeTOTT

— Threshold or Sigmoid, or any other

* The network is actually a universal map from the entire domain of input values to
the entire range of the output activation
— All values the activation function of the output neuron
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Today

* Multi-layer Perceptrons as universal Boolean
functions

— The need for depth

e MLPs as universal classifiers
— The need for depth

* MLPs as universal approximators

* A discussion of sufficient depth and width
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The issue of depth

* Previous discussion showed that a single-hidden-layer
MLP is a universal function approximator

— Can approximate any function to arbitrary precision
— But may require infinite neurons in the layer

* More generally, deeper networks will require far fewer
neurons for the same approximation error

— True for Boolean functions, classifiers, and real-valued
functions

e But there are limitations...



Sufficiency of architecture

A network with 16 or more

neurons in the first layer is

capable of representing the

» 4 figure to the right perfectly
\ oo0see

* A neural network can represent any function provided
it has sufficient capacity

— l.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architecture

A network with 16 or more

neurons in the first layer is
capable of representing the
» 4 figure to the right perfectly

A network with less than
(@j 16 threshold-activation WhY?
» ‘ neurons in the first layer
, cannot represent this
@ pattern exactly
* A neural network can represent any function provided
it has sufficient capacity

— l.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architecture

A threshold-gate network with

16 or more neurons in the first
layer is capable of representing
» 4 the figure to the right perfectly

A network with less than
@ 16 threshold-activation WhY?
» ‘ neurons in the first layer
o cannot represent this
TS~Se— pattern exactly
* A network with only 8 threshold neurons in the first
layer may capture these 8 boundaries
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Sufficiency of archi

A threshold-gate network with

16 or more neurons in the first
layer is capable of representing
> 4 the figure to the right perfectly

A network with less than
@ 16 threshold-activation
» ‘ heurons in the first layer
cannot represent this
Q pattern exactly
* A network with only 8 threshold neurons in the first
layer may capture these 8 boundaries

* That can only give you information about which of
these strips the input is in, but not where in the strip
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Sufficiency of architectuye

A threshold-gate network with

16 or more neurons in the first
layer is capable of representing
> ‘ the figure to the right perfectly

m A network with less than
16 threshold-activation
» ‘ neurons in the first layer
, T sent thi
NI
* Even if the 8 first-layer neurons capture these
boundaries...
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Sufficiency of architectuye

A threshold-gate network with

16 or more neurons in the first
layer is capable of representing
» 4 the figure to the right perfectly

A network with less than
16 threshold-activation
» 4 neurons in the first layer
o cannot represent this
TS~Se— pattern exactly

* Even if the 8 first-layer neurons capture these
boundaries...

... they can only place you in one of these 25 cells,
but cannot inform you of where in the cell
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Sufficiency of architecture

1.5

A network with 16 or more

neurons in the first layer is
capable of representing the
> 4 figure to the right perfectly

A network with less than A 2-layer network with 16
16 threshold-activation neurons in the first layer
» ‘ neurons in the first layer » ‘ cannot represent the
o cannot represent this ‘I@D pattern with less than 40
T~~~ pattern exactly TSy nheurons in the second layer

* Similar restrictions apply to higher layers

* Regardless of depth, every layer must be sufficiently wide in order
to capture the function

* Not all architectures can represent any function
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Sufficiency of architecture

This effect is because we
use the threshold activation

It gates information in
the input from later layers

~

The pattern of outputs within
any colored region is identical

Subsequent layers do not obtain enough
information to partition them

146



Sufficiency of archjtecture

»

This effect is because we
use the threshold activation

It gates information in
the input from later layers

Continuous activation functions result in graded output at the layer

The gradation provides information to subsequent layers, to capture
information “missed” by the lower layer (i.e. it “passes” information
to subsequent layers).

147



Sufficiency of archjtecture

»

This effect is because we
use the threshold activation

It gates information in
the input from later layers

Continuous activation functions result in graded output at the layer
The gradation provides information to subsequent layers, to capture
information “missed” by the lower layer (i.e. it “passes” information

to subsequent layers).

Activations with more gradation (e.g. RELU) pass more information

3

—Softplus : = E
o . = LRelLU
|~ Rectifier | —ReLU
== SReLU

L N

2 -1 0 I 2 3 148



Width vs. Activations vs. Depth

Narrow layers can still pass information to
subsequent layers if the activation function is

sufficiently graded

But will require greater depth, to permit later
layers to capture patterns



Lessons so far

 MLPs are universal function approximators

— Can model any Boolean function, classification function, or
regression

* Deeper MLPs can achieve the same precision with far
fewer neurons, but must still have sufficient capacity
— The activations must pass information through

— Each layer must still be sufficiently wide to convey all
relevant information to subsequent layers



Poll 5

Mark all true statements

A network with an upper bound on layer width (no. of neurons in a layer) can
nevertheless model any function by making it sufficiently deep.

Networks with "graded" activation functions are more able to compensate for
insufficient width through depth, than those with threshold or saturating
activations.

We can always compensate for limits in the width and depth of the network by
using more graded activations.

For a given accuracy of modelling a function, networks with more graded
activations will generally be smaller than those with less graded (i.e saturating or
thresholding) activations.



Poll 5

Mark all true statements

— A network with an upper bound on layer width (no. of neurons in a layer) can
nevertheless model any function by making it sufficiently deep.

— Networks with "graded" activation functions are more able to compensate for
insufficient width through depth, than those with threshold or saturating
activations.

— We can always compensate for limits in the width and depth of the network by
using more graded activations.

— For a given accuracy of modelling a function, networks with more graded

activations will generally be smaller than those with less graded (i.e saturating
or thresholding) activations.
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Sufficiency of architecture
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* The capacity of a network has various definitions
— Information or Storage capacity: how many patterns can it remember

— VCdimension
* bounded by the square of the number of weights in the network

— From our perspective: largest number of disconnected convex regions it can represent

* A network with insufficient capacity cannot exactly model a function that requires a
greater minimal number of convex hulls than the capacity of the network

— But can approximate it with error
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The “capacity” of a network

% VC dimension

* A separate lecture

— Koiran and Sontag (1998): For “linear” or threshold units, VC
dimension is proportional to the number of weights

* For units with piecewise linear activation it is proportional to the
square of the number of weights

— Batlett, Harvey, Liaw, Mehrabian “Nearly-tight VC-dimension
bounds for piecewise linear neural networks” (2017):
* ForanyW, Lst. W > CL > C?, there exisits a RELU network with < L
layers, < W weights with VC dimension = %logz (%)

— Friedland, Krell, “A Capacity Scaling Law for Artificial Neural
Networks” (2017):
* VCdimension of a linear/threshold netis O(MK), M is the overall
number of hidden neurons, K is the weights per neuron
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Lessons today

MLPs are universal Boolean function
MLPs are universal classifiers
MLPs are universal function approximators

A single-layer MILP can approximate anything to arbitrary precision
— But could be exponentially or even infinitely wide in its inputs size
Deeper MLPs can achieve the same precision with far fewer
neurons

— Deeper networks are more expressive

— More graded activation functions result in more expressive networks



Next up

 We know MLPs can emulate any function

* But how do we make them emulate a specific
desired function

— E.g. a function that takes an image as input and
outputs the labels of all objects in it

— E.g. a function that takes speech input and outputs the
labels of all phonemes in it

— Etc...
* Training an MLP



