Neural Networks
Learning the network: Part 3

11-785, Fall 2024
Lecture 5

Poll: @394

Training neural nets through Empirical

Risk Minimization: Problem Setup

Given a training set of input-output pairs
(Xl' dl)) (Xz, dz)) L) (XT' dT)

The divergence on the it" instance is div(Y;, d;)
- Y =fX; W)
The loss (empirical risk)

1
Loss(W) = TE div(Y;, d;)
i

() 5 (k)

Minimize Loss w.r.t {Wl-j) D; } using gradient descent

2

Notation

(1) 2 3
A y() __ 1()

The input layer is the 0t layer

We will represent the output of the i-th perceptron of the kt" layer as y.(k)

— Input to network: y.(o)

i =X

(V)

i

— Output of network: y; =

We will represent the weight of the connection between the i-th unit of

the k-1th layer and the jth unit of the k-th layer as Wl-(;()

— The bias to the jth unit of the k-th layer is bj(k)

Recap: Gradient Descent Algorithm

* Initialize: To minimize any function Loss(W) w.r.t W
—w?o
—k=0

e do
—WHEtL = Wk —n*VLoss(W*) T
—-k=k+1

* while ‘LOSS(WR) — Loss(Wk‘l)‘ > €

Recap: Gradient Descent Algorithm

In order to minimize L(W) w.r.t. W
Initialize:

— WO

—k=0

do

— For every component i

_ k9L
N oW,

Explicitly stating it by component

. Wik+1 _ Wik
-k=k+1
while [L(W¥) — L(W*~1)| > ¢

11-755/18-797

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Ys, dy)
t

* Gradient descent algorithm: Assuming the bias is also

(k)) represented as a weight
wl }
L]

— Using the extended notation: the bias is also a weight

* Do:

— For every layer k for all i, j, update:

* |nitialize all weights and biases {

. (k) _ (k) _ dLoss
Wij =W T,®
L]

e Until Loss has converged

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = TZ Div(Ys, dy)
t

* Gradient descent algorithm: Assuming the bias is also

(k)) represented as a weight
wl }
L]

— Using the extended notation: the bias is also a weight

* Do:

— For every layer k for all i, j, update:

* |nitialize all weights and biases {

. (k) _ . (k) [dLoss
Wij =W Tl g,®
L]

e Until Loss has converged

The derivative

Total training Loss:

1
Loss = ?Z Div(Ys, dy)
t

 Computing the derivative

Total derivative:

dLoss Z dDiv(Y, d;)
T

(k) (k)
J

The derivative

Total training Loss:

1
Loss = TZ Div(Ys, dy)
t

 Computing the derivative

Total derivative:
dLoss 1 dDiv(Y, d;)

k) — ()
dWi, j r n dWi, j

* So we must first figure out how to compute the
derivative of divergences of individual training
iInputs

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y = f(x)
with derivative
d_y

dx
the following must hold for sufficiently small Ax

10

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y = f(x)
with derivative
d_y

ax - dy
the following must hold for sufficiently small Ax >Ay ~ — Ax

Introducing the
“influence" diagram:
x influences y

11

Calculus Refresher: Basic rules of

calculus
For any differentiable function
y=fx)
with derivative
dy
dx dy
the following must hold for sufficiently small Ax >Ay = d—Ax
X
Introducing the
’ “influence" diagram:
oL Y xinfluences y
The derivative graph:
d_y The edge carries the
dx derivative.
Ax Ay
dy Node and edge weights
Ay = - A% multiply

Calculus Refresher: Basic rules of calculus

For any differentiable function
y = f(xl’xZJ ""xM)

What is the influence diagram relating x4, x5, ..., X3, and y?

13

Calculus Refresher: Basic rules of calculus

For any differentiable function
y = f(xl'xZJ ""xM)

X2 k y The derivative diagram?
XM/ |

Calculus Refresher: Basic rules of calculus

For any differentiable function
y = f(xl'xZJ ""xM)
with partial derivatives
9y Oy 9y
0x1 0x, T Oxpy
X1 Ax, aa_y
X1
x \ ay

2
/ ')
xM Ax axM 15

Calculus Refresher: Basic rules of calculus

For any differentiable function

y = f(xl'xZJ ""xM)
with partial derivatives

oy Oy 0y

a—xl,a, ,m

the following must hold for sufficiently small Axy, Ax,, ..., Axy

dy dy dy
A —A —A —A
yE x4 1t 9, 0x, Yot 0xy M

16

Calculus Refresher: Chain rule

For any nested function y = f(g(x))

17

Calculus Refresher: Chain rule
For any nested function y = f(g(x))

dy dy dg(x)

dx ~ dg(x) dx

X " g y
dg dy
dx dg

Ax Ag Ay

Distributed Chain Rule: Influence
Diagram

y = f(91(x), g1(x), ..., gy (x))

Shorthand: Z; = gi(X)

19

Distributed Chain Rule: Influence
Diagram

y = f(91(x), g1(x), ..., gy (x))

Derivative rule?

* x affects y through each of g4 ... gy,

20

Distributed Chain Rule: Influence
Diagram

y = f(91(x), g1(x), ..., gy (x))

21

Calculus Refresher: Chain rule
summary @

dy dz;
Ay = . a—ZiAZi Az; = d—xle
l
dy 0y dz; 0y dz, dy dzy

T amar amar | Gm

Calculus Refresher: Chain rule
summary

For any nested function [= f(y) where y = g(2)

dl dldy
dz dydz

For'l — f(Zl,Zz, ...,ZM) @ l
where z; = g;(x) v

dl dl dz, dl dz, ol dzy,

r o ok omar | G, on

23

Our problem for today

* How to compute

Instance

dDiv(Y,d)

(k)
dwi, j

for a single data

24

Poll 1 (@387, @388)

The chain rule of derivatives can be derived from the basic definition of derivatives, dy = derivative
* dx, true or false

e True
e False

Which of the following is true of the “influence diagram”
e |t graphically shows all paths (and variables) through which one variable influences the other

e The derivative of the influenced (outcome) variable with respect to the influencer (input)
variable must be summed over all outgoing paths from the influencer variable

Poll 1

The chain rule of derivatives can be derived from the basic definition of derivatives, dy = derivative
* dx, true or false

e True (correct)

e False

Which of the following is true of the “influence diagram”

e |t graphically shows all paths (and variables) through which one variable influences the other
(true)

e The derivative of the influenced (outcome) variable with respect to the influencer (input)
variable must be summed over all outgoing paths from the influencer variable (true)

A first closer look at the network

X1

X2

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons
and inputs

A first closer look at the network
X1 &—(0)

Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs

Explicitly separating the affine function of inputs from the
activation

28

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons and inputs
* Expanded with all weights shown

e Let’s label the other variables too...

29

Computing the derivative for a single
input

(1) @

30

Computing the derivative for a single
input

What is; 22204)

1 2 (k)
W1(1) W1(1) dw;
)) Z (2)
1
4 2 3

31

Computing the gradient

W@

v _
1 Wi ,'e @V e

d

Y N

(o)
N’

dDiv(Y,d)
intermediate and final output values of the network in
response to the input .

 Note: computation of the derivative requires

s The “forward pass”
/ /(1) @ v 202 vz VE

AVN (h) A\?!/L A\?!/L

AN 0 AN (%) AN

i W o

Ao el

|\ A

We will refer to the process of computing the output from an input as
the forward pass

We will illustrate the forward pass in the following slides

T
N @ @y A
/N 0 /N (%) /N
Ao o I
/-~ - -

)

Setting yl.(O = x; for notational convenience

Assuming wy; = b and ;") = 1 -- assuming the bias is a weight and extending

the output of every layer by a constant 1, to account for the biases

M A TON
| |
req

A

| 4 v
/AN /N Al
-

e
/ 1///& 6 /|
/ W /

N
7

(1) _ (1), (0)
Z; —ZWU V;
i

>/ z() V(” 2 2 3 y(3)
VAAYAAY
W = N N

XA~ 0

I Y% /l":v
909
JI/N (2 //A () ///X\
A28

’«'/

‘{»‘/A
l"

\/ \/ \/
\'A \'A \'4;
«'/(«'/(«W

‘I)‘/A 6 /‘/M Q /‘/I/A

V% [y

M M

/l‘v

YO = x Forward Computation

,/ (1 CORE) 3)

yi2 z(3)

\'/ ' \'/ Z(N) yt™
4\ ol/?A 4\ ol/?A 4\ ol/?A @A‘V‘H

N 0 0 l\‘
PN W PN W/)j& e l N

i oYA i ® //

ITERATE FOR k= 1:N £, j= 1°layer width

0 (k) (k=1)
yi(= Xj ZWU Yi

yJ() f('()) N

I
Aol A

Forward “Pass”

Input: D dimensional vectorx =[x, j = 1...D]

Set:
— Dy = D, is the width of the Ot (input) layer

: k=1..N
—y]()—xj,]=1...D; y(g)=x0=1

Forlayerk =1..N
— Forj = 1...D;, |D,is the size of the kth layer

o) _ yDPk-1,, (k) (k-1)
27 = Yizo Wiy Vi

) yJ(= fi (J'(k))

Output:

~Y=y",j=1.Dy

44

Computing derivatives

y(N-Z)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives 45

Computing derivatives

y(N-Z)

Div(Y,d)

First, we compute the divergence between the output of the nety = y™ and the
desired output d

46

Computing derivatives
y(N-2) 4———

Div(Y,d)

We then compute V, (v div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

Computing derivatives

y(N-Z)

Div(Y,d)

We then compute V, (v div(.) the derivative of the divergence w.r.t. the final output of the
network yN)

We then compute V) div(.) the derivative of the divergence w.r.t. the pre-activation affine

combination z™) using the chain rule v

Computing derivatives

y(N-Z)

Div(Y,d)

Continuing on, we will compute V,,v)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

49

Computing derivatives

y(N-2) l

Div(Y,d)

Continuing on, we will compute V,,v)div(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute V, w-1)div(.) the derivative of the

divergence w.r.t. the output of the N-1th layer 0

Computing derivatives

o & &
- N-1

Div(Y,d)

We continue our way backwards in the order shown

V (N—1)div(.)

Z

Div(Y,d)

We continue our way backwards in the order shown

VW(N—1) div(.)

Div(Y,d)

We continue our way backwards in the order shown

VY(N—Z) div(.)

Div(Y,d)

We continue our way backwards in the order shown

V (N—Z)div(.)

Z

Div(Y,d)

We continue our way backwards in the order shown

VY(1)diU(.)

Div(Y,d)

We continue our way backwards in the order shown

VZ(1)diU(.)

Div(Y,d)

We continue our way backwards in the order shown

VW(1) dw()

Backward Gradient Computation

e Let’s actually see the math..

58

Computing derivatives

Div(Y,d)

Computing derivatives

y(N-Z)

The derivative w.r.t the actual output of the
final layer of the network is simply the derivative
w.r.t to the output of the network

aDiv(Y,d) aDiv(Y,d)

6yl.(N) - 0y;

Div(Y,d)

60

Calculus Refresher: Chain rule

For any nested function [= f(y) where y = g(2)

dl dldy
dz dydz

Computing derivatives

y(N-Z)

w’/“ >
() '\

AN /L&

S ‘,2}? (-5 / (&

62

Computing derivatives

yiN-2) E——
7(N-2) 2(N-1) y(N-l)
N-2 fn-1 l
7(N) yN
fN
fn—2 fn-1 Div(Y,d)
div() >
fr—2 fr-1 f
d
fn-2 fn-1
1 1
Already computed
dDiv ayi(N) ﬁ)iv
(N) (N)\5,,(NV)
0z; 0z \Qyi

63

Computing derivatives

y(N-2)
y() z(N-2) z(N-1) y(N-l)
N O~ o
T
Cav/aCaNiiad R

Derivative of

S activation function
dDiv é yi(Nmiv

Computing derivatives

y(N-Z)

"‘{7 "//’ Div(Y,d)
’«‘7 N
@ ',j,*@jf O

N
O 6 A

Derivative of
,(\N) activation function
dDiv éyi \ﬁiv

Computed in forward

0z .(N) y.(N) pass
_/j’

65

Computing derivatives

y@ 2(N-2) 2(N-1) y(N-2)
M
@ AYN @ v | onve

Computing derivatives

y(N -2)
y(2(N-2) 2(N-1)

’”

\" \Y
6«' dlv() —E %)
‘I)‘/A
l" 4/
d

N-1
yl()

Computing derivatives

y(N-2)
y() z(N-2) z(N-1) y(N-l)
OlrE~ MO e
e
@ /N) /I
A
e AYEE
1 ’ 1
dDiv _ aZj(N dDiv
awl.(;v) awi(;v ZJ,(N) Just computed

Computing derivatives

y(N -2)
y(l) z(N -2) z(N -1) y(N -1)

Z V/ \ z(N) y(N)
‘\'l‘ Div(Y,d)
‘(’ “ div() >
‘/»‘/ .‘
"W/
/A\ crdh
1 "";;{}v‘_l)

Because
N_
dDiv aZj(N) Div yi(Y Z](N)—W(N)y(N U 4 other terms
(N) (N) /., (N)
awl.j awl.j z;
69

Computing derivatives

y(N -2)
y(l) z(N -2) z(N -1) y(N -1)

Z V/ \ z(N) y(N)
‘\'l‘ Div(Y,d)
‘(’ “ div() >
‘/»‘/ .‘
"W/
/A\ crdh
1 "";;{}v‘_l)

Because
oDiv aZj(N) Div yi(N_l) Z](N) = W(N)y(N 1) + other terms
(N) (N) /., (N) \
aw; j aw; i 0%
Computed in forward pass 70

Computing derivatives

y(N -2)
y(2(N-2) 2(N-1)

’”

\" \Y;
6«' dlv() —E %)
A .‘
Aw// :
M (D! &

1) ;;('1'\}-1)

Computing derivatives
y(N-2) ———

Div(Y,d)

Calculus Refresher: Chain rule

Forl = f(zy,2,, ..., 2Zy)

where z; = g;(x)

<>

dl dl dz dl dz
L 2

dx 0z, dx = 0z, dx

ol dzy,

5‘ZM dx

73

Computing derivatives

y(N-2) l
) N-1

Div(Y,d)

dDiv 5ZJ-(N) dDiv Vi
N-1) N-1 N
ayl_() - ayl_()azj()

Computing derivatives

Div(Y,d)

N -1

dDiv 5ZJ-(N) dDiv i
(N-1) (N—1 OZ(N) Already computed
} j '

Computing derivatives

y(N-2) l

Div(Y,d)

Because

oDiv ﬁzﬁapw (N) (N) (N) (N—1)
— J W, z; " =wy, + other terms
(N-1) (N-1)/5,_(N) g vt
ay; j\(zzé 02}

76

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

oD (v-2) 9Div For the bias term y" 2

N—1) Vi (N—1)
aw; j azj

) _ 4

80

Div(Y,d)

We continue our way backwards in the order shown

dDiv (N-1) dDiv
= wW..
ayi(N—Z) z : L] aZj(N—l)

J

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

dDiv _ (2) dDiv

ay1(1)_ > 2 azj@)

Div(Y,d)

We continue our way backwards in the order shown

aDlU , ((1)) aDlU
@~ 1\)T
azl.

Div(Y,d)

We continue our way backwards in the order shown aWi)

Gradients: Backward Computation

7(k-1) (k 1) (k)

‘A‘OVA‘

‘M‘&‘
o/

yko Z(ND)

W‘ O

(N 1)

o/

y(N)

l"ﬂ‘

Div(Y,d)
Div(Y,d)

Initialize: Gradient
w.r.t network output

dDiv dDiv(Y,d)
6yl.(N) 0yi
oDiv dDiv
1 (. (N)
— f 7.
azi(N) k (L)ayl(N)

Fork = N—-1..0
Fori = 1:layer width

dDiv (k+1) dDiv

dDiv

— w..
5yl-(k) j ij aZj(k+ 1)

) —
le.

Backward Pass

Output layer (N) :

— Fori=1..Dy
aDi dDiv(Y,d L — :
. (3:,]) = bwird) [This is the derivative of the divergence]
dy; dy;

aDiv _ aDi ((N))
[] oy Z'

oDiv y(N—l) dDiv
N) i (N)

Forlayer k = N — 1 downto 1

forj — O "'DN—l

— Fori=1..D
, 9Div y (k+1) 0Div
ayi(k) J iy aZ]§k+1)

dDiv dDiv ,((k))
o) Z'
aZi(k) ayi(k) fk i
dDiv (k1) dDiv
(ky — i (k)
aWij 6Zj

forj =0..Dy_4

87

Backward Pass

* Output layer (N) :

— Fori=1..Dy
8Div _ aDiv(Y,d) Called Backpr'opaga’non b.ecause
T ™ T oy, the derivative of the loss is

propagated "backwards” through

dDiv _ dDiv (N)
Cm = mIN (zi) the network
z; ay;

, ODiv _ (N-1) dDiv o
aW.(I.V) - yi aZ(_N) for] =0 ---DN_1
ij j
* Forlayerk = N —1downto1 Very analogous to the forward pass:
— Fori=1..Dy

Backward weighted combination
oDiv _ (k+1) 0Div_ . — of next layer

o —— =) W,
6yi(k) Z] ij aZ](.k+1)

L Backward equivalent of activation

aDiv _ aDi , ((k))
= 7.
azi(k) ayi(k) fk i

oDiv __ (k—1) dDiv .
aw(k) =Y m for] =0 -"Dk—l
ij J

88

Using notation y =

dDiv(Y,d)

oy

Output layer (N) :

— Fori=1..Dy
. o) _ 0Div
i T dy;

. UW_%Mf((M)

dDiv

* ™)
6Wji

=y VzMforj = 0...Dy

(N-1

Forlayer k = N — 1 downto 1
— Fori=1..Dy
. (k)

oyl

S ACOP

dDiv

ow

(k)

=3, D) (et D)

tJ J

_y(k 1, ()for]—O Dy_4

etc (overdot represents derivative of Div w.r.t variable)

Called "Backpropagation” because
the derivative of the loss is
propagated "backwards” through
the network

-1

Very analogous to the forward pass:

Backward weighted combination
of next layer

Backward equivalent of activation

For comparison: the forward pass

again
Input: D dimensional vectorx =[x, j = 1...D]
Set:

— Dy = D, is the width of the Ot (input) layer

0 : k=1..N
—yj()=xj,]=1...D; yé)=x0=1

Forlayerk =1..N
— Forj=1..D;

(k) _ Nk ., (K) (k=1)
Zj DizoWij Vi

) yj(k) = Ji (Zj(k))

Output:

N) .
~Y=y",j=1.Dy

Poll 2 (@389)

How does backpropagation relate to training the network (pick one)

e Backpropagation is the process of training the network

e Backpropagation is used to update the model parameters during training

e Backpropagation is used to compute the derivatives of the divergence with respect to model
parameters, to be used in gradient descent.

Poll 2

How does backpropagation relate to training the network (pick one)

e Backpropagation is the process of training the network

e Backpropagation is used to update the model parameters during training

e Backpropagation is used to compute the derivatives of the divergence with respect to model
parameters, to be used in gradient descent. (correct)

Special cases

e Have assumed so far that

1. The computation of the output of one neuron does not directly affect
computation of other neurons in the same (or previous) layers

2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable
— All of these conditions are frequently not applicable

* Will not discuss all of these in class, but explained in slides

— Will appear in quiz. Please read the slides .

Special Case 1. Vector activations

yk1) z(k

y(k) y(k-l) 7(k) y(k)
—Q

* Vector activations: all outputs are functions of
all inputs

94

Special Case 1. Vector activations

(k-1)

(k-1)

-X(k)
=)
=Y
=)
Scalar activation: Modifying a z; Vector activation: Modifying a
only changes corresponding y; z; potentially changes all, y; ... yy
., () F ()7
()) . 2]
—) k k
Vi f(Zl) yz():f Zé)

95

“Influence” diagram

Scalar activation: Each z;
influences one y;

y(k)

Vector activation: Each z;
influences all, y; ... vy,

96

Scalar Activation: Derivative rule

aDiv _ dDiv dy,
k) k k
0z 9y dz

* Inthe case of scalar activation functions, the
derivative of the loss w.r.t to the input to the unit
is a simple product of derivatives

97

Derivatives of vector activation

yk1) 7K Yk
. . (k)
j dDiv Z dDiv 0Y;
-0 k) k k
. az.() . ay.()az.()
Div l Jo7 l
—g
Note: derivatives of scalar activations
are just a special case of vector
activations:
e 5
y]' . . .
i 0 for i #j

 For vector activations the derivative of the loss w.r.t. to
any input is a sum of partial derivatives

— Regardless of the number of outputs yj(k) o

Example Vector Activation: Softmax

ylk1) 70k

y(k)

Yi

(k) _

exp (zi(k))

2. exp (Zj(k))

99

Example Vector Activation: Softmax

ylk1) 70k

y(k)

Yi

(k) _

exp (zi(k))

2. exp (Zj(k))

dDiv B
(k)
azi

2.

J

dDiv ayj(k)

oy 9z,

100

Example Vector Activation: Softmax

ylk1) 70k

y(k)

(k) _

exp ()

i _Z exp(())

dDiv
az.(k)

B Z dDiv ayj(k)
- (k) 5., (k)
- ayj azi

(
k

i~
0z Z

\

v (1-y) ifi=j

y(k)y]() if i #j

101

Example Vector Activation: Softmax

(k)
ylc1) (K (k) y_(k) _ exp()
—0 l
%) exp(())
dDiv Z dDiv ay,-(k)
az.(k) - ayj(k) azi(k)
(
k k cr o .
ayU_ y(>(1 y)) ifi = |
9z \ —y Py if i 2
g
dDiv dDiv K
@) —Z —w Y)(5 -y))
0z; ay

* For future reference
* 0, isthe Kroneckerdelta:0; =1 ifi=j, 0ifi+#j,,

Backward Pass for softmax output
layer d

* OQutput layer (N) : . S
— FOI‘l=1DN Z .I:
dDiv dDiv(Y,d) o @
B £ .
oy 9y o Div
(70}
. 9bw _ < 0Diw(¥.d) (N))
az™ 2 oy ™ Vi (5ij Y;) L
‘ J
dDi _ (N-1) dDiv o
ow™ Yi 5, forj=0..Dy_q
] j

* Forlayerk = N —1downto 1

— Fori=1..Dy
. 9bw =y Wl dDiv
ayi(k) J i angk+1)

dDiv dDiv _, ((k))
° —_ Z
aZl_(k) ayi(k) fre\z;

dDiv _ (k—1) dDiv

K — i %)
awij azj

forj =0..Dk_1

103

Special cases

* Examples of vector activations and other
special cases on slides

— Please look up
— Will appear in quiz!

Vector Activations

ylk) 7 Y
k - (K
T
(k) L
—> y2. — f 2
> :k K /
N ol \Zlg)
»

* |n reality the vector combinations can be anything

— E.g. linear combinations, polynomials, logistic (softmax),
etc.

105

Special Case 2: Multiplicative
networks

(k1) C yld
((k=1) |, (k=1)

k
Forward: O,):yj Vi

* Some types of networks have multiplicative combination
— In contrast to the additive combination we have seen so far

 Seen in networks such as LSTMs, GRUs, attention models,
etc.

106

Backpropagation: Multiplicative

Networks
7(k-1) ylet
O ~_ Forward:

D D
Backward: g 2 wltn Y

aOi(k) — L] azj(k+1)

J

oDiv 00" oDiv ., 0Div| | @Div _ . ODiv

(k=1)

oy ; (9)/5.

= = =V W =)
k—1) aoi(k) aoi(k) (k-1) J aOi(k)

* Some types of networks have multiplicative
combination 107

Multiplicative combination as a case
of vector activations

Yy 700

o—— o

.
0
.
.
.
.
.
.
»
0
0
.
.
0
.
‘e
.

Y
k k—1

1IN Zi() =yi()

(k) _ (k) _(k)

Yi T 21212y

A layer of multiplicative combination is a special case of vector activation

108

Multiplicative combination: Can be
viewed as a case of vector activations

(k-1) (k) (k)
y z y ,00 _ N7 U0, (k=1)
A | B ' ji Y]

(F)

. Q
FORY .
PR B
»s e .
CE O
»® "0 .
. .
PO -
BhSY et
=% et
) [0
e R
- o o
B
% s oa e
o % ea T
U
o w T ow e
3 DO RN —
. .
. . o —
e e w ¥ .
w e o
e o
L)
s my e
. = oae 0
s sa s omut
. e g
. e 4w @
s 2% 'y a
. e me o .
[-

(k) (k) _ (k)
L7 0y~ _ ((k))“ﬁ L I I ((k))“li
— s = a0\ Z; Z;

J l#]

Ao dDiv 2 dDiv ayi(k)

(k) (k) 5, (k)
azj — Jy, azj

* Alayer of multiplicative combination is a special case of vector activatiolrg9

Gradients* Backward Computation

(k1) 7 y(kl) Z(k) y(N—l)

0
\V/ s

‘ M‘& ‘ ‘ lA"Q"
O A O O

Div
Div(Y,d)

For k=N...1 If layer has vector activation Else if activation is scalar

. | _ . _ _
For i = 1:layer width | aDiv _ Z aDiv 3y || dDiv 8D ay™

(k) — (k) A (k) k) — A () 4K
azi > dy f azi aZi ay aZ

dDiv (k) ODiv
9y D 2% 3y (k)

Special Case : Non-differentiable

f@O»y
y = RELU(2) 2, o
Z3 @
Z, &

activations

y = max z;

Activation functions are sometimes not actually differentiable

— E.g. The RELU (Rectified Linear Unit)
* And its variants: leaky RELU, randomized leaky RELU

— E.g. The “max” function

Must use “subgradients” where available

— Or “secants”

111

The subgradient

A

F % >
T
A subgradient of a function f(x) at a point x; is any vector v such that

(f () = f(x0)) = v (x — xo)

— Any direction such that moving in that direction increases the function

Guaranteed to exist only for convex functions
“bowl” shaped functions
— For non-convex functions, the equivalent concept is a “quasi-secant”

The subgradient is a direction in which the function is guaranteed to increase

If the function is differentiable at x, the subgradient is the gradient

— The gradient is not always the subgradient though
112

Non-differentiability: RELU

fi(z)=1

f(z) =z

f(z)=0 fe=e

Z
f(2) = 0, z<0
1, z=0
Af(z) = alz
At 0 a negative perturbation Az < 0 results in no change of f(2)
- a=0
A positive perturbation Az > Oresultsin Af(z) = Az
- a=1

Peering very closely, we can imagine that the curve is rotating continuously from slope = 0 to slope
=latz=0

— So any slope between 0 and 1 is valid 113

Subgradients and the RELU

f(z) =z

f(z) = {

fi(z)=1

YA
0, z<0
1, z =0

* The subderivative of a RELU is the slope of any line that lies entirely under it
— The subgradient is a generalization of the subderivative
— At the differentiable points on the curve, this is the same as the gradient

 Canuse any subgradientat 0

— Typically, will use the equation given

114

Subgradients and the Max

Zl.—
Yy = max z;
J
Zy 0~
—> Y _
- 0y 1, [= arg;nax Z;
0z; 0, otherwise
ZNQ—

* Vector equivalent of subgradient

— 1 w.r.t. the largest incoming input
* Incremental changes in this input will change the output

— 0O for the rest

* Incremental changes to these inputs will not change the output e

Poll 3 (@390)

We have y = max(z1, z2, z3), computed atz1 =1, z2 = 2, z3 = 3. Select all that are true

e dy/dzl=1
e dy/dz1=0
e dy/dz2=1
e dy/dz2=0
e dy/dz3=1
e dy/dz3=0

We have y = max(z1, z2, z3), computed atz1 =1, z2 = 2, z3 = 3. Select all that are true

e dy/dzl=1
e dy/dz1=0 (correct)
e dy/dz2=1

e dy/dz2 =0 (correct)
e dy/dz3=1 (correct)
e dy/dz3=0

117

Subgradients and the Max

Zq
Y1 . — MaX Z
Yi lESj l
—=> Y,
Z, 0 Ly
3
(.
: : . 1, I = aremax z
%—) Vi 0z; 0, otherwise

* Multiple outputs, each selecting the max of a different subset of
Inputs
— Will be seen in convolutional networks
* Gradient for any output:

— 1 for the specific component that is maximum in corresponding input
subset

— 0 otherwise g

Backward Pass: Recap

e Output layer (N) :

— Fori=1..Dy
oDiv _ dDiv(Y,d)
ayi(N) dy;

N
oblv _ ODi ayi(N) R X oo ay](.) (vector activation)
azi(N) ayi(N) azi(N) J ay](.N) azi(N)

o0Div (N—-1) dDiv)
= Y. —— forj=0..D
aw](.?’) Y aZi(N)] k

These may be subgradients

* Forlayerk =N —1downto 1

— Fori=1..Dy
9D _ 5 (k+1) _0Div
dy i(k) j Wij o7](_k+ 1)

)) (k)] (k)
dDiv _ dDiv 0y; aDiv 9Y; —
. = OR - vector activation

020 5y® 9,® 25y 3. |)

oDiv (k—1) dDiv .
=Y. forj=0..D
w® i 5 O ¢

l

119

Overall Approach

For each data instance

— Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation.

— Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

Actual loss is the sum of the divergence over all training instances

L —LZD' (Y (X), d(X))
OSS_|{X}|X iv(Y(X),d(X)

Actual gradient is the sum or average of the derivatives computed
for each training instance

Vi Loss = 2 VwDiv(Y(X),d(X)) W < W —nV,,LossT”

[{X3

Training by BackProp

* Initialize weights W for all layersk = 1..K
 Do: (Gradient descent iterations)

— Initialize Loss = 0; Forall i, j, k, |n|t|aI|ze dLos G =0
Wi j
— Forallt = 1:T (Iterate over training instances)
* Forward pass: Compute
— Output Y,
— Loss += Div(Y,, d;)
* Backward pass: Forall i, j, k:

lev(Yt dt)
— Compute —®
Wij

dLoss = lev(Yt de)
aw w

Wi j
— Forall i, j, k, update:
(k) (k) n dLOSS

w.. = w.. ——
i,j i, i (k)
dWL.’ j

 Until Loss has converged 121

Vector formulation

* For layered networks it is generally simpler to
think of the process in terms of vector
operations

— Simpler arithmetic
— Fast matrix libraries make operations much faster

* We can restate the entire process in vector
terms

— This is what is actually used in any real system

Vector formulation

Arrange the inputs to neurons of the kth layer as a vector z;,
Arrange the outputs of neurons in the kth layer as a vector y,

Arrange the weights to any layer as a matrix W,
— Similarly with biases

r (k) " (k)T
y(k) Z, 2
(k) (k)
(k) . .
(k) (k)
ZDk il _ka 4
(k) (k) (k) 1. (k)
W11 Wr1 Wpe_ 11 b;
(k) (k) (k) (k)
w, =%z W2z Dj_12 b, = b2_
® K (k) (k)
(k) Wip, Wap, WD 1Dy .

(k=1

! L0
k—1

v g o

(k)

Wit

(k)

w, = |12

(k—1) (k)

Dy—1 (k) | Wib,

Vector formulation

Yk

_ka)
(k)
z = |2
")
_ZDk .

(k) (k)
Wa1 Wpe_ 11
(k) (k)
Ws2 Wpr_,2
))
Wapy WDy -1Dk

 The computation of a single layer is easily expressed in matrix

notation as (setting ypo = X):

Zy = Wiyr-1 + by

Vi = fir(Zk)

The forward pass: Evaluating the
network

The forward pass

z; = Wy, + by

The forward pass

y1 = f1(z,)
The Complete computation
y1 = f1(W;x + by)

The forward pass

The Complete computation
y1 = f1(Wix+ by)

The forward pass

The Complete computation
V2 = foL(Waf;(Wix + by) + by)

The forward pass

The Complete computation
zy = Wy fy-1(.. L(Wfi(Wix+by) +by)...) + by 130

The forward pass

The Complete computation
Y = fin(Wyfy-1(Co. (W f1(Wix+bg) +by) ...) + by) 131

Forward pass

Forward pass:
Initialize

For k=1 to N:

Output

Yo =X

— Div

Z, = Wiyy—1 + by

Vi = [r(Zg)

Y =yy

132

The Forward Pass

¢ SetyO = X

* |terate through layers:

— For layer k =1 to N:
Z = Wiyg-1 + by
Vi = fr(zk)
* Output:
Y=yy

The Backward Pass

* Have completed the forward pass

* Before presenting the backward pass, some
more calculus...

— Vector calculus this time

Vector Calculus Notes 1: Definitions

A derivative is a multiplicative factor that multiplies a
perturbation in the input to compute the corresponding
perturbation of the output

For a scalar function of a vector argument
y = f(2)
Ay = V,y Az
If zisan R X 1 vector,V,yisal X R vector
— The shape of the derivative is the transpose of the shape of z

V,y 'is called the gradient of y w.rt z

7 V.y .y (influence diagram)

135

Vector Calculus Notes 1: Definitions

* For a vector function of a vector argument

y = f(2)
(V1] (Z1 |
Y2 Z>

| = f :
VM. ZD_
Ay = V,y Az

* Ifzisan R X 1vector,andyisanL X1 V,yisanL XR
matrix

— Or the dimensions won’t match
* V,yis called the Jacobian of y w.r.t z

Z vzy -y 136

Calculus Notes: The Jacobian

 The derivative of a vector function w.r.t. vector input is called
a Jacobian

* [tis the matrix of partial derivatives given below

I oo
y.z =f Z_2 0z, 02z, 0zp

: | 0372 0372 ayz

M- 7D Jy(@) =6z, 98z, 9z
Using vector notation
y = /() Oym 0yu = Oy
| dz; 02z, 0zp |

Check: | Ay = J,(z)Az

137

Jacobians can describe the derivatives
of neural activations w.r.t their input

yi = f(z;)
f'(z1)
Jy(z) = O
0

0
f'(z3)

* For scalar activations (shorthand notation):

— Jacobian is a diagonal matrix

f'(zu).

— Diagonal entries are individual derivatives of outputs w.r.t inputs

138

For Vector activations

.
.
v o
I‘

L
L4
/4

.
.
“

Y

—

]y(z) —

e Jacobian is a full matrix

— Entries are partial derivatives of individual outputs
w.r.t individual inputs

0y,

dy,

azl 622
dy, 0y,
521 522

dyy 0Yyu

| 024

522

0y,
5ZD

dy;
aZD

Yy

aZD_

139

Special case: Affine functions

Zz=Wy+b

4

vyZ =J,(y) =W
Vpz = J,(b) =1

* Matrix W and bias b operating on vector y to
produce vector Z

* The Jacobian of z w.r.t y is simply the matrix W

140

Vector Calculus Notes 2: Chain rule

* For nested functions we have the following
chain rule

y = y(z(x))

Vyy =V, yV,z
This holds regardless of whether y is scalar or vector

Note the order: The derivative of the outer function comes first

141

Vector Calculus Notes 2: Chain rule

* For nested functions we have the following
chain rule

y=y(z(x))| mm) V.y=V,yV,z

V,Z

p v,y ,y

Check | Ay = V,yAz

Az = V,zZAx

Ay = V,yV,z Ax

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule

* Chain rule for Jacobians:
* For vector functions of vector inputs:

y=y(zx)| =y & =J,(2)],x

Check | Ay =J,(2)Az

Az =],(x)Ax

Ay =]y(z)]z(X)AX —]y(X)AX

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule

* Combining Jacobians and Gradients
* For scalar functions of vector inputs (z() is vector):

D=D(y(z))| mm)y V,D=",D),(z)

Check | Ap = 7, (D)Ay
Ay = J,(z)Az

AD =V, (D)],(z)Az = V,DAz

Note the order: The derivative of the outer function comes first

Extended Chain rule

V.z Vv V., z V V..D
xZ1 .z, zl}’1>y1 V4 2>Z2 z,Y2 -y, 2" p

How do we compute the derivative of D w.r.t. x, z,, y,, Z, and y,, from the
local derivatives shown on the edges?

145

Extended Chain rule

V,.D

7 4 L P 4 yz
1 Y 4 Y A >
‘ﬁ% A sﬂg .Ju — »»ji @ @

146

Extended Chain rule

L Vo gfg‘}" 4?} b 2
et‘%{:w' s “ ";;‘,W'f 1
o | b

—ep

V,,D =V, DV, y,

Note the order: The derivative of the outer function comes first

147

Extended Chain rule

vle

X VZ1y1 3 Vi @szyz " Y2 22 ’@

Vy. Z;

Dt m——]

Vy, D =V, DV, z,

Note the order: The derivative of the outer function comes first 148

Extended Chain rule

V,z V V,.Z V
x x<1 @ 21Y1>@ V1 2>Z2 zz)’z -y, Y2 >@)>

Note the order: The derivative of the outer function comes first 149

Extended Chain rule

szl @ 21Y1 Vylzz sz)’z V D

V,z4 Vg, D

x—>z

V,D =V, DV,z,

D

Note the order: The derivative of the outer function comes first 150

Extended Chain rule

Vyzq V..)1 Vy. Z;
> Zq *Y1 > Z)

V2, Y2 V,.D

V,,D =V, DV, y,

V, D =V, DV, z,

V,.D =V, DV, y,

V,D =V, DV,z,

Note the order: The derivative of the outer function comes first

*Y2 2. D

151

Vector Calculus Notes 2: Chain rule

* For nested functions we have the following
chain rule

D=D|yy (ZN (y A (Z’H (-7 (Zl(x))))))

VD = Vg DV, YNVyy ZNVzy Yn-1 - Vz,Y1VxZq

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule

* For nested functions we have the following
chain rule

A

VD = Vg DV, YNVy ZNVzy Yn-1 - Vz,Y1VxZq

Note the order: The derivative of the outer function comes first
153

More calculus: Special Case

e Scalar functions of Affine functions

— V,D
Z=Wy-+b y w »Z D
D = f(z)

V,D = V,DW

154

More calculus: Special Case

e Scalar functions of Affine functions

— V,D
Z=Wy-+b y w »Z D
D = f(z)

V,D = V,DW

VbD — VZDVbZ — VZD

155

More calculus: Special Case

e Scalar functions of Affine functions

annm

. w,

. a
““““
- e,

‘e
‘e
-y

Zz=Wy+b w VzD
y y ;@ > D
D = f(z)
v,D = V,DW
VbD — VZD

156

More calculus: Special Case

e Scalar functions of Affine functions

z=Wy+b WD = V(D)W
b=/ 7,D = 7,(D)
VwD = yV,(D)

Derivatives w.r.t
parameters

* Note: the derivative shapes are the transpose

of the shapes of Wand b

157

More calculus: Special Case

e Scalar functions of Affine functions

Zz=Wy+b||D=f(z)

* Writing the transpose

ViytD =V 1D VWTZT =V

VwD = (Vy,wD)" =yV,D

VwD = yV,(D)

Special Case: Application to a

network
e Scalar functions of Affine functions

Zz=Wy+b
Div = Div(z) | ™) | V,Div = V,DivW

V-1 Zg
\;/ Z, = Wiyix—1 + by

wa bk

The divergence is a scalar function of z;

Applying the above rule
74

Yk-1

Div =V, DivW,

159

Special Case: Application to a
network

e Scalar functions of Affine functions

Zz=Wy+b

Div = Div(z)

.Yk—1 Zk(>

wk! bk

Y

%,Div = V,Div

VwDiv = yl,Div

Zy = Wiyix—1 + by

Vp, Div = V, Div

VWkD — YR—lvsziv

160

Poll 4 (@393)

We are given the function Y = F(G(H(X))), whereY and X are vectors, and G and H also compute
vector outputs.

Select the correct formula for the derivative of Y w.r.t. X. We use the notation Vy (Y) to represent the
derivative of Y w.r.t X.

o Vyx(H)Vy(G)Ve(F)
o Ve(F)Vy(G) Vx(H)
e Both are correct

We are given the function Y = F(G(H(X))), whereY and X are vectors, and G and H also compute
vector outputs.

Select the correct formula for the derivative of Y w.r.t. X. We use the notation Vy(Y) to represent the
derivative of Y w.r.t X.

e Vx(H)Vy(G) Ve (F)
o V:(F)Vy(G)Vy(H) (correct)
e Both are correct

162

The backward pas

JSEsEzEEEEER
[

SEEEEEEEEER SErETrETrTEEres
L] L]
=

* The network again

The backward pas

JSEsEzEEEEER
[

SEEEEEEEEER SETEEEEEIEEER
L] -

 The network again (with variables shown)...

The backward pas

JSEsEzEEEEER
[

SEEEEEEEEER SEEEEEEEEER
L] L]
=

—Div

Zny_2 YN-—2 Zy_ 1 Yn-1 Zy Y Div

 The network again (with variables shown)...
* With the divergence we will minimize...

Y —Div

Zy_ 1 Yn-1 Zy Y Div

e The network is a nested function

Y = fy(Wyfyo1(o fo(Wofi(Wix+by) +by)..) + by)

* The divergence for any X is also a nested function
Div(Y,d) = Div(fy(Wyfy-1(... [2(Wyf;(Wix+b;) +by)..)+by),d)

Y —Div

Zy_ 1 Yn-1 Zy Y Div

-O0—0—0—0—0

 The network again (with variables shown)...
* With the divergence we will minimize...
* And the entire influence diagram

JSEsEzEEEEER
[

—Div

In the following slides we will also be using the notation I,y to represent the derivative
of any y w.r.t any z

Note that for activation functions, these are actually Jacobians

Y —Div

Zy_2 YnN-2 Zy_1 Yn-1 Zy Y Div
VY ~Vyn_2ZN-1,~V, ¥ LyyZN VY ~VyDiv

 The network again (with variables shown)...
* With the divergence we will minimize...

* And the entire influence diagram (with derivatives)

— Variable subscripts not shown in V,y for brevity

* The network again (with variables shown)... These are Jacobians

* With the divergence we will minimize...
* And the entire influence diagram (with derivatives)

— Variable subscripts not shown in V,y for brevity

* The network again (with variables shown)... What are these?

* With the divergence we will minimize...
* And the entire influence diagram (with derivatives)

— Variable subscripts not shown in V,y for brevity

—Div

éN Y Div
Wy V.Y ~VyDiv

 The network again (with variables shown)...

* With the divergence we will minimize...

* And the entire influence diagram (with derivatives)

— Variable subscripts not shown in V,y for brevity

The bac

JSEsEzEEEEER
[

— Div
éN Y Div
Wy V.Y alyDiv
C——
VyDiV

First compute the derivative of the divergence w.r.t. Y.
The actual derivative depends on the divergence function.

N.B: The gradient is the transpose of the derivative

173

The backward pas

JSEsEzEEEEER SEEEEEEEEER SEEEEEEEEER
[L] L]
=

—Div
1 éN Y Div
Wy aV,Y alyDiv
Compute the derivative w.r.t zy from the derivative at Y V. Di
: : ZN 1V
using the chain rule

v, Div = VyDiv.V, Y

Already computed New term

JSEsEzEEEEER
[

—Div
1 éN Y Div
Wy aV,Y alyDiv
Compute the derivative w.r.t zy from the derivative at Y V. Div
using the chain rule ZN
(1) — ; V, Y is just the Jacobian of the activation
Vo Div = VyDiv. Jy(zy Zy

— — function
Already computed Jacobian

The backward pass

JSEsEzEEEEER
[

—Div

Di’v

We now have the derivative for zy

@

-
.

—Div

Compute the derivative w.r.t yy_4 from the derivative at VA Div
Zy using the chain rule YN-1

V,v_,Div =V, Div Wy

ZN — WNYN—I + bN = V WN

yN—1ZN =

-
.

—Div

@
Compute the derivative w.r.t yy_4 from the derivative at VA Div
Zy using the chain rule YN-1

V,v_,Div =V, Div Wy

Already computed New term

ZN — WNYN—I + bN = V ZN — WN

YN-1

JSEsEzEEEEER
[

—Div

Compute the derivative w.r.t yy_4 from the derivative at
Zy using the chain rule

Must also compute the derivative w.r.t the Wy
and by using the rule for affine transforms

V,v_,Div =V, Div Wy

Already computed New term

ZN — WNYN—I + bN = V ZN — WN

YN-1

The backward pas

JSEsEzEEEEER
[

SEEEEEEEEER
L]

Uy Div = ¥, Div Wy

Affine parameter rules

z=Wy+b

Div = Div(z)

=)

VyDiv = V,Div

-
L]

—Div

VwDiv =yV,Div

Y —Div

Zy-1 Yn-1 Znv Y Div

v, Vyy_,Div ®
‘—_
' . Vyn_ D1V
Vyy_ Div =V, Div Wy
VWNDW = Y¥n-1 VzNDw We now have the derivative for yy_;
VpDiv =V, Div

JSEsEzEEEEER
[

—Div

Compute the derivative w.r.t zy_; from the derivative at
YN—1 Using the chain rule

V.

ZN-1

Div="V,, Div.V, V¥n_q

Already computed New term

-
.

—Div

Compute the derivative w.r.t zy_; from the derivative at
YN—1 Using the chain rule

VZN_lDiv — VyN_lDiv_]yN_l (ZN—l) VZN‘lyN_l .is the Jac.obian of
the activation function.

Already computed Jacobian It is a diagonal matrix for
scalar activations

The backward pass

JSEsEzEEEEER
[

a
Y —Div
ZN.—l yN—1 ZN Y Div
V,._Div
. @

V.

ZN-1

Div ="V, _ Div.Jy (Zy-1)

We now have the derivative for zy_;

The backward pass

JSEsEzEEEEER
[

a
Y —Div
ZN.—l y&—1 ZN Y Div
— O -0
—.
. . Vyn_, D1V
Vo, Div ="V, Div.Wy_4

Already computed New

JSEsEzEEEEER
[

The backward pas

—Div

v

ZN-1

VYN—ZDiv — Div. WN—l

Already computed New

The backward pas

JSEsEzEEEEER SEEEEEEEEER
[L]

SEEEEEEEEER
L]

—Div

V., Div =V, Div], (z,)

Vw,Div = xV, Div In some problems we will also want to compute
. . the derivative w.r.t. the input
Vp, Div =V, Div P

The bac

JSEsEzEEEEER
[

—Div

Initialize: For k= N downto 1:
VyNDiU = VyDiv

v, Div =V, Div]y () | | Vb Div =V, Div

V.

Ve Piv = Vg, Div W, Vw, Div = yr_1V,, Div

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute Vy Div = VyDiv

* Forlayer k=N downto 1:
— Compute J, (zk)
* Will require intermediate values computed in the forward pass
— Backward recursion step:
V., Div ="V, Div J, (Z)

.., Div =1, Div Wy,
— Gradient computation:

Vkaiv — yk_1\7sziU

Vp, Div =V, Div

190

The Backward Pass

* Setyy =Y,y =X
* Initialize: Compute Vy Div = VyDiv

* Forlayer k=N downto 1:

— Compute J, (zk)
* Will require intermediate values computed in the forward pass

— Backward recursion step: Note analogy to forward pass
., Div ="V, Div], (Zy)
., Div =V, Div Wy,
— Gradient computation:
Vw, Div = y,_1V,, Div
kaDiU = |7ZkDiU

For comparison: The Forward Pass

¢ SetyO = X

* Forlayerk=1toN:

— Forward recursion step:
Z = Wiyg-1 + by
Vi = fr(zk)
* Output:
Y=yy

Neural network training algorithm

* |Initialize all weights and biases (W;,b;,W,,b,, ..., Wy, by)
* Do:

— Loss =0

— Forall k, initialize Vy, Loss = 0, I, Loss = 0

— Forallt = 1:T # Loop through training instances

* Forward pass : Compute
— Output Y (X;)
— Divergence Div(Y,;, d;)
— Loss += Div(Y,, d;)
* Backward pass: For all k compute:
- VyleU == Vzk+1DiU WR+1
- WV, Div =V, Div]y, (zx)
— Vw,Div(Y,, dy) = yx-1V, Div; W, Div(Y,,dy) =V, Div
— Vw,Loss += Wy, Div(Y, dy); Vp,Loss += 1y, Div(Y, dy)

— Forall k, update:
T
Wk = Wk — g (VWkLOSS) ; bk = bk — g (VWkLOSS)T

e Until Loss has converged

193

Setting up for digit recognition

Training data

(>,0) (#,1)
(&, 1) (H, 0)
(©,0) (%, 1)

T

* Simple Problem: Recognizing “2” or “not 2”

* Single output with sigmoid activation
— Y €(0,1)
— diseitherOor1l

 Use KL divergence

 Backpropagation to compute derivatives

— To apply in gradient descent to learn network parameters

. Sigmoid output
neuron

194

Recognizing the digit

Training data

(3,5) (%,2)
(2 2) (A 4)
(0,0) (%,2)

* More complex problem: Recognizing digit
Network with 10 (or 11) outputs

— First ten outputs correspond to the ten digits
e Optional 11th is for none of the above

Softmax output layer:
— ldeal output: One of the outputs goes to 1, the others go to O

Backpropagation with KL divergence
— To compute derivatives for gradient descent updates to learn network 195

Story so far

Neural networks must be trained to minimize the average
divergence between the output of the network and the desired
output over a set of training instances, with respect to network
parameters.

Minimization is performed using gradient descent

Gradients (derivatives) of the divergence (for any individual
instance) w.r.t. network parameters can be computed using
backpropagation
— Which requires a “forward” pass of inference followed by a
“backward” pass of gradient computation

The computed gradients can be incorporated into gradient descent

Issues

Convergence: How well does it learn

— And how can we improve it

How well will it generalize (outside training
data)

What does the output really mean?
Etc..

Next up

* Convergence and generalization

