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A (Very Brief) Neural Network Primer
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● Basic computational unit
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What can a perceptron represent?
● This is a linear classifier

● Here, the activation function is a 
0-1 step function.



Activation functions
● Instead of a threshold, we can have any arbitrary “activation” function



Multilayer Perceptron

Source: cs231n



Multilayer Perceptron
● A “fully-connected” 

multi-layer network of 
perceptrons (MLP).

● Much more powerful than a 
single neuron -- can 
represent any function*.

*Universal Approximation Theorem



Multilayer Perceptron
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But the network must be learned...
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● What are the parameters?
Weights and biases

Weights and Biases
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How Do We “Learn”?
● Suppose we want to classify cats and dogs.
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pairs and try to optimize the parameters so 
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How Do We “Learn”?
Actual Function
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How Do We “Learn”?

● Estimate functions from the samples.

● Need a quantification of the error between the 
network output and the desired output

● Optimize parameters to minimize this error. (How?)
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Gradient Descent
1. Initialize all the parameters.
2. Repeat until convergence:

a. Compute loss

b. Compute gradient of the loss wrt 
parameters

c. Update parameters

(Scalar form)



Gradient Descent



Your First Deep Learning Code (...finally)



Let’s start with Deep Learning Frameworks
What do they provide?

● Computation (often with some Numpy support)
● GPU support for parallel computation
● Some basic neural layers to combine in your models
● Tools to train your models
● Enforce a general way to code your models
● And most importantly, automatic backpropagation



Pytorch
We recommend Pytorch v1.3

You should have access to an environment with it, and hopefully a GPU.

LET’S START!
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Tensors
● Tensors are similar to NumPy’s ndarrays, with the addition being that 

Tensors can also be used on a GPU to accelerate computing.
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Move Tensors to the GPU
For big computations, GPUs offer significant speedups!



Move Tensors to the GPU
Operations between GPU and CPU tensors will fail. Operations require all 
arguments to be on the same device.



Move Tensors to the GPU
Typical code should be compatible with both CPU & GPU (device agnostic). 
Include if statements or utilize helper functions so it can operate with or 
without the GPU.
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Backpropagation

1. Initialize parameters

2. Repeat until convergence:

a. Compute Loss

b. * Compute gradients 
of the Loss function 
wrt parameters

c. Update parameters

In a nutshell: Backpropagation is 
an algorithm to compute the 
gradients of the loss function wrt 
the parameters efficiently using the 
chain-rule of calculus.



Backpropagation in Pytorch
Pytorch can retro-compute gradients for any succession of operations. Use 
the .backward() method.



Backpropagation in Pytorch
Solution
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Neural Networks in Pytorch
As you know a neural network:

● Is a function connecting an input to an output
● Depends on (lots of) parameters

In Pytorch, a neural network is a class that implements the base class 
torch.nn.Module. You are provided with some pre-implemented networks 
such as torch.nn.Linear which is a single layer perceptron.



Neural Networks in Pytorch
● The .forward() function applies the function

● The .parameters() method gives access to all the network parameters



Let’s write an MLP
The worst way ever:

All attributes of Parameter type become network parameters



Let’s write an MLP
A better way:

You can use small networks inside big networks. Parameters of subnetworks 
will be “absorbed”



Let’s write an MLP
Even better:

This is a shortcut for simple feedforward networks. 

So all you need in HW1 P2, but probably not in later homeworks



Let’s write an MLP
Your own classes might be useful in bigger networks:

Allows a sort of “tree structure”
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Final Layers and Losses
torch.nn.CrossEntropyLoss includes both the softmax and the loss criterion 
and is stable (uses the log softmax)

Here the input x is 2-dimensional: it is a batch  of input vectors (which is 
usually the case)



Use the Optimizer
You must use an optimizer subclass of torch.nn.Optimizer. The optimizer is 
initialized with the parameters that you want to update.

The .step()  method will apply gradient descent on all these parameters, using 
the gradients they contain.



Use the Optimizer
Remember that gradients accumulate in Pytorch. 

If you want to apply several iterations of gradient descent, gradients must be 
set to zero before each optimization step.



Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code



Saving and Loading
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Common Issues to Look Out For
Tensor Operations

● GPU + CPU
● Size mismatch in vector multiplications
● (*) is NOT matrix multiplication



Common Issues to Look Out For
Tensor Operations

● .view() is not transposition



GPU Memory Error



Common Issues to Look Out For

Is there a problem?

What is it?...



Common Issues to Look Out For
Type error



Common Issues to Look Out For

What’s the problem?



Common Issues to Look Out For
Parameter Issue Hidden Layers are not 

module parameters

They will not be 
optimized



Common Issues to Look Out For
Solution



Pytorch Debugging
If you have an error/bug in your code, or question about Pytorch:

● Always try to figure it out by yourself first, that’s how you learn the 
most, for any strange behavior in your code, try printing the outputs, 
inputs, parameters and errors

● Use the debugger: 
● Tons of online resources, great pytorch documentation, and basically 

every error is somewhere on stackoverflow.
● Use Piazza - First check if someone else has encountered the same bug 

before making a new post.
● Come to office hours.
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Pytorch Example

Open the notebook MNIST_example.ipynb


