
Your First Deep Learning Code
11-785 Spring 2020

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

A (Very Brief) Neural Network Primer

Perceptron (or Artificial Neuron)

Perceptron (or Artificial Neuron)

Inputs

Perceptron (or Artificial Neuron)

Inputs

Weights

Perceptron (or Artificial Neuron)

Inputs

Weights

Bias

Perceptron (or Artificial Neuron)
● Basic computational unit

● Inputs combine linearly

Perceptron (or Artificial Neuron)
● Basic computational unit

● Inputs combine linearly

What can a perceptron represent?
● This is a linear classifier

● Here, the activation function is a
0-1 step function.

Activation functions
● Instead of a threshold, we can have any arbitrary “activation” function

Multilayer Perceptron

Source: cs231n

Multilayer Perceptron
● A “fully-connected”

multi-layer network of
perceptrons (MLP).

● Much more powerful than a
single neuron -- can
represent any function*.

*Universal Approximation Theorem

Multilayer Perceptron

MLPs for Classification

1

0

MLPs for Classification

1

0

MLPs for Classification

1

0

MLPs for Classification

1

0

But the network must be learned...

How Do We “Learn”?

How Do We “Learn”?
● But first: What do we learn?

How Do We “Learn”?
● But first: What do we learn?

The parameters

How Do We “Learn”?
● But first: What do we learn?

The parameters

● What are the parameters?

How Do We “Learn”?
● But first: What do we learn?

The parameters

● What are the parameters?
Weights and biases

Weights and Biases

How Do We “Learn”?
● Suppose we want to classify cats and dogs.

How Do We “Learn”?
● Suppose we want to classify cats and dogs.

● We will provide many input-output example
pairs and try to optimize the parameters so
that the network output matches training
data output as closely as possible.

Input Output

“Cat”

“Dog”

“Dog”

“Cat”

How Do We “Learn”?
● Suppose we want to classify cats and dogs.

● We will provide many input-output example
pairs and try to optimize the parameters so
that the network output matches training
data output as closely as possible.

● Need to quantify the error.

Input Output

“Cat”

“Dog”

“Dog”

“Cat”

How Do We “Learn”?
Actual Function

How Do We “Learn”?

● Estimate functions from the samples.

Actual Function

How Do We “Learn”?

● Estimate functions from the samples.

● Need a quantification of the error between the
network output and the desired output

Actual Function

Network
output

Desired
output

How Do We “Learn”?

● Estimate functions from the samples.

● Need a quantification of the error between the
network output and the desired output

● Optimize parameters to minimize this error.

Actual Function

Network
output

Desired
output

How Do We “Learn”?

● Estimate functions from the samples.

● Need a quantification of the error between the
network output and the desired output

● Optimize parameters to minimize this error. (How?)

Actual Function

Network
output

Desired
output

Gradient Descent

Gradient Descent

Gradient Descent
1. Initialize all the parameters.

Gradient Descent
1. Initialize all the parameters.
2. Repeat until convergence:

Gradient Descent
1. Initialize all the parameters.
2. Repeat until convergence:

a. Compute loss

Gradient Descent
1. Initialize all the parameters.
2. Repeat until convergence:

a. Compute loss

b. Compute gradient of the loss wrt
parameters

Gradient Descent
1. Initialize all the parameters.
2. Repeat until convergence:

a. Compute loss

b. Compute gradient of the loss wrt
parameters

c. Update parameters

Gradient Descent
1. Initialize all the parameters.
2. Repeat until convergence:

a. Compute loss

b. Compute gradient of the loss wrt
parameters

c. Update parameters

(Scalar form)

Gradient Descent

Your First Deep Learning Code (...finally)

Let’s start with Deep Learning Frameworks
What do they provide?

● Computation (often with some Numpy support)
● GPU support for parallel computation
● Some basic neural layers to combine in your models
● Tools to train your models
● Enforce a general way to code your models
● And most importantly, automatic backpropagation

Pytorch
We recommend Pytorch v1.3

You should have access to an environment with it, and hopefully a GPU.

LET’S START!

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Tensors
● Tensors are similar to NumPy’s ndarrays, with the addition being that

Tensors can also be used on a GPU to accelerate computing.

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Move Tensors to the GPU
For big computations, GPUs offer significant speedups!

Move Tensors to the GPU
Operations between GPU and CPU tensors will fail. Operations require all
arguments to be on the same device.

Move Tensors to the GPU
Typical code should be compatible with both CPU & GPU (device agnostic).
Include if statements or utilize helper functions so it can operate with or
without the GPU.

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Backpropagation

1. Initialize parameters

2. Repeat until convergence:

a. Compute Loss

b. * Compute gradients
of the Loss function
wrt parameters

c. Update parameters

In a nutshell: Backpropagation is
an algorithm to compute the
gradients of the loss function wrt
the parameters efficiently using the
chain-rule of calculus.

Backpropagation in Pytorch
Pytorch can retro-compute gradients for any succession of operations. Use
the .backward() method.

Backpropagation in Pytorch
Solution

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Neural Networks in Pytorch
As you know a neural network:

● Is a function connecting an input to an output
● Depends on (lots of) parameters

In Pytorch, a neural network is a class that implements the base class
torch.nn.Module. You are provided with some pre-implemented networks
such as torch.nn.Linear which is a single layer perceptron.

Neural Networks in Pytorch
● The .forward() function applies the function

● The .parameters() method gives access to all the network parameters

Let’s write an MLP
The worst way ever:

All attributes of Parameter type become network parameters

Let’s write an MLP
A better way:

You can use small networks inside big networks. Parameters of subnetworks
will be “absorbed”

Let’s write an MLP
Even better:

This is a shortcut for simple feedforward networks.

So all you need in HW1 P2, but probably not in later homeworks

Let’s write an MLP
Your own classes might be useful in bigger networks:

Allows a sort of “tree structure”

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Final Layers and Losses
torch.nn.CrossEntropyLoss includes both the softmax and the loss criterion
and is stable (uses the log softmax)

Here the input x is 2-dimensional: it is a batch of input vectors (which is
usually the case)

Use the Optimizer
You must use an optimizer subclass of torch.nn.Optimizer. The optimizer is
initialized with the parameters that you want to update.

The .step() method will apply gradient descent on all these parameters, using
the gradients they contain.

Use the Optimizer
Remember that gradients accumulate in Pytorch.

If you want to apply several iterations of gradient descent, gradients must be
set to zero before each optimization step.

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Saving and Loading

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Common Issues to Look Out For
Tensor Operations

● GPU + CPU
● Size mismatch in vector multiplications
● (*) is NOT matrix multiplication

Common Issues to Look Out For
Tensor Operations

● .view() is not transposition

GPU Memory Error

Common Issues to Look Out For

Is there a problem?

What is it?...

Common Issues to Look Out For
Type error

Common Issues to Look Out For

What’s the problem?

Common Issues to Look Out For
Parameter Issue Hidden Layers are not

module parameters

They will not be
optimized

Common Issues to Look Out For
Solution

Pytorch Debugging
If you have an error/bug in your code, or question about Pytorch:

● Always try to figure it out by yourself first, that’s how you learn the
most, for any strange behavior in your code, try printing the outputs,
inputs, parameters and errors

● Use the debugger:
● Tons of online resources, great pytorch documentation, and basically

every error is somewhere on stackoverflow.
● Use Piazza - First check if someone else has encountered the same bug

before making a new post.
● Come to office hours.

Overview
● Neural Networks

● Tensors

● CPU and GPU Operations

● Backpropagation

● Neural Network Modules

● Optimization and Loss

● Saving and Loading

● Common Issues to look out for

● Full NN Example in code

Pytorch Example

Open the notebook MNIST_example.ipynb

