Recitation 2:
Computing Derivatives



Notation and Conventions

* We will refer to the derivative of scalar L with respect to x as
V. L

* Regardless of whether the derivative is a scalar, vector, matrix or tensor

* The derivative of a scalar L w.r.tan N X 1 column vector x is a
1 X N row vector V, L

* The derivative of ascalar Lw.rtan N X M matrix X isan M X N
matrix VyL
« Remember our gradient update rule : W = W —nV,, LT

* The derivative ofan N X 1 vector Y w.rtan M X 1 vector X is
an N X M matrix Jx(Y)

* The Jacobian



Definition of Derivative

1. Math Definition: & = lim =¥

dx A,—0 Ax
2. Intuition:
* Question: If | increase x by a tiny bit, how much will the overall
f(x) increase?

« Answer: This tiny change will result in f'(x) derivative value
change
« (Geometrics: The derivative of f w.r.t. x at x, is the slope of the
tangent line to the graph of f at x,

tangent line

slope= f'(x)




Computing Derivatives

Derivative Shape: L /oW,

aL/aZl - I

Notice: the shape of the derivative for any variable will
be transposed with respect to that variable




Rule 1(a): Scalar Multiplication

z=Wx
* All terms are scalars
oL .
i known
oL _oL
dx 0z
oL oL
= X —

ow 0z



Rule 2(a): Scalar Addition

Z=XTYy
L=f(2)

 All terms are scalars

oL .
e — s known
0z

(3‘L_ aL(?Z_é‘L

ox 09z0x 0z
GL_(”J‘L(?Z_(?L

dy  0zdy dz




Rule 3(a): Scalar Chain Rule
z=g(x)
L= f(2)

* x and z are scalars

dL

e —is known
0z

0L B oL |
ox Oz‘g (%)



Rule 4(a): The Generalized
Chain Rule (Scalar)

L= f(91(x),g2(%), ..., gn(x))

 x IS scalar
oL

« — are know for all i
29

dL 0L dg;
dx dg, 0x dg, 0x

dL dg, dL dg,

- dg, 0x



Rule 1(b): Matrix Multiplication

z=Wx
L=f(z)
*zisan N X 1 vector
e xisan M X 1 vector
* Wisan N X M matrix
* L is a function of z
* V,Lis known (andisa 1 X N vector)

V.L = (V,L)W
VwL — X(VZL)

Please verify that the
dimensions match!



Rule 2(b): Vector Addition

Z=XTYy
L=f(2)

* x,yand z are all N X 1 vectors
* V/,Lis known (andisa 1 X N vector)

VL =V,L
V,L = V,L

Please verify that the
dimensions match!
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Rule 3(b): Chain Rule (vector)

z = g(x)
L= f(z)

e xand z are N X 1 vectors
* V,Lis known (andisa 1 X N vector)

* |..g is the Jacobian of g(x) with respect to x
* May be a diagonal matrix

VL = VL ] g

Please verify that the
dimensions match!
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Rule 4(b): The Generalized
Chain Rule (vector)

L= f(91(x),g2(x), ..., gn (X))

« xisan N X 1 vector
* The functions g; output M x1 vectors for all i
* Vg4, L are known for all i (and are 1xXM vectors)

* ]xg; are Jacobian matrices of g;(x) w.r.t. x of size M
XN matrices.

7L =) VL0
l

Please verify that the
dimensions match!
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Rule (5): Element-wise Multiplication

Z =XoYy
L=f)

* x,yand z are all N X 1 vectors

“_n

* “o” represents component-wise multiplication
* V,Lis known (andisa 1 X N vector)

Vel = (VzL) o y"
V,L = (V,L) o x"

Please verify that the
dimensions match!
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Rule 6: Element-wise Function

z = g(x)
L= f(z)

* xand z are N X 1 vectors

* V,Lis known (andisa 1 X N vector)

* g(x) is actually a vector of component-wise functions
*ie.z; = g(x)

* g'(x)isa row vector consisting of the derivatives of the
individual components of g(x) w.r.t individual components
of x

. ' T Please verify that the
VxL — VZL °g (X) dimensions match!
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Computing Derivative of
Complex Functions

* We now are prepared to compute very complex derivatives
« Given forward computation, the key is to work backward
through the simple relations
* Procedure:
« Express the computation as a series of computations of
intermediate values
« Each computation must comprise either a unary or binary

relation
* Unary relation: RHS has one argument,
e.g.y = g(x)

 Binary relation: RHS has two arguments,
eg.z=x+yorz=xy
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Example 1: MLP Feedfoward

Network

« Suppose a MLP network with 2 hidden layers
Equations of network (in the order in which they are
computed sequentially)

Z1 = Wlx + bl

z, = relu(zy)

Z3 = W2Z2 + bz §@—>

z, = relu(z;) B
output = Wiz, + b; @ g

53)

OO WON -

(Notice that these operations are not in unary and binary forms)
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Example 1: MLP Feedfoward

Network

Rewrite these in terms of unary and binary operations

NN WN N

z1 = Wix

Zo =71 + by

z3 = relu(z,)

zy = Wrz3

Zg = Z4 + b,

zg = relu(zs)

Z7 = W3z
output = z7 + b;

A~ WON -

z1 = Wix + by

z, = relu(z,)

z3 = W5z, + b,

z, = relu(zs)
output = Wiz, + by
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Example 1: MLP Backward
Network

 Now we will work out way backward

* We assume derivative of the loss w.r.t. Output is given

dOutput

which derivative w.r.t. input and

oL 0L oL
We need to compute ox’ oW, aby’

parameters within hidden layers
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Example 1: MLP Backward

Network

1 VZ7L — VoutputL
2 Vb3L = VoutputL

(Recall that for Vector Addition)

z1 = Wix

Zy = Z1 + by
z3 = relu(z,)
Zy = Wpz3

Z5 = Z4 + bz
Ze = relu(zs)
Z; = Wszg

VL =",L

/O\C\IG\QH*R%[\)N

output = z7 + b;

VL = V,L
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Example 1: MLP Backward

aL/aZl -

Network
1. V, L = VoutputL 1 zy=Wix
2. VoL = VourpueL 2 zp =271+ by
3 Uyl =2,V L 7 s relu(n)
4. V,, = V, LW, e Z‘S" — 2, + b,
6 Z, = Z
Derivative Shape L /oW, 7 7, =Ws3zg

§ output = z; + by
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Example 1: MLP Backward
Network

Vz7L = VoutputL
ngL — VoutputL
VW3L = Z6\7Z7L

VZ6L = VZ7LW3

VZ5L = VZ6L o 1A(Z5)T

1, x>0
1A(Zs) = {0 x <0

(N W NN

Recall element-wise function, where g(x)
is element-wise funtion

Vel = VLo g'(x)"

7 Z1 = Wlx
2 Zy = 71 + b1
3 z3 =relu(z,)

4 Zy = W2Z3
7 Z7 —_ W3Z6

8 output = z; + by
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(N W NN

Example 1: MLP Backward

Network

V2, L = VoutputL 1 zy=Wyx
Vb, L = Voutpuel 2 zp =271+ by
VL = 2.V, L 3 z3 =relu(z,)

3 . ’ 4 Zy = W2Z3
Vool = Ve, LWs 5 zc =24+ Db
Vol = VyeLo1,(25)" W

1a(zs) = {(1)2228 7 77 = Wzzg

V,,L=V,L 8 output = z; + b3

Vsz —_ VZ5L
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Example 1: MLP Backward

Network
V2, L = VoutputL 1 z; = Wix
Vb, L = Voutpuel 2 zp =271+ by
Vi, L = 2V, L 3 z3 =relu(z,)

4 = W-
VoL = U, LW: T n=War >
Z5 — Z4 +_U2

_ o T
VZsL o VZeL 11,4(025) 6 zg;=relu(zg)
, X >

La(zs) = {O,xSO 7 77 = Wzzg
V,,L=V,L 8 output = z; + b3
Vp,L = V, L
Vw,L = z3V,, L
Vo, L = Vy LW,
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Example 1: MLP Backward

v, L="0,L
VL= 0,L

VWZL — Z3VZ4L
v, L=V, LW,

VZZL — VZ3L © 1A(ZS)T

14(z5) = {

1, x>0
0,x<0

Network

Z1=W1x
Zy = 71 + by

z3 = relu(zy) >

%NO\M%QI\;N

Z4 — V243

g = Zy + bz

Ze = relu(zs)

Z; = Wzzg
output = z7 + b;
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Example 1: MLP Backward
Network

VZ4L == VZ5L 1 Z1 = Wlx
VWZL — Z3V L -
v, L=V, LW, Zg = Wazs

4
5 zs=2z4+ by
10 VL=V, L olu(zs)T 6 z¢=relu(zs)
1,x>0
7
g

NV NN D

14(zs5) = {O,X <0 Z7 = W3Z6
11.V, L=1,L output = z7 + by
12.V, L=V, L
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Example 1: MLP Backward
Network

6 V,L="V,L
7. Uy L="0,L
8
9

z1 = Wix >

Z5 —Z1 F D1

z; = relu(z,)

Zy = Wpz3

g = Zy + bz

Ze = relu(zs)

Z7 = Wszg
output = z7 + b;

VWZL — Z3VZ4L
. VL=V, LW,
10.V, L = V, L o1,(z5)"

1, x>0
1A(Z5) = {0 x<0

11.V, L= V,L
12V, L="V,L
13. Uy L = xV, L
14. VL = V, LW,

00\10\01~Awl\/;\
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Example 2: Scanning with an MLP

XisaTx1vector
The MLP takes an input vector x(t) = X[t : t + N, :] of size N x 1 at each step t

O(t) is the output of the MLP at step t
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0(1)

Example 2: Scanning with an MLP
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0(2)

Example 2: Scanning with an MLP
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0(3)

Example 2: Scanning with an MLP
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Example 2: Scanning with an MLP

0(1-2)
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Example 2: Scanning with an MLP

0(1) 0(2) 0(3) 0(1-2)

o D;:x

000000---0030




SN W N~

Example 2: Scanning with an MLP
(forward)

XisaTx1vector
The MLP takes an input vector x(t) = X[t : t + N, :] of size N x 1 at each step t
O(t) is the output of the MLP at step t

L =f(O(1), O(2), ..., O(T-N+1))
Forward equations of the network at step t:

z1(t) = Wix(t) + by
Z,(t) = relu(21 (t))
z3(t) = Wyz, + by
24(t) = relu(zs(t))
O(t) = W3z4(¢t) + b3
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Example 2: Scanning with an MLP

(forward)

Rewrite these in terms of unary and binary operations

z1(t) = Wix(t)
z5(t) = z1(t) + by
Z3(t) = relu(zz (t))
z4(t) = Wyz3

Zs (t) = Zy4 + bz
Zg(t) = relu(zs (t))
z7(t) = Wsze(t)
O(t) = z,(t) + by

NS AN W N~

SN N N

z1(t) = Wix(t) + by
Z,(t) = relu(21 (t))
Zg(t) - W2Z2 + bz

Z,(t) = relu(23 (t))
O(t) = W3z,.(t) + by
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Example 2: Scanning with an MLP

(backward)

Let’'s now work our way backward

We assume derivative %of the loss w.r.t. O(t) is given for t=1
dL dL
dx’ dw;’ db;
inputs and the network parameters

We need to compute

.....

T-N+1

aL the derivatives of the loss w.r.t. the
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Example 2: Scanning with an MLP
(backward)

Calculating the derivatives for t = 1:

1. VL= Vol 10, V, L= V, L o 14(zs(t)"
2 VL= Vypl 1x>0
3 Vyl= 26((t))|7z7(t)L La(zs(6)) = {O,x <0
4. Vil =V, LWs 11.  Vy, L = Vyip»l
5. Voecrl = VopryL © 14(2z5 ()7 12 V3wl = Vil

14 (z5(8)) = {1"‘ 20 e e

0,x<0 - xylL = Vy oLW;

6. Vool = VoL 15, VyxL[:,1:N + 1] = VL
7. Wy L=V, L
8 VL= 25(t)V,, L
9. Vuwl= VLW,
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Example 2: Scanning with an MLP
(backward)

Calculating the derivatives for t > 1:

1 L= Vopl 10 Vb=V, ol o 1,(z5(t))"
j. gb3LL+=_ Vot L (2e(6)) = {1,x >0

, w, L += z6(t)|7z7(t)L 0,x<0
4 Vi)l = Vo) LWs 11 Vp, L+= V)l
5. Vil = Vil o 14(z5(6))" 12 Vywl = Vaml

L x>0 13 Uy L += x(t)V,, 0L
La(z5(6)) = {O,x <0 14 Vil = Vzn)LWy

6. Vel = Vool 15,  VxL[:,t:t+ N —1] +=V,pL[:,: —1]
7 Vp,L += V, oL 16.  VyL[:,t+ N —1] =V, L[:, 1]
8. Vi, L += z3(t)V,, L
9. Vol = VLW,
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When to use “=" vs “+”

In the forward computation, a variable may be used multiple times to compute

other intermediate variables or a sequence of output variables
During backward computations, the first time the derivative is computed for the
variable, the we will use “="
In subsequent computations we use “+="
It may be difficult to keep track of when we first compute the derivative for a
variable

When to use “=" vs when to use “+="

Cheap trick:
Initialize all derivatives to 0 during computation
Always use “+="
You will get the correct answer (why?)
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