### Recitation 2: Computing Derivatives

#### **Notation and Conventions**

- We will refer to the derivative of scalar L with respect to x as  $\nabla_{\!x} L$ 
  - Regardless of whether the derivative is a scalar, vector, matrix or tensor
- The derivative of a scalar L w.r.t an  $N \times 1$  column vector x is a  $1 \times N$  row vector  $\nabla_x L$
- The derivative of a scalar L w.r.t an  $N \times M$  matrix X is an  $M \times N$  matrix  $\nabla_X L$ 
  - Remember our gradient update rule :  $W = W \eta \nabla_W L^T$
- The derivative of an  $N \times 1$  vector Y w.r.t an  $M \times 1$  vector X is an  $N \times M$  matrix  $J_X(Y)$ 
  - The Jacobian

#### **Definition of Derivative**

- 1. Math Definition:  $\frac{dy}{dx} = \lim_{\Delta_x \to 0} \frac{\Delta y}{\Delta x}$
- 2. Intuition:
  - Question: If I increase x by a tiny bit, how much will the overall f(x) increase?
  - Answer: This tiny change will result in f'(x) derivative value change
- Geometrics: The derivative of f w.r.t. x at  $x_0$  is the slope of the tangent line to the graph of f at  $x_0$



#### **Computing Derivatives**



Notice: the shape of the derivative for any variable will be transposed with respect to that variable

#### Rule 1(a): Scalar Multiplication

$$z = Wx$$

- All terms are scalars
- $\frac{\partial L}{\partial z}$  is known

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} W$$

$$\frac{\partial L}{\partial W} = x \frac{\partial L}{\partial z}$$

### Rule 2(a): Scalar Addition

$$z = x + y$$
$$L = f(z)$$

- All terms are scalars
- $\frac{\partial L}{\partial z}$  is known

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial L}{\partial z}$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} = \frac{\partial L}{\partial z}$$

### Rule 3(a): Scalar Chain Rule

$$z = g(x)$$
$$L = f(z)$$

- x and z are scalars
- $\frac{\partial L}{\partial z}$  is known

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} g'(x)$$

# Rule 4(a): The Generalized Chain Rule (Scalar)

$$L = f(g_1(x), g_2(x), ..., g_n(x))$$

- x is scalar
- $\frac{\partial L}{\partial g_i}$  are know for all i

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial g_1} \frac{\partial g_1}{\partial x} + \frac{\partial L}{\partial g_2} \frac{\partial g_2}{\partial x} + \dots + \frac{\partial L}{\partial g_n} \frac{\partial g_n}{\partial x}$$

### Rule 1(b): Matrix Multiplication

$$z = Wx$$
$$L = f(z)$$

- z is an  $N \times 1$  vector
- x is an  $M \times 1$  vector
- W is an  $N \times M$  matrix
- L is a function of z
- $\nabla_z L$  is known (and is a  $1 \times N$  vector)

$$\nabla_{x}L = (\nabla_{z}L)W$$

$$\nabla_W L = x(\nabla_z L)$$

### Rule 2(b): Vector Addition

$$z = x + y$$
$$L = f(z)$$

- x, y and z are all  $N \times 1$  vectors
- $\nabla_z L$  is known (and is a  $1 \times N$  vector)

$$\nabla_{x}L = \nabla_{z}L$$

$$\nabla_{\mathcal{V}}L = \nabla_{\mathcal{Z}}L$$

### Rule 3(b): Chain Rule (vector)

$$z = g(x)$$
  
$$L = f(z)$$

- x and z are  $N \times 1$  vectors
- $\nabla_z L$  is known (and is a  $1 \times N$  vector)
- $J_x g$  is the Jacobian of g(x) with respect to x
  - May be a diagonal matrix

$$\nabla_{x}L = \nabla_{z}L J_{x}g$$

# Rule 4(b): The Generalized Chain Rule (vector)

$$L = f(g_1(x), g_2(x), ..., g_n(x))$$

- x is an  $N \times 1$  vector
- The functions  $g_i$  output  $M \times 1$  vectors for all i
- $\nabla_{g_i} L$  are known for all i (and are  $1 \times M$  vectors)
- $J_x g_i$  are *Jacobian matrices* of  $g_i(x)$  w.r.t. x of size M ×N matrices.



$$\nabla_{x} L = \sum_{i} \nabla_{g_{i}} L J_{x} g_{i}$$

### Rule (5): Element-wise Multiplication

$$z = x \circ y$$
$$L = f(y)$$

- x, y and z are all  $N \times 1$  vectors
- "o" represents component-wise multiplication
- $\nabla_z L$  is known (and is a  $1 \times N$  vector)

$$\nabla_{x}L = (\nabla_{z}L) \circ y^{T}$$

$$\nabla_{\mathbf{v}} L = (\nabla_{\mathbf{z}} L) \circ \mathbf{x}^T$$

#### Rule 6: Element-wise Function

$$z = g(x)$$
$$L = f(z)$$

- x and z are  $N \times 1$  vectors
- $\nabla_z L$  is known (and is a  $1 \times N$  vector)
- g(x) is actually a vector of *component-wise* functions
  - i.e.  $z_i = g(x_i)$
- g'(x) is a row vector consisting of the derivatives of the individual components of g(x) w.r.t individual components of x

$$\nabla_{x}L = \nabla_{z}L \circ g'(x)^{T}$$
 Please verify that the dimensions match!

# Computing Derivative of Complex Functions

- We now are prepared to compute very complex derivatives
- Given forward computation, the key is to work backward through the simple relations
- Procedure:
  - Express the computation as a series of computations of intermediate values
  - Each computation must comprise either a unary or binary relation
    - Unary relation: RHS has one argument, e.g. y = g(x)
    - Binary relation: RHS has two arguments, e.g. z = x + y or z = xy

## Example 1: MLP Feedfoward Network

Suppose a MLP network with 2 hidden layers
 Equations of network (in the order in which they are
 computed sequentially)

1 
$$z_1 = W_1x + b_1$$
  
2  $z_2 = relu(z_1)$   
3  $z_3 = W_2z_2 + b_2$   
4  $z_4 = relu(z_3)$   
5  $output = W_3z_4 + b_3$ 



(Notice that these operations are not in unary and binary forms)

## Example 1: MLP Feedfoward Network

Rewrite these in terms of unary and binary operations

1 
$$z_1 = W_1x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3z_6$   
8  $output = z_7 + b_3$ 

1 
$$z_1 = W_1x + b_1$$
  
2  $z_2 = relu(z_1)$   
3  $z_3 = W_2z_2 + b_2$   
4  $z_4 = relu(z_3)$   
5  $output = W_3z_4 + b_3$ 

- Now we will work out way backward
- We assume derivative  $\frac{dL}{dOutput}$  of the loss w.r.t. Output is given
- We need to compute  $\frac{\partial L}{\partial x}$ ,  $\frac{\partial L}{\partial W_i}$ ,  $\frac{\partial L}{\partial b_i}$ , which derivative w.r.t. input and parameters within hidden layers

(Recall that for Vector Addition)

$$\nabla_{x}L = \nabla_{z}L$$

$$\nabla_{y}L = \nabla_{z}L$$

1 
$$z_1 = W_1x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3z_6$   
8  $output = z_7 + b_3$ 

1. 
$$\nabla_{z_7} L = \nabla_{output} L$$

2. 
$$\nabla_{b_3}L = \nabla_{output}L$$

3. 
$$\nabla_{W_3} L = z_6 \nabla_{z_7} L$$

4. 
$$\nabla_{z_6} = \nabla_{z_7} L W_3$$



1 
$$z_1 = W_1x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3z_6$   
8  $output = z_7 + b_3$ 

1. 
$$\nabla_{z_7} L = \nabla_{output} L$$
  
2.  $\nabla_{b_3} L = \nabla_{output} L$ 

$$3. \ \nabla_{W_3} L = z_6 \nabla_{z_7} L$$

4. 
$$\nabla_{z_6} L = \nabla_{z_7} L W_3$$

5. 
$$\nabla_{z_5} L = \nabla_{z_6} L \circ 1_A (z_5)^T$$

$$1_A(z_5) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$$

Recall element-wise function, where g(x) is element-wise funtion

$$\nabla_{x}L = \nabla_{z}L \circ g'(x)^{T}$$

1 
$$z_1 = W_1 x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2 z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3 z_6$   
8  $output = z_7 + b_3$ 

1. 
$$\nabla_{z_7} L = \nabla_{output} L$$

2. 
$$\nabla_{b_3}L = \nabla_{output}L$$

3. 
$$\nabla_{W_3} L = z_6 \nabla_{z_7} L$$

4. 
$$\nabla_{z_6} L = \nabla_{z_7} L W_3$$

5. 
$$\nabla_{z_5} L = \nabla_{z_6} L \circ 1_A (z_5)^T$$

$$1_A(z_5) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$$

6. 
$$\nabla_{z_4} L = \nabla_{z_5} L$$

$$7. \nabla_{b_2} L = \nabla_{z_5} L$$

1 
$$z_1 = W_1 x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2 z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3 z_6$   
8  $output = z_7 + b_3$ 

1. 
$$\nabla_{z_7} L = \nabla_{output} L$$

2. 
$$\nabla_{b_3}L = \nabla_{output}L$$

3. 
$$\nabla_{W_3} L = z_6 \nabla_{z_7} L$$

4. 
$$\nabla_{z_6} L = \nabla_{z_7} L W_3$$

5. 
$$\nabla_{z_5} L = \nabla_{z_6} L \circ 1_A (z_5)^T$$

$$1_A(z_5) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$$

6. 
$$\nabla_{z_4} L = \nabla_{z_5} L$$

$$7. \nabla_{b_2} L = \nabla_{z_5} L$$

8. 
$$\nabla_{W_2}L = z_3\nabla_{z_4}L$$

9. 
$$\nabla_{z_3} L = \nabla_{z_4} L W_2$$

1 
$$z_1 = W_1 x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2 z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3 z_6$   
8 output =  $z_7 + b_3$ 

6. 
$$\nabla_{z_4}L = \nabla_{z_5}L$$
  
7.  $\nabla_{b_2}L = \nabla_{z_5}L$   
8.  $\nabla_{W_2}L = z_3\nabla_{z_4}L$   
9.  $\nabla_{z_3}L = \nabla_{z_4}LW_2$   
10.  $\nabla_{z_2}L = \nabla_{z_3}L \circ 1_A(z_5)^T$   
14(z<sub>5</sub>) =  $\begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$   
15  $z_1 = W_1x$   
26  $z_2 = z_1 + b_1$   
37  $z_3 = relu(z_2)$   
47  $z_4 = W_2z_3$   
58  $z_5 = z_4 + b_2$   
69  $z_6 = relu(z_5)$   
70  $z_7 = W_3z_6$   
80  $z_7 = z_7 + b_3$ 

6. 
$$\nabla_{z_4} L = \nabla_{z_5} L$$
  
7.  $\nabla_{b_2} L = \nabla_{z_5} L$   
8.  $\nabla_{W_2} L = z_3 \nabla_{z_4} L$   
9.  $\nabla_{z_3} L = \nabla_{z_4} L W_2$   
10.  $\nabla_{z_2} L = \nabla_{z_3} L \circ 1_A (z_5)^T$   
 $1_A(z_5) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$   
11.  $\nabla_{b_1} L = \nabla_{z_2} L$   
12.  $\nabla_{z_1} L = \nabla_{z_2} L$ 

1 
$$z_1 = W_1x$$
  
2  $z_2 = z_1 + b_1$   
3  $z_3 = relu(z_2)$   
4  $z_4 = W_2z_3$   
5  $z_5 = z_4 + b_2$   
6  $z_6 = relu(z_5)$   
7  $z_7 = W_3z_6$   
8  $output = z_7 + b_3$ 

6. 
$$\nabla_{z_4}L = \nabla_{z_5}L$$
  
7.  $\nabla_{b_2}L = \nabla_{z_5}L$   
8.  $\nabla_{W_2}L = z_3\nabla_{z_4}L$   
9.  $\nabla_{z_3}L = \nabla_{z_4}LW_2$   
10.  $\nabla_{z_2}L = \nabla_{z_3}L \circ 1_A(z_5)^T$   
 $1_A(z_5) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}$   
11.  $\nabla_{b_1}L = \nabla_{z_2}L$   
12.  $\nabla_{z_1}L = \nabla_{z_2}L$   
13.  $\nabla_{W_1}L = x\nabla_{z_1}L$   
14.  $\nabla_x L = \nabla_{z_1}LW_1$ 

```
1 z_1 = W_1x

2 z_2 = z_1 + b_1

3 z_3 = relu(z_2)

4 z_4 = W_2z_3

5 z_5 = z_4 + b_2

6 z_6 = relu(z_5)

7 z_7 = W_3z_6

8 output = z_7 + b_3
```

- X is a T x 1 vector
- The MLP takes an input vector x(t) = X[t : t + N, :] of size N x 1 at each step t
- O(t) is the output of the MLP at step t











# Example 2: Scanning with an MLP (forward)

- X is a T x 1 vector
- The MLP takes an input vector x(t) = X[t : t + N, :] of size N x 1 at each step t
- O(t) is the output of the MLP at step t
- L = f(O(1), O(2), ..., O(T-N+1))
- Forward equations of the network at step t:
- 1.  $z_1(t) = W_1 x(t) + b_1$
- 2.  $z_2(t) = relu(z_1(t))$
- 3.  $z_3(t) = W_2 z_2 + b_2$
- 4.  $z_4(t) = relu(z_3(t))$
- 5.  $O(t) = W_3 z_4(t) + b_3$

# Example 2: Scanning with an MLP (forward)

Rewrite these in terms of unary and binary operations

1. 
$$z_1(t) = W_1 x(t)$$

2. 
$$z_2(t) = z_1(t) + b_1$$

3. 
$$z_3(t) = relu(z_2(t))$$

4. 
$$z_4(t) = W_2 z_3$$

5. 
$$z_5(t) = z_4 + b_2$$

6. 
$$z_6(t) = relu(z_5(t))$$

7. 
$$z_7(t) = W_3 z_6(t)$$

8. 
$$O(t) = z_7(t) + b_3$$

1. 
$$z_1(t) = W_1 x(t) + b_1$$

2. 
$$z_2(t) = relu(z_1(t))$$

3. 
$$z_3(t) = W_2 z_2 + b_2$$

4. 
$$z_4(t) = relu(z_3(t))$$

5. 
$$O(t) = W_3 z_4(t) + b_3$$

# Example 2: Scanning with an MLP (backward)

- Let's now work our way backward
- We assume derivative  $\frac{dL}{dO(t)}$  of the loss w.r.t. O(t) is given for t=1,...,T-N+1
- We need to compute  $\frac{dL}{dX}$ ,  $\frac{dL}{dW_i}$ ,  $\frac{dL}{db_i}$  the derivatives of the loss w.r.t. the inputs and the network parameters

### Example 2: Scanning with an MLP (backward)

#### Calculating the derivatives for t = 1:

1. 
$$\nabla_{z_{7(t)}} L = \nabla_{O(t)} L$$

2. 
$$\nabla_{b_3} L = \nabla_{O(t)} L$$

3. 
$$\nabla_{W_3} L = z_6(t) \nabla_{z_{7(t)}} L$$

4. 
$$\nabla_{z_6(t)}L = \nabla_{z_7(t)}LW_3$$

5. 
$$\nabla_{z_5(t)} L = \nabla_{z_6(t)} L \circ 1_A (z_5(t))^T$$

$$1_{A}(z_{5}(t)) = \begin{cases} 1, x > 0 & 13. & \nabla_{W_{1}} L = x(t) \nabla_{z_{1}(t)} L \\ 0, x \le 0 & 14. & \nabla_{x(t)} L = \nabla_{z_{1}(t)} L W_{1} \end{cases}$$

6. 
$$\nabla_{z_A(t)}L = \nabla_{z_S(t)}L$$

7. 
$$\nabla_{b_2} L = \nabla_{z_5(t)} L$$

8. 
$$\nabla_{W_2} L = z_3(t) \nabla_{z_4(t)} L$$

9. 
$$\nabla_{z_3(t)} L = \nabla_{z_4(t)} L W_2$$

10. 
$$\nabla_{z_2(t)}L = \nabla_{z_3(t)}L \circ 1_A(z_5(t))^T$$

$$1_A(z_5(t)) = \begin{cases} 1, x > 0 \\ 0, x < 0 \end{cases}$$

11. 
$$\nabla_{b_1} L = \nabla_{z_2(t)} L$$

12. 
$$\nabla_{z_1(t)}L = \nabla_{z_2(t)}L$$

13. 
$$\nabla_{W_1} L = x(t) \nabla_{Z_1(t)} L$$

14. 
$$\nabla_{x(t)}L = \nabla_{z_1(t)}LW_1$$

15. 
$$\nabla_X L[:, 1:N+1] = \nabla_{x(t)} L$$

### Example 2: Scanning with an MLP (backward)

#### Calculating the derivatives for t > 1:

$$1. \qquad \nabla_{z_{7(t)}} L = \nabla_{O(t)} L$$

2. 
$$\nabla_{b_3}L += \nabla_{O(t)}L$$

3. 
$$\nabla_{W_3}L += z_6(t)\nabla_{z_{7(t)}}L$$

4. 
$$\nabla_{z_6(t)}L = \nabla_{z_7(t)}LW_3$$

5. 
$$\nabla_{z_5(t)}L = \nabla_{z_6(t)}L \circ 1_A(z_5(t))^T$$

$$1_{A}(z_{5}(t)) = \begin{cases} 1, x > 0 & 13. & \nabla_{W_{1}}L += x(t)\nabla_{z_{1}(t)}L \\ 0, x \leq 0 & 14. & \nabla_{x(t)}L = \nabla_{z_{1}(t)}LW_{1} \end{cases}$$

6. 
$$\nabla_{z_A(t)}L = \nabla_{z_S(t)}L$$

7. 
$$\nabla_{b_2}L += \nabla_{z_5(t)}L$$

8. 
$$\nabla_{W_2}L += z_3(t)\nabla_{z_4(t)}L$$

9. 
$$\nabla_{z_3(t)}L = \nabla_{z_4(t)}LW_2$$

10. 
$$\nabla_{z_2(t)}L = \nabla_{z_3(t)}L \circ 1_A(z_5(t))^T$$

$$1_A(z_5(t)) = \begin{cases} 1, x > 0 \\ 0, x < 0 \end{cases}$$

11. 
$$\nabla_{b_1} L += \nabla_{z_2(t)} L$$

$$12. \qquad \nabla_{z_1(t)} L = \nabla_{z_2(t)} L$$

13. 
$$\nabla_{W_1} L += x(t) \nabla_{z_1(t)} L$$

$$74. \qquad \nabla_{x(t)} L = \nabla_{z_1(t)} L W_1$$

15. 
$$\nabla_X L[:, t:t+N-1] += \nabla_{x(t)} L[:,:-1]$$

16. 
$$\nabla_X L[:, t + N - 1] = \nabla_{x(t)} L[:, -1]$$

#### When to use "=" vs "+"

- In the forward computation, a variable may be used multiple times to compute other intermediate variables or a sequence of output variables
- During backward computations, the first time the derivative is computed for the variable, the we will use "="
- In subsequent computations we use "+="
- It may be difficult to keep track of when we first compute the derivative for a variable

When to use "=" vs when to use "+="

- Cheap trick:
  - Initialize all derivatives to 0 during computation
  - Always use "+="
  - You will get the correct answer (why?)