Recurrent Neural Networks

11-785 / 2020 Spring / Recitation 7
Vedant Sanil, David Park

“Drop your RNN and LSTM, they are no good!”

The fall of RNN / LSTM, Eugenio Culurciello

Wise words to live by indeed

Content

* 1 Language Model

* 2 RNNs in PyTorch

* 3 Training RNNSs

* 4 Generation with an RNN
* 5 Variable length inputs

A recurrent neural network and the unfolding in time of
the computation involved in its forward computation.

)

Unfold

fw A A AL
(0 o). D~ I - -
C TU > TU TU TU

O ® ® ®

RNNs Are Hard to Train

What isn’t? | had to spend a week
training an MLP :(

They suffer from :

® Saturation

Vanishing/exploding gradients

Complex loss surfaces with tons of bad local minima
They don’t usually like dropout

LSTMs/GRUs address some of these issues, but they’re not
perfect.

When you use RNNs, you will spend most of your time tuning
hyper-parameters (or looking for hacks in papers).

Different Tasks

one to one one to many many to one many to many

Each rectangle is a vector and arrows represent functions (e.g. matrix
multiply). Input vectors are in red, output vectors are in blue and green
vectors hold the RNN's state (more on this later)

many to many

Different Tasks

One-to-One
A simple MLP, no recurrence

Input . . . Output
MNIST image . . .) . . Classification result
|:> [> [0,0.1,0,0,0,0,0,0, 0]]) OnE'TO'ManV
® PV P Vaps Example, Image Captioning: Have a single
@ @ ' ® ® image, generate a sequence of words
11 1 | 12 1 H 13 f

Input layer Hidden layer Output layer

‘man in black shirt is playing ‘construction worker in orange "two young girls are playing with
guitar.” safety vest is working on road." lego toy."

Different Tasks

Sentiment=2
(very positive)

Many-to-One T
Example, Sentiment analysis: Given a sentence, Initial
classify if its sentiment as positive or negative activations
Driving to Disneyland was fun
Many-To-Many
Example, Machine Translation: Have an input sentence
| BOUGHT A SWEET PERSIMMON ! IN THE STORE in one language, convert it to another language
—_— IW—_——|—,—J
ICHKAUFTE EINE SOBE PERSIMONE IM LADEN
& | / / h‘ A history of machine translations from Cold War to Deep

ICH KAUFTE | EINE SOBE PERSIMONE | IM LADEN Learning:

\ https://www.freecodecamp.org/news/a-history-of-machine-
translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/

https://www.freecodecamp.org/news/a-history-of-machine-translation-from-the-cold-war-to-deep-learning-f1d335ce8b5/

Language Models

* Goal: predict the “probability of a sentence” P(E)

* How likely it is to be an actual sentence

A lot of jargon, to basically say:

The dog barks.

The cat meows.
The wolf howls.

The dog howls.
The cat barks.
The wolf meows.

The wolf cats the dog.

—

1 Language Models

1.1 Introduction

Language models compute the probability of occurrence of a number
of words in a particular sequence. The probability of a sequence of

m words {wy, ..., wy } is denoted as P(wy, ..., wy,). Since the number
of words coming before a word, w;, varies depending on its location
in the input document, P(wy, ..., wy,) is usually conditioned on a
window of n previous words rather than all previous words:

P(w;|wi_p, ..., wi—1) (1)

Credits tocs224n

An RNN Language Model

g = P(x'™|the students opened their)
books
laptops
a \ 200
U
o O @) @)
W, | @ Wh\‘ Wh\. Wh\‘
® @ O @
o |o o o
 \ - - -
W, W, W, W,
i —_— —— ot
8 O o O
(1) 2) © (3) © (1) ©
lel el “le| @
£Jd o) @) @)
/
: Te & o
the students opened their
) x(2) x3) x(4)

Figure 5: An RNN Language Model

RNN module in Pytorch

rnn = nn.RNN(1input size = 32,
hidden size = 64,
num layers = 1,
batch first = False,
dropout = 0,
bidirectional = False)

e num_layers is the number of stacked (vertical) layers
e dropout is the dropout between stacked layers

The .forward() method takes an input of size

seq_length x batch_size x input_size

and an optional initial hidden state (defaults to 0) of size
num_layers x batch_size x hidden_size. |t returns an output of
same size and the final hidden state.

RNN modules in Pytorch

* Important: the outputs are exactly the hidden states of the final layer.
Hence if the model returns y, h:

* v: (seq_len, batch, num_directions * hidden_size)

* h: (num_layers * num_directions, batch, hidden_size)
* Lets num_directions =1, y[-1] == h[-1]

* LSTM and GRU:

* (h_n, c_n): (hidden_states, memory_cell)

Can be better visualized as,

‘ A

output

F F 4

depth

h':"- |

h[w} [w}\ h[w} [w}\

(y 01y
h,', ¢, .{

I'.I.[n”,{.‘.[n” \
I
]

h[ﬂ"l- (0 \ h[ﬂ'} LU} \

J‘gitn e

h® ¢ a h_E,"'J |
}_' 4>{ h{wl '“m hi*, i

1
|h§}' hy,cy
hl.‘lil : {J:I (i _ily
}_' 4»{ 1 *Sn I--|-rt +Cn -
J
hfﬂﬁ . 0y 0
1 E hrt +Cn -

-

input ‘

» I

RNN cell

Sometimes you want to have more control between the stacked
layers and the time steps (for example to access the intermediate
hidden states).

For that you have the RNNCell module.

rnncell = nn.RNNCell(input size = 32,
hidden size = 64

It takes an input of size batch_size x input_size and a hidden
state, and returns the next hidden state.

Embedding Layers
After the RNN module, you stack a linear layer of size

hidden size x vocabulary size

Before it, you need a word projection aka an embedding.

embed = nn.Embedding(num embeddings = VOCAB SIZE,
embedding dim = 32)

Takes a LongTensor of arbitrary shape.

Training a Language Model

Now you need batches to feed your model. Initially, you only
have one big text.

The simplest way :

® Fix asequence length L

e Concatenate all your words into one big (long) tensor of size
N

® Divideitinto N // Ltensors of size L

® These are your elements.

Even if you train on a fixed size, the network should learn to
generate text of arbitrary length.

Evaluate your model

To evaluate how good your model is, you usually feed it with
actual text from the (validation) set and look at :

® The loss per word : /| =loss/n_words

e The perplexity : p = exp(l)

It quantifies how well your model predicts that sentence.

A perplexity of 100 (loosely) means that your model performed
as if it had to choose uniformly and independently among 100
possibilities for each word

Let’s try all that out !

Generation

To generate N words, you have N*vocabulary size possible

sequences. Recall that
P(E) — P(617627 °'°76M)

M
= H P(emle1, ...,em—1)

m=1

To know each sentence’s probability you’d need to feed all

(N-1)-length beginnings — (N-1) * vocabulary size forward passes !
Unfeasible.

— Need another way to get the most likely sequence, or at least a
very likely one.

Greedy Search, Random Search and Beam
Search

1. Greedy search: select the most likely word
2. Random Search: sample a word from the distribution
3. Beam Search: keep the n best words at each step, n is the beam size

Are we done?

* No.

How to train a LM: fixed length

Now you need batches to feed your model. Initially, you only
have one big text.

The simplest way :
® Fix a sequence length L
e Concatenate all your words into one big (long) tensor of size

N
® Divideitinto N // L tensors of size L

® These are your elements.

Even if you train on a fixed size, the network should learn to
generate text of arbitrary length.

Limits of fixed-length inputs

In Machine Translation, Speech recognition,etc. you have pairs of
seguences.

ex : | like apples — J'aime les pommes

You need to keep these sequences as is to learn something.

We're not dealing with any of these specific applications today but to
learn RNNs you need to learn how to deal with variable length inputs.

You will need to do this in the upcoming HWs. Pay attention.

How to train a LM: Variable Length

* Your dataset is now a list of N sequences of different lengths
* The input has a fixed dimension (seq_len, batch, input_size)
* How could we deal with this situation?

1. pad_sequence

2. Packed sequence

pad sequence

In [1]: from torch.nn.utils.rnn import pad_sequence

In

In

In

In

[2]:
[3]:
[4]:

[5]:

import torch
x1 = torch.rand(1,2)

X2

torch.rand(4,2)

x3 = torch.rand(3,2)

In [11]: batch = torch.stack([x1,x2,x3])
Traceback (most recent call last):

batch = torch.stack([x1,x2,x3])

Notice how seq_len is different, but
input size is same

File "<ipython-input-11-9fcc8bcc7946>", line 1, in <module>

RuntimeError: invalid argument @: Sizes of tensors must match except
in dimension @. Got 1 and 4 in dimension 1 at /Users/distiller/

pad sequence

In [12]: padded = pad_sequence([x1,x2,x3], batch_first=False)

In [13]: padded torch.Size([4, 3, 2])
OQut[13]: . .
tensor([[[0.6195, 0.4712], (seq_len, batch, input_size)

[0.3990, 0.6901],

[0.6846, 0.667311,

[[0.0000, 0.0000],

[0.2313, 0.5744],

[0.4081, 0.2029]1],

[[0.0000, 0.0000],

[0.6501, 0.1765],

[0.3246, 0.561711],

[[0.0000, 0.0000],

[0.4008, 0.1028],

[0.0000, 0.0000111)

pack sequence

packed_2 = pack_sequence([x1,x2,x3], enforce_sorted=True)
packed = pack_sequence([x1,x2,x3], enforce_sorted=False)

In [42]: packed

Out[42]:

PackedSequence(data=tensor([[0.3990, 0.6901],
[0.6846, 0.6673],
[0.6195, 0.4712],

[0.2313, 0.5744],
[0.4081, 0.2029],
[0.6501, 0.1765],
[0.3246, 0.5617],
[0.4008, 0.1028]]1), batch_sizes=tensor(I[3, 2, 2, 11),

sorted_indices=None, unsorted_indices=None)

In [44]: packed_2

Out[44]:
PackedSequence(data=tensor([[0.3990, 0.6901],
[0.6846, 0.6673],
[0.6195, 0.4712],
[0.2313, 0.5744],
[0.4081, 0.2029],
[0.6501, 0.1765],
[0.3246, 0.5617],
[0.4008, 0.1028]]), batch_sizes=tensor(I[3, 2, 2, 11),

sorted_indices=tensor([1, 2, 0]), unsorted_indices=tensor([2, 0, 1]))

pack padded sequence and
pad packed sequence

You can go from padded to packed and packed to padded, but
need to track the lengths

padded2 = rnn.pad sequence([x2,x3,x1])

lens = [len(x) for x in [x2,x3,x1]]

packed2 = rnn.pack padded sequence(padded2, lens)
print(type(packed2)

padded3, lens2 = rnn.pad packed sequence(packed2)
print(padded3.equal (padded2))

<class 'torch.nn.utils.rnn.PackedSequence'>
True

R

PackedSequence(data-tensor([[0 3990, 0.6901],

[0.6846, 0.6673],
[0.6195, 0.4712],
[0.2313, 0.5744],
[0.4081, 0.2029],
[0.6501, ©.1765],
[0.3246, 0.5617],
[0.4008, 0. 1028]]), batch_sizes=tensor([3, 2, 2, 1]),

sorted_indices=tensor([1, 2, 0]), unsorted_indices= tensor([2 0, 11))

Why is the batch_size = tensor([3, 2, 2, 1]) here?

batch_sizes (Tensor): Tensor of integers holding information
about the batch size at each sequence step

For instance, given data "abc and 'x " the
.class:"PackedSequence’ would contain data “axbc’ with
“batch_sizes=[2,1,1] .

Packed Sequences and RNNs

* Packed sequences are on the same device as the padded sequence

* Packed sequences could help your RNNs know the length for each
Instance

MLP, RNN, CNN, Transformer

* All these layers are just features extractors

 Temporal convolutional network (TCN) “outperform canonical
recurrent networks such as LSTMs across a diverse range of tasks and
datasets, while demonstrating longer effective memory”

(An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling) @ —

@ai_antihype

] Vv

We find it extremely unfair that Schmidhuber
did not get the Turing award. That is why we
dedicate this song to Juergen to cheer him

Comparison between RNNs and CNNs

* RNN processes input sequentially

[1 Ed 5.5 (4.5 g
¥3.5| > 5 > ‘6.1‘ > ~3.8| 3 |3j
4 4 = = P
0. 2.1 7 4 9,
oj 3.3 [7 _4.5] [3j

the country of my birth

* CNN can compute vectors for every possible phrase
* Example: “the country of my birth”

* “the country"”, "country of", "of my", "my birth", "the

country of", "country of my", "of my birth", ...

N

1.1 3.5
my birth

.

0.4 2.1
0.3 3.3

" the country

Is that enough?

* RNN, LSTM, GRU

* Transformer (would be covered more in the future lectures and
recitations)

* CNN Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - 2) O(n) O(n

Convolutional O(k-n-d?) O(1) O(logk()

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Credits: Attention is all you need

Papers

* https://arxiv.org/pdf/1708.02182.pdf

* For more tricks about Regularizing and Optimizing LSTM Language
Models

 Attention is all you need!

* https://towardsdatascience.com/the-fall-of-rnn-Istm-2d1594c74ce0

* LSTM song!!l

