Recitation 8
CTC Decoding & Beam Search

Soumya Vadlamannati, Amala Deshmukh

Sequence to Sequence Modeling

Order-Synchronous, Not Time-Synchronous Output

1. Training -> we already know how to do that

2. Testing -> “Decoding” or “obtaining an output from a sequence-to-sequence network”

2 2?2 2?2 27?2 2 2?2 7

A key decoding problem

e Consider a problem where the output symbols are characters

e Wehave adecode: RRROOOOOD

e Isthisthe merged symbol sequence ROD or ROOD?

How to distinguish between an extended symbol and repetitions of a symbol?

A key decoding problem

Solution: Introduce an explicit extra symbol which serves to separate discrete versions of a symbol

- A“blank” (represented by “-)
RRR---OO---DDD = ROD
RR-R---O0O---D-DD = RRODD
R-R-R---O-ODD-DDDD-D = RRROODDD

The symbol set recognized by the network must now include the extra blank symbol

- Which too must be trained

The modified forward output

Note the extra “blank”at the output

/AH/
/B8/
/D/
/EH/
/\Y/
/F/
/G/

Yo %4 Y3 V3 Vi e e
vt yitH vyt yitH vt yéH yéH
yo vy vy vy yi ye yé
ve vy vs %4 vi yé ve
yo yit v vyt v y&" yer
yéY yi¥ ys¥ yi¥ vi¥ y&¥ yé¥
Yo i v yi Vi yE yé
y§ v vs v§ vi yE vé

Composing graph for training

/B/
//
//

/¥l

}’g Y f 3’5 V3 Va Vs Ve V7 Vs

Yo yP 3 Vi Vi Ve Ve 7 v
ve i s 3 yi e e ys s

v v v" 3" vi' vs" Ve il ve'
Yo vy s 3 Vi ys Ve ¥y Vs
Yo" i’ || vi¥ e Ve vy V8
Yo i Vs 3 Vi s ye 7 V8
Yo yi v Vi Vi Vs Ve vy Ve
Yo vy Y5 3 Vi 8 Ve 7 Ve

* With blanks

* Note: a row of blanks between any two symbols
* Also blanks at the very beginning and the very end

Train as
before!

CTC: Connectionist Temporal Classification

e Theoverall framework we saw is referred to as CTC

- Applies when “duplicating” labels at the output is considered acceptable, and when output
sequence length < input sequence length

Returning to the decoding problem

How to decode at test time?

e Greedy decode -> choose symbol with highest probability at each time step and merge
- Sub-optimal decode which finds most likely synchronous output sequence

e Objective of decoding -> Most likely asynchronous symbol sequence
- Find all decodings and pick the most likely decode!
- Unfortunately, explicit computation of this will require evaluate of an exponential number of

symbol sequences
- Solution: Organize all possible symbol sequences as a (semi)tree

Hypothesis semi-tree

i i Highligh
e The semitree of hypotheses (assuming ighlighted boxes represent
. possible symbols for first frame o
only 3 symbols in the vocabulary)

e Everysymbol connects to every symbol
other than itself

e |t alsoconnects to a blank, which
connects to every symbol including itself

e Thesimple structure repeats recursively

e Eachnode represents a unique symbol
sequence!

Decoding graph for the tree

e Thefiguretothe leftis the tree,drawnin
avertical line

e Thegraphisjustthe tree unrolled over
time

e Thealphaat final time represents the full
forward score for a unique symbol
sequence

e Select the symbol sequence with the
largest alpha

Pruning

e Thisisthe “theoretically correct” CTC decoder
e Inpractice, the graph gets exponentially large very quickly

e Toprevent this pruning strategies are employed to keep the graph (and computation) manageable

Beam Search

— PathScore : array of scores for paths ending with symbols
— BlankPathScore : array of scores for paths ending with blanks
— SymbolSet : Alist of symbols not including the blank

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yI[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end
Merge identical paths differing only by the final blank
MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore

NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yI[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

/)
/S
- AL X T X7

’IAVI |
|

Xo X1 Xz X3 X4

BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths(SymbolSet, vy)

InitialPathWithFinalBlank
InitialBlankPathScore = [], InitialPathScore = []
First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null
InitialBlankPathScore[path] = y[blank] # Score of blank at t=1
InitialPathsWithFinalBlank = {path}
Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for ¢ in SymbolSet # This is the entire symbol set, without the blank
path = c InitialPathWithFinalSymbols
InitialPathScore[path] = y[c] # Score of symbol c at t=1
TnitialPathsWithFinalSymbol += path # Set addition D

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathSc
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yI[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yI[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, vy[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

Only transitions into .

nodes on the rows
corresponding to
blanks

\

17 11
\/I _l‘ / &
/ /1 117 /1 117
/ X, 11
/ /
4/ ’
Xo X1 X, X3

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, v)
UpdatedPathsWithTerminalBlank = {}
UpdatedBlankPathScore = []
First work on paths with terminal blanks
(This represents transitions along horizontal trellis edges for blanks)
for path in PathsWithTerminalBlank:

end

Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:

end

If there is already an equivalent string in UpdatesPathsWithTerminalBlank
simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank
UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]
else
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
end

return UpdatedPathsWithTerminalBlank,

UpdatedBlankPathScore

(only at t=1)
UpdatedPathsWIthTerminalBlank

N
e

S1

S2

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, V)
UpdatedPathsWithTerminalBlank = {}
UpdatedBlankPathScore = []

Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:
If there is already an equivalent string in UpdatesPathsWithTerminalBlank

simply add the score. If not create a new entry Updmedeégwmﬂgal%mank
if path in UpdatedPathsWithTerminalBlank
UpdatedBlankPathScore[path] += Pathscore[path]* y[blank] (:::::::)
else
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
end S1
end
S2
return UpdatedPathsWithTerminalBlank, —

UpdatedBlankPathScore

Transitions from
“blank” lines

to “blank” lines
(which will all be
horizontal edges)

BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, vy)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

First work on paths with terminal blanks

(This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:
Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

(only at t=1)
UpdatedPathsWIthTerminalBlank

Y
o

S1

S2

return UpdatedPathsWithTerminalBlank,
UpdatedBlankPathScore

7| = 4
4 L % e
1 o
v g
- - -
X, X, Xs X,

Transitions from
“symbol” lines
to “blank” lines

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yI[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

Only transitions into .
nodes on the rows |
corresponding to

non-blank symbols

A ,
. LA
y V4P
WA AN JNE.d
M/ L A
L =l
X, X, X, X; X,

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol (PathsWithTerminalBlank,

UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence

for path in PathsWithTerminalBlank:

end

for

end

c in SymbolSet: # SymbolSet does not include blanks
newpath = path + ¢ # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:
Extend the path with every symbol other than blank

end

for

end

c in SymbolSet: # SymbolSet does not include blanks

PathsWithTerminalSymbol,

SymbolSet,

v)

(only at t=1)
UpdatedPathsWIthTerminalSymbol

N
e

S1

S2

newpath = (¢ == path[end]) ? path : path + ¢ # Horizontal transitions don’t extend the sequence

if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * yI[c]
else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = PathScore[path] * y[c]
end

return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol (PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, vy)

. : (only at t=1)
UpdatedPathsWithTerminalSymbol = {} .
UpdatedPathScore = [] UpdatedPathsWIthTerminalSymbol

Y
o
S1
S2
Next work on paths with terminal symbols

for path in PathsWithTerminalSymbol: —
Extend the path with every symbol other than blank
for ¢ in SymbolSet: # SymbolSet does not include blanks
newpath = (c == path[end]) ? path : path + ¢ # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths
UpdatedPathScore[newpath] += PathScore[path] * yI[c]
else # Create new path
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = PathScore[path] * y[c]
end
end
end

return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

y Transitions from
y “blank” lines
to “symbol” lines

(fAigure shows path extensions for only 2 time steps)

BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol (PathsWithTerminalBlank, PathsWithTerminalSymbol, SymbolSet, vy)
UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:
for c in SymbolSet: # SymbolSet does not include blanks
newpath = path + ¢ # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)
end
end

(only at t=1)
UpdatedPathsWIthTerminalSymbol

Y
o

S1

S2

return UpdatedPathsWithTerminalSymbol, UpdatedPathScore

Transitions from
“symbol” lines

to “symbol” lines
(including horizontal
transitions)

(fAigure shows path extensions for only 2 time steps)

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

subsequent time Steps _
for t = 1:T

Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (P
Pa

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (Path
PathsWithTe

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

Consider this instant

p Mg L4

/)
/&

VI"«M 4

IIAVI |
|

X, X, X, X5 X,

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i=1

for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore[p]
i++

end

for p in PathsWithTerminalSymbol
scorelist[i] = PathScore[p]
i++

end

Sort and find cutoff score that retains exactly BeamWidth paths
sort (scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += g Set addition
PrunedBlankPathScore[p] = BlankPathScore([p]
end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += @ Set addition
PrunedPathScore[p] = PathScore(p]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []
PrunedPathScore = []

Sort and find cutoff score that retains exactly BeamWidth paths
sort (scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += @ Set addition
PrunedBlankPathScore[p] = BlankPathScore([p]
end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += @ Set addition
PrunedPathScore[p] = PathScore(p]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Consider this instant

¥ Aggregate scores from

d both “symbol” rows
and “blank” rows

yz V"’*‘II i
[ZT7)7 %7 X
/ l AMZ

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []
First gather all the relevant scores
i=1
for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore[p]
i++
end Sort the scores
for p in PathsWithTerminalSymbol .
scorelist[i] = PathScorelp] Flnd The lar‘geST score

ona Find the cutoff score (the Kth largest score)

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += @ Set addition
PrunedBlankPathScore[p] = BlankPathScore([p]
end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += @ Set addition
PrunedPathScore[p] = PathScore(p]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []
First gather all the relevant scores
i=1
for p in PathsWithTerminalBlank

scorelist[i] = BlankPathScore[p]

i++
end Find nodes on
for p in PathsWithTerminalSymbol 1] ”

scorelist[i] = PathScorelp] blank rows

s with scores above cutoff
en
and add them to the
N - s 13 H HEH

Sort and f:.nd cutoff score t.:hat retains exactly BeamWidth paths aCt|Ve I|St
sort (scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += @ Set addition
PrunedPathScore[p] = PathScore(p]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Consider this instant

Retain nodes on
“plank” rows
with scores above cutoff

W W

%Y.
VI"*"’/

Sl
r"l'«l',«.,l’ |

/ 1” AVI.,,

Effectively, prune out
nodes on “blank” rows
with scores below cutoff

They will subsequently
" not contribute to the
computation

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)

PrunedBlankPathScore = []

PrunedPathScore = []

First gather all the relevant scores

i=1

for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore[p]
i++

end

for p in PathsWithTerminalSymbol
scorelist[i] = PathScorelp]
i++

end

Sort and find cutoff score that retains exactly BeamWidth paths F|nd nOdeS on

sort (scorelist) # In decreasing order [”
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end] SymbOI rows
with scores above cutoff

PrunedPathsWithTerminalBlank = {} and add them tO the

for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff “active” ||St
PrunedPathsWithTerminalBlank += @ Set addition
PrunedBlankPathScore[p] = BlankPathScore([p]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

Consider this instant
O My
T
LAl
ﬂd%a#’ a

7 A' ,
L7

‘VA
/W ’ « B

/1‘41 " nodes on symbor rows

VI"«VI'

’ ” 7| They will subsequently
A 47/ not contribute to the
' | computation

Retain nodes on
“symbol” rows
with scores above cutoff

//
v/

i Effectively prune out

Consider this instant

RIS
/4 /

A

4
)
/ L//
/ v,
' >

/ v l
V/ A L
Effectively prune out
o 4
/,"" nodes on “symbol” rows
4/ :
=z with scores below cutoff

VI"«VI ,
They will subsequently
» not contribute to the

/'I

Retain nodes on
" “symbol” rows
with scores above cutoff

BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []
First gather all the relevant scores
i=1
for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore[p]
i++
end
for p in PathsWithTerminalSymbol
scorelist[i] = PathScorelp] .
14e The overall effect of these steps:
end
Consider this instant
4 44 4
/ 171 t JL/ Fa
/ 11 1 / /
/ \I L1 7 oL 7 7
/ / / 4 / /4
/ /
1! 1!
/ /
/ /

// /

Xo X1 X2 X3 X4

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPat
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (Pa
PathsWith

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yI[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

A e Y
S
/ A Y, 4
=7 V}ﬂd :

/) M&
V4 /A

24
/uﬂV’ 52

DN

Merge scores for
SZ” and “Sz_”

w«miiz&

Merge scores for
GS1” and “81_”

v l N A,
S

Xo X1 Xz X3 X4

BEAM SEARCH: Merging final paths

Global PathScore, BlankPathScore
function MergeldenticalPaths (PathsWithTerminalBlank, PathsWithTerminalSymbol)

All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

Paths with terminal blanks will contribute scores to existing identical paths from
PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank
if p in MergedPaths
FinalPathScore[p] += BlankPathScorel[p]
else
MergedPaths += p# Set addition
FinalPathScore[p] = BlankPathScorel[p]
end
end

return MergedPaths, FinalPathScore

BEAM SEARCH

Global PathScore = [], BlankPathScore = []

First time instant: Initialize paths with each of the symbols,
including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

Subsequent time steps
for t = 1:T
Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, PathScore, BlankPathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, yI[:,t])

Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, yl[:,t])

end

Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

