
Homework 4 Part 2

Attention Models

by Vedant and Chris



Topics for Today

Quick Recap

Generation tasks and language models (recap of recitation 7)  
Adding context with attention (recap of recitation 9)

HW4P2 Overview
Introduce Listen, Attend, and Spell

- Listener architecture
- Speller architecture

- Attention computation  
Implementation:

- Pooling with pBLSTMs
- LSTMCell
- Masking - both attention and loss
- Sampling with Gumbel noise
- Teacher forcing
- Prediction methods - greedy vs random vs beam
- Plotting attention and gradient flow



Language Models: Recap of Recitation

7
● RNN’s can learn to predict the next word given a  

sequence of words

● Create vocabulary of words/characters, then  

embed those into a lower dimension, input to the  

model

● Input and target are same sequence off by one  

character/word

● SOS and EOS tokens added to 

demarcate  sequences

● In a generation task, input a sequence of words  

and predict the next word, then feed the  

predicted word back and continue the process

● This input sequence can be simply the 

SOS  token; then the model generates the 

entire  sequence itself (this is how you 

implement  inference time generation in

hw4p2)



Adding Context with Attention

- We’ve covered attention in class a lot, but now we’ll discuss it from an  

implementation perspective and see how it fits in with encoder-decoder  

architectures.

- Programmatically, attention is mostly just a bunch of matrix multiplications.

- Allows the network to focus on a subset of features rather than all given  

features at all timesteps. This can be intuitively understood as a noise  

reduction technique.

- Attention allows us to add complementary features from one representation  

to another which in the end helps us develop better models.

- Review recitation 9 for more details on attention.



Examples of Attention: Caption Generation

- Show, Attend and Tell - Attention-based Caption Generation
- CNNs encode the image and RNNs are used to generate descriptions

- RNN is similar to a language model supplemented with attention context

- Attention maps reveal the network’s ability to focus on objects of interest

- Attention maps are just a probability distribution over the input



Another Example: Visual Question

Answering



HW4P2

Overview
- In lecture, machine translation translation was used as an example for  

explaining attention. The encoder took as input the initial sentence, and the  

decoder was a language model to generate text in the translated language.

- For speech-to-text we want to follow the same principle as with machine  

translation or caption generation, but instead of a having text or an image as  

input to the encoder, we pass an utterance.

- Can be achieved with either character-based or word-based approaches
- Word-based approaches avoid having any spelling mistakes but it is difficult to produce rare  

words from the vocabulary



Listen, Attend and

Spell
- Two sub-models

- Listener - Encoder

- Speller - Decoder

- Listener produces high-level  

representation from the given utterance

- The high-level representation is fed into  

the Speller to generate a probability  

distribution over the next characters



Listener Architecture
- Takes as input an utterance (or batch of  

utterances)

- Feeds through a series of stacked 

pBLSTM  layers to reduce time resolution

- Pyramid structure - concatenate pairs of inputs over  

the frequency dimension (can be done with a  

combination of .view() and .transpose() operations)

- Concatenation takes input of size (L, B, F) and outputs  

size (L / 2, B, F * 2)

- 3 stacked pBLSTMs follow a regular BLSTM layer

- Recommended variation from paper:
- Instead of having a single output from the pBLSTM,  

take two separate linear projections from the output to  

get a key and value (used for attention, as discussed in  

recitation 9 and as we’ll see again shortly)



Speller Architecture

● Language model, i.e. takes in characters/words and predicts probabilities over vocabulary  

(exactly what you are doing in hw4p1)

● Predicts next character/word given all previous characters/words

● Trained using Cross Entropy - because we have a target char/word for each time step, and  

our predicted probabilities over chars/words at that time step (no alignment issue to solve)

● We recommend you train the speller as a language model without attention first to ensure  

that you have no problems with it

○ Listener is an encoder that only amplifies the results, your network should still learn with  

just the language model

○ Can even use the pretrained weights as initialization for your attention-based models



Attention: Connecting the Two

- Review from recitation 9:
- Attention aims to generate a probability distribution over the inputs (i.e. identifies where to  

focus within the input)

- Uses keys from the encoder and query from decoder to produce a probability distribution, and  

applies this probability distribution over the values (also from the encoder)

- Keys and values are high level representations of the utterances from the  

encoder

- At every timestep in the speller you will be computing the attention context  

using the keys, values, and query as follows:

- energy = bmm(key, query)

- attention = softmax(energy)

- context = bmm(attention, value)



Putting It All Together
● Decoder uses 2-layer LSTM as described in paper

● Decoder input at every timestep is the concatenated  

character embedding and attention context vector

○ You can use initial context of 0’s in the first timestep when  

generating the first query

○ Could also try to learn this initial context by wrapping it in  

nn.Parameter so gradients will flow to it. However this can  

lead to bugs (and has in the past semester), so start with 0’s

● Outputs probabilities over the vocabulary as well as a  

query for attention at the next time step using two distinct  

projection/linear layers

● Paper suggests concatenating attention context with the  

final hidden value for the character distribution projection  

as well



Speller (Decoder)

Listener (Encoder)



Handling Variable Length Utterances

- Input utterances are of variable length
- We will need to use padded and packed sequences again

- pBLSTMs reduce time resolution by constant factor
- Need to track lengths through these operations - divide by constant factor

- What about odd lengths?

- Slice or pad - one frame isn’t going to make a difference

- Outputs of the listener are still variable length - the keys and values
- We want use attention to generate a probability distribution over the value, but we want to  

disregard the padded portion

- Solution - attention with binary masking:

- energy = bmm(key, query)

- attention = softmax(energy)

- masked_attention = normalize(attention * mask)

- context = bmm(masked_attention, value)



Handling Variable Length Transcripts

● Transcripts are also of variable length

● In hw3p2, CTCLoss internally masked using the target lengths

● With CrossEntropyLoss we must mask manually
○ Use reduction = “none” to return a matrix where every entry is the loss w.r.t a single element

● Mask out every value in a position that is longer than the transcript
○ Each row will be padded to the longest length, so mask out values that are in position greater  

than the true length

○ Only want loss in a position that corresponds to an actual part of the sequence

○ Include EOS token - we still need to learn when to end the sequence

● Sum this masked loss and divide by sum of target lengths



LSTMCel

l● LSTMCell is required in the decoder because we must 

access  the hidden values at every timestep

○ Must use the hidden states to produce the attention query

○ Can’t use packed sequences with nn.LSTMCell

● Loop through time steps, i.e. lengths of transcripts

● Input at each time step has size: 

(batch_size,  embedding_size +

context_size)

○ Input will be the concatenation of char/word embedding and attention  

context

● You loop through T when you have transcripts, when you  

have no transcripts at inference time, set some max value of  

generated tokens (200-300 is fine for char model)



Teacher Forcing

- A large problem between train and inference: during training, the speller is

always fed true labels from the previous timestep, but during prediction it

must use its predicted output.

- If you predict one wrong character, the model would have no idea how to recover and you will  

get bad results.

- One solution is teacher forcing - add noise to the input symbols provided to  

the speller by sampling from the output distribution of the previous timestep  

some fraction of the time

- In this way the model learns to handle an input that is generated from your model, instead of  

the gold standard

- Becomes resilient to false predictions



Sampling Methods

- Teacher forcing and generation require sampling the output probability  

distribution

- Method #1: Greedy
- Choose the symbol with highest predicted probability

- Simple to implement - we recommend you start with this

- Method #2: Gumbel noise
- Adds some randomness to the prediction

- Reparameterization trick to simulate a draw from a categorical distribution

- Read more here: https://casmls.github.io/general/2017/02/01/GumbelSoftmax.html

https://casmls.github.io/general/2017/02/01/GumbelSoftmax.html


Inference for the Test Set
- Greedy is simple but will not get the best results

- If using another sampling method (like Gumbel noise) you can save

selections at each timestep for another simple approach - probably

better than greedy but still not great

- Better approaches are Random Search and Beam Search

- Beam Search:
- Requires modifying the forward function of the Speller to expand each of K best  

beams at every timestep

- Best results but the most tricky to implement

- Random Search:
- For each utterance, generate a large number of predicted outputs with some  

randomness and score each prediction to select the best one

- Score by feeding the predicted sequences back through the network as targets for  

the corresponding utterance and compute the loss. Pick the original generated  

sequence that received the smallest loss.

- Almost as good as beam search, simpler to implement, but slower



Utilities/Sanity Checks

● Plotting attention weights
○ Will put code in FAQ’s

○ Plot attention over time for a random utterance

○ Attention should traverse the utterance, forming a diagonal

○ Should start to form a diagonal after 2-3 epochs

● Plotting gradient flow
○ Will also put code in FAQ’s

○ Check that speller correctly passes gradients back to listener

○ Can also inspect the weights to identify if they are changing but this gets tedious

● Check that normalized attention weights sums to 1

● Check that binary masks sum to intended lengths

● Transposing and reshaping are different
○ Be careful you don’t make a silly mistake in the pBLSTMs



Words of Advice

- Start early!

- LAS Variant described can get error rate ~10 with techniques from this  

recitation

- Using regularization techniques from HW4P1 paper might help improve  

results further

- Make use of creating your own nn.Module objects to make code cleaner,  

especially sequence pooling in encoder

- Write out dimensions of attention matrices on paper to see they match up

- Check out the FAQ on Piazza, it will continuously be updated

- START EARLY



That’s all for today!

Good luck!


