
The Great Ideas in CNNs

Recitation 5
Kangrui (Darren)

Advait Gadhikar

Advait Gadhikar
Credits to Kangrui for these amazing slides

Content
• The basic ideas of CNNs: 1d, 2d, 3d
• Transposed Convolutional
• 1x1 convolution (Network in Network)
• Fully Convolutional Network
• Skip Connection (ResNet, Densely Connected Convolutional Networks) and

inverted residual structure (MobileNet v2)
• Dropout (Understanding the Disharmony between Dropout and Batch

Normalization by Variance Shift)
• Normalization: Batch Norm, Weight Norm, Layer Norm, Instance Norm, Group

Norm (https://arxiv.org/pdf/1803.08494.pdf)
• Depth-wise Separable Convolution (MobileNet v1)
• Other visual tasks: Images Classification --- > Semantic Segmentation, Object

Detection and Instance Segmentation
Credits to 11785 and CS231n

https://arxiv.org/pdf/1803.08494.pdf

Convolution animations

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

Blue maps are inputs, and cyan maps are outputs.

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

Examples Time

Credits to cs231n

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2
1. Output volume size: ?
2. Number of parameters in this layer?

Why do we use Convolutional Neural
Networks?

Credits to cs231n

1. Local Connectivity: The connections are local in space (along width and height),
but always full along the entire depth of the input volume. True or False ?
(Depth-wise Separable Convolution)

2. Parameter Sharing: Parameter sharing scheme is used in Convolutional Layers
to control the number of parameters.

Convolution to reduce complexity
The input is a sequence of 1000 words. Each word is represented as a 100-
dimensional vector.

The output is another 1000x100 matrix.

If we do this with a normal NN layer, how many parameters do we need?

Convolution to reduce complexity
The input is a sequence of 1000 words. Each word is represented as a 100-
dimensional vector.

The output is another 1000x100 matrix.

If we do this with a normal NN layer, how many parameters do we need?

Weight matrix: (1000x100) ** 2 = 10,000,000,000

Biases: 1000x100 = 100,000

We need 10,000,100,000 parameters

Convolution to reduce complexity
The input is a sequence of 1000 words. Each word is represented as a 100-
dimensional vector.

The output is another 1000x100 matrix.

If we use a convolutional layer with a kernel size of 5 (plus a bias term for
each of the 100 output channels), how many parameters do we need?

Convolution to reduce complexity
The input is a sequence of 1000 words. Each word is represented as a 100-
dimensional vector. --- > time length:1000, channels: 100

The output is another 1000x100 matrix. (With Padding) --- > output time
length: 1000, output channels: 100

If we use a convolutional layer with a kernel size of 5 (plus a bias term for
each of the 100 output channels), how many parameters do we need?

Convolution kernels: 100 x 100 x 5 = 50,000

Biases: 100

We need 50,100 parameters

Conv 1d, 2d, 3d

• 1d:

• 2d:

• 3d:

natural language processing

Computer Vision

Videos

A general but not accurate description

Paper: Learning Spatiotemporal
Features with 3D Convolutional
Networks

Transposed Convolutional

Blue maps are inputs, and cyan maps are outputs.

1. Visualization with a Deconvnet: Visualizing and Understanding Convolutional Networks

2. Deep convolutional generative adversarial networks:

Applications:

Fully-connected layers (1x1 convolution)
Simply treat the final feature map as a vector, and use a fully-connected
neural network that outputs the desired number of dimensions.

This can only be done after all convolutions, because the output of the fully-
connected layer does not store any location information. Performing a
convolution on the output of a fully-connected layer will be meaningless!

Credits to 11785

1x1 convolution (Network in Network)

Convolutional implementation of an Region Proposal Network
architecture, where k is the number of anchors:

(Faster R-CNN)

Try in hw2p2:
fully
connected
layers can
also be
replaced by
simple 1-by-1
convolutions

Pooling

Notice that the volume depth is preserved.

Its function is to progressively reduce the spatial size of the representation to reduce the
amount of parameters and computation in the network, and hence to also control overfitting.

Fully Convolutional Network
Getting rid of pooling. Many people dislike the pooling operation and think that we can get away
without it. For example, Striving for Simplicity: The All Convolutional Net proposes to discard the pooling
layer in favor of architecture that only consists of repeated CONV layers. To reduce the size of the
representation they suggest using larger stride in CONV layer once in a while. Discarding pooling layers
has also been found to be important in training good generative models, such as variational
autoencoders (VAEs) or generative adversarial networks (GANs). It seems likely that future
architectures will feature very few to no pooling layers

Credits to cs231n

http://arxiv.org/abs/1412.6806

Skip Connection

Paper: Visualizing the Loss Landscape of Neural Nets

Deep Residual Learning for Image Recognition

Depth-wise Separable Convolution

Each 5x5x1 kernel iterates 1 channel of the image (note: 1 channel,
not all channels), getting the scalar products of every 25 pixel
group, giving out a 8x8x1 image. Stacking these images together
creates a 8x8x3 image.

Paper: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications

Inverted Residual Block

Dropout
why do the two most powerful techniques Dropout and Batch Normalization (BN) often lead to a worse
performance when they are combined together?

Paper: Understanding the Disharmony between Dropout and Batch Normalization by
Variance Shift

Normalization

Transformer Image style transfer

Credits to cs231n

References
• 3d conv: Learning Spatiotemporal Features with 3D Convolutional Networks

• Visualizing the Loss Landscape of Neural Nets

• Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift

• Deep Residual Learning for Image Recognition

• Deep convolutional generative adversarial networks

• Visualizing and Understanding Convolutional Networks

• MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

• MobileNetV2: Inverted Residuals and Linear Bottlenecks

• Some Slides from CS231n and 11785

