
How to compute a 
derivative



Computing derivatives of 
complicated functions
• How do you compute the derivatives in an LSTM or GRU cell?

• How do you compute derivatives of complicated functions in general

• In these slides we will give you some hints

• In the slides we will assume vector functions and vector activations

• But we will also give you scalar versions of the equations to provide 
intuition

• The two sets will be almost identical, except that when we deal with 
vector functions

• The notation becomes uglier and less intuitive
• We must ensure that the dimensions come out right

• Please compare vector versions of equations to their scalar counterparts 
for better intuition, if needed



First: Some notation and conventions
• We will refer to the derivative of scalar with respect to as 

• Regardless of whether the derivative is a scalar, vector, matrix or tensor

• The derivative of a scalar w.r.t an column vector is a 
row vector 

• The derivative of a scalar w.r.t an matrix is an 
matrix 

• Remember our gradient update rule  : ௐ
்

• The derivative of an vector w.r.t an vector is 
an matrix 

• The Jacobian



Rules:  1  (scalar)

• All terms are scalars

• is known



Rules:  1 (vector)

• is an vector 
• is an vector 
• is an matrix
• is a function of 
• is known (and is a vector)

Please verify that the
dimensions match!



Rules:  2 (vector,  schur multiply)

• and are all vectors
• “ ” represents component-wise multiplication 
• is known (and is a vector)

Please verify that the
dimensions match!



Rules:  3 (scalar)

• All terms are scalars

• is known



Rules:  3 (vector)

• and are all vectors
• is known (and is a vector)

Please verify that the
dimensions match!



Rules:  4 (scalar)

• and are scalars

• is known



Rules:  4 (vector)

• and are vectors
• is known (and is a vector)
• is the Jacobian of with respect to

• May be a diagonal matrix

Please verify that the
dimensions match!



Rules:  4b (vector)
component-wise multiply notation

• and are vectors

• is known (and is a vector)

• is actually a vector of component-wise functions
• i.e. ௜ ௜

• is a column vector consisting of the derivatives of the 
individual components of w.r.t individual components 
of 

Please verify that the
dimensions match!



Rule 5:  Addition of derivatives

• Given two variables

• And given and 

• we get

• The rule also extends to vector derivatives



Computing derivatives of 
complex functions
• We now are prepared to compute very complex 

derivatives

• Procedure:
• Express the computation as a series of computations of 

intermediate values
• Each computation must comprise either a unary or binary 

relation
• Unary relation:  RHS has one argument, e.g. 
• Binary relation:  RHS has two arguments 

e.g. or 

• Work your way backward through the derivatives of the 
simple relations



Example: LSTM
• Full set of LSTM equations (in the order in which 

they must be computed)

• Its actually  much cleaner to separate the individual 
components, so lets do that first

1
2
3

4

5

6



LSTM

௧ ௙஼ ௧ିଵ ௙௛ ௧ିଵ ௙௫ ௧ ௙

௧ ௜஼ ௧ିଵ ௜௛ ௧ିଵ ௜௫ ௧ ௜

௧ ஼௛ ௧ିଵ ஼௫ ௧ ஼

௧ ௧ ௧ିଵ ௧ ௧

௧ ௢஼ ௧ିଵ ௢௛ ௧ିଵ ௢௫ ௧ ௢

௧ ௧ ௧

• This is the full set of equations in the order in which they must be 
computed

• Lets rewrite these in terms of unary and binary operations



LSTM

• Lets rewrite these in terms of unary and binary 
operations

ଵ ௙஼ ௧ିଵ

ଶ ௙௛ ௧ିଵ

ଷ ଵ ଶ

ସ ௙௫ ௧

ହ ଷ ସ

଺ ହ ௙

௧ ଺



LSTM



LSTM

• Lets rewrite these in terms of unary and binary 
operations

଻ ௜஼ ௧ିଵ

଼ ௜௛ ௧ିଵ

ଽ ଻ ଼

ଵ଴ ௜௫ ௧

ଵଵ ଽ ଵ଴

ଵଶ ଵଵ ௜

௧ ଵଶ



LSTM

8.
9.
10.
11.
12.
13.
14.

1.

2.
3.
4.
5.
6.
7.



LSTM

• Lets rewrite these in terms of unary and binary 
operations

ଵଷ ஼௛ ௧ିଵ

ଵସ ஼௫ ௧

ଵହ ଵଷ ଵସ

ଵ଺ ଵହ ஼

௧ ଵ଺



LSTM

15.
16.
17.
18.
19.



LSTM

• Lets rewrite these in terms of unary and binary 
operations

ଵ଻ ௧ ௧ିଵ

ଵ଼ ௧ ௧

௧ ଵ଻ ଵ଼



LSTM

15.
16.
17.
18.
19.
20.
21.
22.



LSTM

• Lets rewrite these in terms of unary and binary 
operations

ଵଽ ௢஼ ௧ିଵ

ଶ଴ ௢௛ ௧ିଵ

ଶଵ ଵଽ ଶ଴

ଶଶ ௢௫ ௧

ଶଷ ଶଵ ଶଶ

ଶସ ଶଷ ௢

௧ ଶସ



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.



LSTM

• Lets rewrite these in terms of unary and binary 
operations

ଶହ ௧

௧ ௧ ଶହ



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM forward

• The full forward computation of the LSTM can be 
performed by computing Equations 1-31 in sequence

• Every one of these equations is unary or binary



LSTM

8.
9.
10.
11.
12.
13.
14.

1.

2.
3.
4.
5.
6.
7.



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.



Computing derivatives

• We will now work our way backward

• We assume derivatives ௗ௅

ௗ௛೟
and ௗ௅

ௗ஼೟
of the loss w.r.t ℎ௧ and 𝐶௧ are given

• We must compute ௗ௅

ௗ஼೟షభ
, ௗ௅

ௗ௛೟షభ
and ௗ௅

ௗ௫೟

• And also derivatives w.r.t the parameters within the cell

• Recall: the shape of the derivative for any variable will be transposed with respect to that variable

௧௧ିଵ

௧ିଵ

Derivative shapes:

𝑡



LSTM

1.
೟ ೟

2.
మఱ ೟

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

1.
೟ ೟

2.
మఱ ೟

3.
೟ మఱ

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

1.
೟ ೟

2.
మఱ ೟

3.
೟ మఱ

4.
మర ೟

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

1.
೟ ೟

2.
మఱ ೟

3.
೟ మఱ

4.
మర ೟

5.
మయ మర

6.
೚ మర

23.
24.
25.
26.
27.
28.
29.
30.
31.

Equations highlighted in yellow show 
derivatives w.r.t. parameters



LSTM

7.
మమ మయ

8.
మభ మయ

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

7.
మమ మయ

8.
మభ మయ

9.
೚ೣ మమ

10.
೟ మమ

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

7.
మమ మయ

8.
మభ మయ

9.
೚ೣ మమ

10.
೟ మమ

11.
మబ మభ

12.
భవ మభ

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

7.
మమ మయ

8.
మభ మయ

9.
೚ೣ మమ

10.
೟ మమ

11.
మబ మభ

12.
భవ మభ

13.
೚೓ మబ

14.
೟షభ మబ

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM
7.

మమ మయ

8.
మభ మయ

9.
೚ೣ మమ

10.
೟ మమ

11.
మబ మభ

12.
భవ మభ

13.
೚೓ మబ

14.
೟షభ మబ

15.
೚಴ భవ

16.
೟షభ భవ

23.
24.
25.
26.
27.
28.
29.
30.
31.



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

7.
భఴ ೟

8.
భళ ೟



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

7.
భఴ ೟

8.
భళ ೟

9.
೟ భఴ

10.
೟ భఴ



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

7.
భఴ ೟

8.
భళ ೟

9.
೟ భఴ

10.
೟ భఴ

11.
೟షభ భళ

12.
೟ భళ

Second time we’re computing a derivative
for Ct-1, so we increment the derivative (“+=“)



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

7.
భఴ ೟

8.
భళ ೟

9.
೟ భఴ

10.
೟ భఴ

11.
೟షభ భళ

12.
೟ భళ

13.
భల ೟



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

14.
಴ భల

15.
భఱ భల



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

14.
಴ భల

15.
భఱ భల

16.
಴ భల

17.
భఱ భల



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

14.
಴ భల

15.
భఱ భల

16.
಴ భల

17.
భఱ భల

18.
಴ೣ భర

19.
೟ భర

Note the “+=“



LSTM

15.
16.
17.
18.
19.
20.
21.
22.

14.
಴ భల

15.
భఱ భల

16.
಴ భల

17.
భఱ భల

18.
಴ೣ భర

19.
೟ భర

20.
಴೓ భర

21.
೟షభ భయ

Note the “+=“



Continuing the computation

• Continue the backward progression until the 
derivatives from forward Equation 1 have been 
computed

• At this point all derivatives will be computed.



Overall procedure
• Express the overall computation as a sequence of unary 

or binary operations
• Can be automated

• Computes derivatives incrementally, going backward 
over the sequence of equations!

• Since each atomic computation is simple and belongs 
to one of a small set of possibilities, the conversion to 
derivatives is trivial once the computation is serialized 
as above



May be easier to think of it in 
terms of a “derivative” routine
• Define a routine that returns derivatives for unary and binary operations

• SCALAR version (all variables are scalars)
function deriv(dz, x, y, operator)

case operator:
‘none’ : return dx
‘ ’ : return y*dz, dz*x
‘+’ : return dz, dz
‘-’ : return dz, -dz
# Single argument operations
‘tanh’ : return dz(1-tanh2(x))
‘sigmoid’ : return dz sigmoid(x) (1-sigmoid(x))



Derivative routine, vector version
• Note distinction between component-wise and matrix multiplies
• Observe also that matrix and vector dimensions are correctly handled (locally)
• “∘” is component-wise multiply
• “*” is matrix multiply
function deriv(dz, x, y, operator)

case operator:

‘none’ : return dx

# component-wise “schur” multiply

‘∘’ : return dz ∘ yT, dz ∘ xT

# Matrix multiply. X must be a matrix

‘∗’ : return y*dz, dz*x

‘+’ : return dz, dz

‘-’ : return dz, -dz

# The following will expect a single argument

‘tanh’ : return dz ∘ (1-tanh2(x))T

‘sigmoid’ : return dz ∘ sigmoid(x)T ∘(1-sigmoid(x))T

# The jacobian is the full derivative matrix of the sigmoid

‘softmax’ : return dz*Jacobian(sigmoid,x)



When to use “=“ vs “+=“
• In the forward computation a variable may be used multiple times to 

compute other intermediate variables

• During backward computations, the first time the derivative is 
computed for the variable, the we will use “=“

• In subsequent computations we use “+=“

• It may be difficult to keep track of when we first compute the derivative 
for a variable

• When to use “=“ vs when to use “+=“

• Cheap trick: 
• Initialize all derivatives to 0 during computation
• Always use “+=“
• You will get the correct answer (why?)



[dCt-1,dxt,dht-1,d[W,b]] = LSTM_derivative(dCt dht)
initialize d(variable)=0 (all variables)
# Derivative of eq. 31 ௧ ௧ ଶହ

[dot, dz25] += deriv(dht,ot,z25,’ ’)
# Derivative of eq. 30 ଶହ ௧

[dCt] += deriv(dz25,Ct,’tanh’)
# Derivative of eq. 29 ௧ ଶସ

[dz25] += deriv(dot,z25,’sigmoid’)
# Derivative of eq. 28 ଶସ ଶଷ ௢

[dz23, dbo] += deriv(dz24,z23,bo,’+’)
# Derivative of eq. 27 ଶଷ ଶଵ ଶଶ

[dz21, dz22] += deriv(dz23,z21,z22,’+’)
# Derivative of eq. 26 ଶଶ ௢௫ ௧

[dWox, dxt] += deriv(dz22,Wox,xt,’*’)
# Derivative of eq. 25 ଶଵ ଵଽ ଶ଴

[dz19, dz20] += deriv(dz21,z19,z20,’+’)
# Derivative of eq. 24 ଶ଴ ௢௛ ௧ିଵ

[dWoh, dht-1] += deriv(dz20,Woh,ht-1,’*’)
# Derivative of eq. 23 ଵଽ ௢஼ ௧ିଵ

[dWoC, dCt-1] += deriv(dz19,WoC,Ct-1,’*’)



… continued from previous slide
# Derivative of eq. 22 ௧ ଵ଻ ଵ଼

[dz17, dz18] += deriv(dCt,z18,z18,’ ’)
# Derivative of eq. 21 ଵ଼ ௧ ௧

[dit, dtildeCt] += deriv(dz18,it, dtildeCt,’ ’)
# Derivative of eq. 20 ଵ଻ ௧ ௧ିଵ

[dft, dCt-1] += deriv(dz17,ft,Ct-1,’ ’)
# Derivative of eq. 19 ௧ ଵ଺

[dz16] += deriv(dtildeCt,’sigmoid’)
# Derivative of eq. 18 ଵ଺ ଵହ ஼

[dz15, dbC] += deriv(dz16,z15,bC,’+’)
# Derivative of eq. 17 ଵହ ଵଷ ଵସ

[dz13, dz14] += deriv(dz15,z13,z14,’+’)
# Derivative of eq. 16 ଵସ ஼௫ ௧

[dWCx, dxt] += deriv(dz14,WCx,xt,’*’)
# Derivative of eq. 15 ଵଷ ஼௛ ௧ିଵ

[dWCh, dht-1] += deriv(dz13,WCh,ht-1,’*’)



… continued from previous slide
# Derivative of eq. 14 ௧ ଵଶ

[dz12] += deriv(dit,’sigmoid’)
# Derivative of eq. 13 ଵଶ ଵଵ ௙

[dz11, dbi] += deriv(dz12,z11, bi,’ ’)
# Derivative of eq. 12 ଵଵ ଽ ଵ଴

[dz9, dz10] += deriv(dz11,z9,z10,’ ’)
# Derivative of eq. 11 ଵ଴ ௜௫ ௧

[dWix, dxt] += deriv(dz10,Wix,xt,’+’)
# Derivative of eq. 10 ଽ ଻ ଼

[dz7, dz8] += deriv(dz9,z7,z8,’+’)
# Derivative of eq. 9 ଼ ௜௛ ௧ିଵ

[dWih, dht-1] += deriv(dz8,Wih,ht-1,’*’)
# Derivative of eq. 8 ଻ ௜஼ ௧ିଵ

[dWiC, dCt-1] += deriv(dz7,WiC,Ct-1,’*’)



… continued from previous slide
# Derivative of eq. 7 ௧ ଺

[dz6] += deriv(dft,’sigmoid’)
# Derivative of eq. 6 ଺ ହ ௙

[dz5, dbf] += deriv(dz6,z5, bf,’ ’)
# Derivative of eq. 5 ହ ଷ ସ

[dz3, dz4] += deriv(dz5,z3,z4,’ ’)
# Derivative of eq. 4 ସ ௙௫ ௧

[dWfx, dxt] += deriv(dz4,Wfx,xt,’*’)
# Derivative of eq. 3 ଷ ଵ ଶ

[dz1, dz2] += deriv(dz3,z1,z2,’+’)
# Derivative of eq. 2 ଶ ௙௛ ௧ିଵ

[dWfh, dht-1] += deriv(dz2,Wfh,ht-1,’*’)
# Derivative of eq. 1 ଵ ௙஼ ௧ିଵ

[dWfC, dCt-1] += deriv(dz7,WfC,Ct-1,’*’)

return dCt-1, dht-1, dxt, d[W,b]



Caveats
• The deriv() routine given is missing several operators

• Operations involving constants (z = 2y, z = 1-y, z = 3+y)

• Division and inversion  (e.g z = x/y,   z = 1/y, z = A-1)

• You may have to extend it to deal with these, or rewrite your equations to eliminate such 
operations if possible

• In practice many of the operations will be grouped together for computational 
efficiency

• And to take advantage of parallel processing capabilities

• But the basic principle applies to any computation that can be expressed as a 
serial operation of unary and binary relations

• If you can do it on a computer, you can express it as a serial operation

• In fact the preceding logic is exactly what we use to compute derivatives in 
backprop

• We saw this explicitly in the vector version of BP for MLPs.


