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The story of Flider and Spy

• Flider the spider is at the far corner of the 
room, and Spy the fly is sleeping happily at the 
near corner
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The story of Flider and Spy

• Flider only walks along edges
• She begins walking along 

one of the three edges at random
• She takes one minute to cover the distance 

from one corner to the other along any edge
• When she arrives at the new corner, she 

randomly chooses one of the three edges  and 
continues walking (she may even turn back)
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The story of Flider and Spy

• What is the life expectancy of Spy?

?

4



Flider and Spy

• Let be the life expectancy if Flider is at the 
ith corner

?
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• ௜ is the life expectancy if Flider the Spider begins walking 
towards the ith corner
– 1 minute to get to the corner plus the time taken to get from that 

corner to Spy the fly

• 8 Equations, 8 unknowns, trivial to solve

?
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Flider and Spy
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A little terminology

• Markov Process:  Does not matter how you 
got here, only matters where you are

7



An interesting class of problems

• Is a move good?
– You will not know until the end of the game
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An interesting class of problems

• Is an investment plan good?
– You will not know for a while
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An interesting class of problems

• Do I 
– Change lane left?
– Change lane right?
– Accelerate?
– Decelerate?
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Reward-based problems

• And many others

• Common theme: These are control problems where
– Your actions beget rewards

• Win the game
• Make money
• Get home sooner

– But not deterministically
• A world out there that is not predictable

• From experience of belated rewards, you must learn to 
act rationally
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General cartoon of the world

• Agent operates in an environment
– Agent may be you..
– Environment is the game, the market, the road..
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General cartoon of the world

• Agent takes actions which affect the 
environment

action
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General cartoon of the world

• Agent takes actions which affect the environment
• Which changes in a somewhat unpredictable way

action
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General cartoon of the world

• Agent takes actions which affect the environment
• Which changes in a somewhat unpredictable way
• Which affects the agent’s situation

action
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General cartoon of the world

• The agent also receives rewards..
– Which may be apparent immediately
– Or not apparent for a very long time

action
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Challenge

• How must the agent behave to maximize its 
rewards
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Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward 
– Performs an action 

• At each time the environment:
– Receives an action 
– Emits a reward 
– Changes and produces an observation 

௧௧

௧
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From the perspective of the Agent
• What the agent perceives..

• The following History:

•

• The total history at any time is the sequence of 
observations, rewards and actions

• We need to model this sequence such that at any time t, 
the best can be chosen 
– The Strategy that maximizes total reward 
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Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward 
– Performs an action 

• At each time the environment:
– Receives an action 
– Emits a reward 
– Changes and produces an observation 

௧௧

௧

௧

௧ାଵ

௧ାଵ
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Can define an environment “state”

• Fully captures the “status” of the system
– E.g., in an automobile:  [position, velocity, acceleration]

– In traffic:  the position, velocity, acceleration of every 
vehicle on the road

– In Chess: the state of the board + whose turn it is next
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A brief trip to Nostalgia..

• Glider, Flider’s brother, never turns around during his wanderings
– On arriving at any corner, he chooses one of the two “forward” paths 

randomly.
• The future possibilities depend on the edge he arrived from

– Is he Markovian?
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Glider is a Markov dude!

• Any causal system can be viewed as Markov, with appropriately 
defined state
– The Information state ௧ may differ from the apparent state ௧

– Defining ௧ ଵ ଶ ௧

– ௧ାଵ ଴ ଵ ௧ ௧ାଵ ௧ 23



Markov property

• Assumption: The information state of the
environment is Markov

• The environment’s future only depends on its 
present

௧
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To Maximize Reward

• The agent must model this environment 
process
– Formulate its own model for the environment, 

which must ideally match the true values as 
closely as possible
• Based only on what it observes

• Agent must formulate winning strategy based 
on model of environment
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The Agent’s Side of the Story

• Agent has an internal representation of the 
environment state
– May not match the true one at all

• May be defined in any manner
– Formally the agent state is some function 

of the history
– The closer the agent’s model is to the true 

environment state, the better the agent will be able to 
strategize

26



Defining Agent State

• What is the outcome?

Image lifted from David Silver

27



Defining Agent State

• Different definitions of state result in different 
predictions

• True environment state not really known
– Would greatly improve prediction if known
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The World as we model It

• Definition of Markov property:
– The state of the system has a Markov property if the 

future only depends on the present

• States can be defined to have this property

Where the spider can go next
only depends on where she is
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A Markov Process

• A Markov process is a random process where the future is 
only determined by the present
– Memoryless

• Is fully defined by the set of states , and the state 
transition probabilities 
– Formally, the tuple 
– is the (possibly finite) set of states
– is the complete set of transition probabilities 
– Note stands for at any time 
– Will use the shorthand 
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The transition probability

• For processes with a discrete, finite set of states, is 
generally arranged as transition probability matrix

భ భ మ భ ಿ భ

భ మ మ మ ಿ మ

భ ಿ మ ಿ ಿ ಿ

• More generally (for continuous-state processes, e.g. the 
state of an automobile), it is modelled as a parametric 
distribution
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A Markov Reward Process

• A Markov Reward Process (MRP) is a Markov 
Process where states give you rewards

• At each state , upon arriving at that state, 
you obtain a reward , drawn from a 
distribution 
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Markov Reward Process

• Flider and the Markov reward process!

Reward: Upon arriving at any corner, 
the spider may catch a fly from the 
swarm hovering there

Rewards are corner specific and 
probabilistic: Different corners have 
different sized swarms with flies of 
different sizes.  The spider only has a 
probability of catching a fly, but may 
not always catch one.
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Markov Reward Process

• Formally, a Markov Reward Process is the tuple 

– is the (possibly finite) set of states

– is the complete set of transition probabilities 

– is a reward function, consisting of the distributions 

• Or alternately, the expected value  ௦

– is a discount factor
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Markov Reward Process

• Formally, a Markov Reward Process is the tuple 

– is the (possibly finite) set of states

– is the complete set of transition probabilities 

– is a reward function, consisting of the distributions 

• Or alternately, the expected value  ௦

– is a discount factor What on earth is this?
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Rewards and Expected rewards

• One step expected reward: 
– Will this be greater if the spider heads to corner 2 or to corner 3?

1
2

3 4

5

6
7

8

No route to corner 4
except from corner 3
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Rewards and Expected Rewards

• One step expected reward: 
– Will this greater if the spider heads to corner 2 or to corner 3?

1
2

3 4

5

6
7

8

No route to corner 4
except from corner 3

Note:  Distinction between expected reward and sample reward
Sample reward is what we actually get.  Will represent by 
Expected reward is what we may expect to get.  Will represent by 
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Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before 
she begins wandering the room
– Which is the better corner to land on?

1 2

3 4

5

6
7

8
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Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before 
she begins wandering the room
– Which is the better corner to land on?

1 2

3 4

5

6
7

8

Need to know
the long-term
consequences
of landing in the
two corners

Where can she
expect to get
more food in
the long term?
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Where should the spider be?

• Assume she is allowed to “practice” once from each 
corner
– To plan her future strategy
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Practice
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Where should the spider be?

• Must use her “practice” turn to assign a “value” to 
each of the corners
– Guess how much food she would get in the long term 

from that corner
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Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
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r8 r9
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r11
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r3 r4
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r16
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Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during 
practice. Unlikely she’ll go to the same corner  in the next run (less representative)

r3:  she had 9 possible corners to choose from in 2 steps. r3 is even less representative of 
future runs

And so on…
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Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

A better guess for how good it is to land at “3”:
𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 𝟒

Where  𝒊

(you “trust” the readings from farther in the future less)

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during 
practice. Unlikely she’ll go to the same corner  in the next run (less representative)

r3:  she had 9 possible corners to choose from in 2 steps. r3 is even less representative of 
future runs

And so on…
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Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 …  a realistic representation of what 
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

A better guess for how good it is to land at “3”:
𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 𝟒

Where  𝒊

(you “trust” the readings from farther in the future less)

A “mathematically good” choice:  where 

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during 
practice. Unlikely she’ll go to the same corner  in the next run (less representative)

r3:  she had 9 possible corners to choose from in 2 steps. r3 is even less representative of 
future runs

And so on…
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The discounted return

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ
௞

௧ା௞ାଵ

ஶ

௞ୀ଴

• The return is the total future reward all the way to the end
• But each future step is slightly less “believable” and is hence 

discounted
– We trust our own observations of the future less and less

• The future is a fuzzy place

• The discount factor is our belief in the predictability of the future
– :  The future is totally unpredictable, only trust what you see 

immediately ahead of you  (myopic)
– :  The future is clear; consider all of it  (far sighted)

• Part of the Markov Reward Process model
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Rewards

• Our spider goes wandering..

• Are these sample rewards or expected 
rewards?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1
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Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor 
– Really trusting the future

• What is the return ௧ at ?
• What is the return at t=7?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1
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Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor 
– Really trusting the future

• What is the return ௧ at ?
• What is the return ௧ at ?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1
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Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor 
– Really trusting the future

• What is the return ௧ at ?
• What is the return ௧ at ?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1
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Returns

• Discounted sample returns by themselves 
carry a fuzzy meaning
– Why should we discount  something we already 

observed?

• However, they make sense as samples of the 
possible future when you are at any state
– If you are at any state, what is the expected return 
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Introducing the “Value” function

• The “Value” of a state is the expected total 
discounted return, starting from that state

• This is not a function of time
– i.e. it doesn’t matter when you arrive at ,  the 

expected return from that point on is 
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The spider again

• The spider gains a reward of value 1 if she consumes the fly
• The spider has infinite patience
• What is the value of starting at each corner?
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The spider again

• Regardless of which corner the spider starts at, she will eventually, randomly, nab 
the fly

• The expected return from any corner is 1!
• The value of being at any corner is 1 for all corners

c1 c2

c3

c4

c5
c6

c7

c8
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The hungry spider

• The spider is hungry
• She gets a negative reward of -1 for every minute spent finding food
• What is the expected return if she starts at c1

c1 c2

c3

c4

c5
c6

c7

c8
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The hungry spider

• Posing the problem:  There is a total reward/penalty associated with each 
corner
– if the corner has no fly

• Will definitely spend at least one more minute hunting

– 1 at the corner that has the fly (satisfied!)

• Thus  ௖ೣ
for ଵ ଻

• ௖ఴ

• Note: We could also assign costs/rewards to edges in addition to nodes, if 
we want more detail, but won’t do so for our lectures

c1

c2

c3

c4

c5 c6

c7

c8
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The hungry spider
c1 c2

c3

c4

c5
c6

c7

c8

• A familiar solution
• Assuming 

– A natural fit in this problem

௖భ ௖మ ௖య ௖ర

௖మ ௖భ ௖ళ ௖ఴ

௖ఴ
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More generally

• A familiar solution

௖భ ௖భ ௖మ ௖య ௖ర

௖మ ௖మ ௖భ ௖ళ ௖ఴ

௖ఴ ௖ఴ ௖మ ௖య ௖ల

c1 c2

c3

c4

c5
c6

c7

c8
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The Bellman Expectation Equation

• The value function of a state is the expected discounted 
return, when the process begins at that state

• The Bellman Expectation Equation:

ᇲ
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Why discounted return?

• In processes with infinite horizon, which can go on for ever, 
the total undiscounted return will be infinite for every path 

will be infinite for every path
– For finite horizon processes, a discount factor is good.  It 

lets us talk in terms of actual total return
– For infinite horizon processes, discounting is required for 

meaningful mathematical analysis :  ௞
௧ା௞ାଵ

ஶ
௞ୀ଴
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The Bellman Expectation Equation

• Bellman expectation equation in matrix form

௦ ௦ ௦ᇱ,௦ ௦ᇱ

௦ᇱ

భ

మ

ಿ

భ

మ

ಿ

భ భ మ భ ಿ భ

భ మ మ మ ಿ మ

భ ಿ మ ಿ ಿ ಿ

భ

మ

ಿ
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The Bellman Expectation Equation

• Given the MRP 
• I.e. the expected rewards at every state, and the transition probability matrix, 

– the value functions for all states can be easily computed through matrix 
inversion

ିଵ

• Finding the values of states is a key problem in planning and 
reinforcement learning

• Unfortunately, for very large state spaces, the above matrix inversion is 
not tractable
– Also not invertible for small state spaces if 

• Inversion cannot be used to find 𝒱 even when it is finite (e.g. our fly problem), if 𝛾 = 1

• Much of what we will deal with is how to tackle this problem
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Moving on..

• Up next … Markov Decision Processes
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MDP

• We have assumed so far that the agent behaves randomly
– The agent has no agency
– Let’s make the agent more intelligent..

c1 c2

c3

c4

c5
c6

c7

c8

64



A more realistic problem
• The spider actively chooses 

which way to move
– The agent takes action
– Ideally, it would move in the 

general direction of the fly

• However, each time the 
spider moves, the fly jumps 
up and settles at another 
corner
– The agent’s action changes 

the environment!

c2

c3

c4

c5
c6

c7

c8

Full set of possible actions

65
How do we model this
system?



Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions
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What is 

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions

ଵ

ଶ

ଷ଺

ସ
ହ
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What is 

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions

ଵ

ଶ

ଷ଺

ସ
ହ

Must modify our notion of states and actions, 
and define the behavior of the fly, to characterize.
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Trick Question: Redefining the States

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states
• There are two actions a+ and a-
• Need an idea of the behavior of the fly
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The Fly Markov Reward Process

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states

s3 s2 s1 s0

1.0

1.0

1/3 2/3

1/3
2/3

R=0R=-1R=-1R=-1
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The Markov Decision Process:
Defining Actions

• Two types of actions:
– :  Increases distance to fly by 1

– : Decreases distance to fly by 1
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The Fly Markov Decision Process

• The behavior of the fly:
– If the spider is moving away from it, it does nothing
– If the spider is moving towards it, it randomly hops to a 

different adjacent corner
• 2/3 of the time, it increases the distance to the fly by 1
• 1/3 of the time, it decreases the distance to the fly by 1
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The Fly Markov Decision Process
s0

Process 
ends

s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0
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Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the spider moved

• The spider’s action modifies the state transition probabilities!!

Note: This is a simile for many problems in life, e.g. driving, stock market, 
advertising, etc.
The agents actions modifies how the environment behaves

Full set of possible actions
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The Markov Decision Process

• A Markov Decision Process is a Markov Reward 
Process, where the agent has the ability to decide its 
actions!
– We will represent individual actions as 
– We will represent the action at time t as 

• The agent’s actions affect the environment’s behavior
– The transitions made by the environment are functions of 

the action
– The rewards returned are functions of the action
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The Markov Decision Process
• Formally, a Markov Decision Process is the tuple 

– is a (possibly finite) set of states : 

– is a (possibly finite) set of actions : 

– is the set of action conditioned transition 
probabilities 

– is an action conditioned reward function 

– is a discount factor
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Introducing: Policy
• The policy is the probability 

distribution over actions that 
the agent may take at any state

– What are the preferred actions of the spider at 
any state

• The policy may be deterministic, i.e. 

– where is the preferred action in state 
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An example of a policy

• Assuming the fly does not move
– This example is not a particularly good policy for 

the spider

c2

c3

c4

c5
c6

c7

c8

c1
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An example of a policy

• What are the (action dependent) transition 
probabilities of the states here?

c2

c3

c4

c5
c6

c7

c8

c1

Full set of possible actions

79



An example of a policy

• What are the (action dependent) transition 
probabilities of the states here?

c2

c3

c4

c5
c6

c7

c8

c1

Full set of possible actions

The transition probabilities depend on actions, but not on policy
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An example of a policy

• Assuming the fly does not move
– This is a different optimal policy
– What are the transition probabilities here?

c2

c3

c4

c5
c6

c7

c8

c1

81



The value function of an MDP
• The expected return from any state depends 

on the policy you follow
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The Fly MDP:  Policy 1
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

௦భ ௦భ ௦భ

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦బ ௦మ
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The Fly MDP:  Policy 2 (optimal)
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦బ ௦మ

௦భ ௦భ ௦మ
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The Fly MDP:  Stochastic Policy
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.02/3 1/3

2/3 1/3

1
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The Fly MDP:  Stochastic Policy
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦య ௦మ ௦బ ௦మ

௦భ ௦భ ௦మ
 ௦భ ௦భ

 

2/3 1/3

1/3 2/3

1
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The state value function of an MDP
• The expected return from any state depends 

on the policy you follow

• We will index the value of any state by the 
policy to indicate this

Bellman Expectation Equation for State Value Functions of an MDP

Note: Although reward was not dependent on action for the fly example,
more generally it will be 87



The action value function of an MDP

• There are different value equations associated with different 
actions

• So we can actually associate value to state action pairs
• Note: The LHS in the equation is the action-specific value at the 

source state, but the RHS is the overall value of the target states

s1

s2 s11

a+

s1

a-

1.0

௦భ ௦భ ௦మ ௦భ ௦భ ௦భ
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The action value function of an MDP
• The expected return from any state under a 

given policy, when you follow a specific action

Bellman Expectation Equation for Action Value Functions of an MDP
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All together now
• The Bellman expectation equation for state value function
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• For action value function
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• Giving you (obviously)
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The Bellman Expectation Equations

• The Bellman expectation equation for state value 
function

• The Bellman expectation equation for action value 
function
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“Computing” the MDP

• Finding the state and/or action value functions for the MDP:
– Given complete MDP (all transition probabilities , expected 

rewards , and discount ) 

– and a policy 

– find all value terms and/or 

• The Bellman expectation equations are  simultaneous 
equations that can be solved for the value functions
– Although this will be computationally intractable for very large 

state spaces
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Computing the MDP

• Given the expected rewards at every state, the 
transition probability matrix, the discount 
factor and the policy:

• Matrix inversion O(N3); intractable for large 
state spaces
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Optimal Policies
• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the 
expected total discounted reward at every state:  

• Why do we consider the discounted return, rather than 
the actual return ?
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Optimal Policies
• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the 
expected total discounted reward at every state:  

– Recall: why do we consider the discounted return, rather 
than the actual return ?
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Policy Ordering Definition

• A policy is “better” than a policy if the value 
function under is greater than or equal to the 
value function under at all states

• Under the better policy, you will expect better 
overall outcome no matter what the current state
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The optimal policy theorem

• Theorem: For any MDP there exists an optimal policy 
that is better than or equal to every other policy:

• Corollary: If there are multiple optimal  policies 
all of them achieve the same value function

೚೛೟೔

• All optimal policies achieve the same action value function

೚೛೟೔
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How to find the optimal policy

• For the optimal policy:

• Easy to prove
– For any other policy ,   

• Knowing the optimal action value function 
is sufficient to find the optimal policy
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The optimal value function

• Which gives us
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Pictorially

• Blank circles are states, filled dots are state-
action pairs

Figures from Sutton

∗ 1 ∗ 2 ∗ 3

Backup Diagram
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The optimal value function

• Which gives us

• But, for the optimal policy we also have
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Backup Diagram

Figures from Sutton

∗
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Backup Diagram

Figures from Sutton

∗
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Backup Diagram

Figures from Sutton
∗
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Backup Diagram

Figures from Sutton
∗

∗
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Backup Diagram

Figures from Sutton
∗

 

∗
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Bellman Optimality Equations

• Optimal value function equation

• Optimal action value equation
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Optimality Relationships
• Given the MDP:  
• Given the optimal action value functions, the optimal value function can 

be found

∗
௔

∗

• Given the optimal value function, the optimal action value function can be 
found
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• Given the optimal action value function, the optimal policy can be found
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“Solving” the MDP

• Solving the MDP equates to finding the optimal policy 

• Which is equivalent to finding the optimal value function  

• Or finding the optimal action value function 

• Various solutions will estimate one or the other
– Value based solutions solve for and and derive 

the optimal policy from them
– Policy based solutions directly estimate 
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Solving the Bellman Optimality 
Equation

• No closed form solutions

• Solutions are iterative
• Given the MDP (Planning):

– Value iterations
– Policy iterations

• Not given the MDP (Reinforcement Learning):
– Q-learning
– SARSA..
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QUESTIONS before we dive?
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