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Overview

Generative Adversarial Networks (GANs) are a powerful and
flexible tool for generative modeling

What is a GAN?

How do GANs work theoretically?

What kinds of problems can GANs address?

How do we make GANs work correctly in practice?
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Motivation

Generative networks are used to generate samples from an
unlabeled distribution P(X ) given samples X1, . . . ,Xn. For
example:

Learn to generate realistic images given exemplary images

Learn to generate realistic music given exemplary recordings

Learn to generate realistic text given exemplary corpus

Great strides in recent years, so we will start by appreciating some
end results!
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GANs (2014)

Output of original GAN paper, 2014 [GPM+14]
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4.5 Years of Progress

GAN quality has progressed rapidly

https://twitter.com/goodfellow_ian/status/1084973596236144640?lang=en
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Large Scale GAN Training for High Fidelity Natural Image
Synthesis (2019)

Generating High-Quality Images [BDS18]
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StarGAN (2018)

Manipulating Celebrity Faces [CCK+17]
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Progressive Growing of GANs (2018)

Generating new celebrities and a pretty cool video
https://www.youtube.com/watch?v=XOxxPcy5Gr4 [KALL17]
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Unsupervised Image to Image Translation (2018)

Changing the weather
https://www.youtube.com/watch?v=9VC0c3pndbI [LBK17]
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Generative vs. Discriminative Networks

Given a distribution of inputs X and labels Y

Discriminative networks model the conditional distribution
P(Y | X ).

Generative networks model the joint distribution P(X ,Y ).
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Why Generative Networks?

Model understands the joint distribution P(X ,Y ).

Can calculate P(X | Y ) using Bayes rule.
Can perform other tasks like P(X | Y ), generating data from
the label.
“Deeper” understanding of the distribution than a
discriminative model.

If you only have X , you can still build a model. Many ways to
leverage unlabeled data. Not every problem is discriminative.

However, model for P(X ,Y ) is harder to learn than P(Y | X )

Map from X to Y is typically many to one
Map from Y to X is typically one to many
Dimensionality of X typically >> dimensionality of Y
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Traditional Viewpoint

When solving a problem of interest, do not solve a more
general problem as an intermediate step. Try to get the
answer that you really need but not a more general one.

Vapnik 1995
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Alternative Viewpoint

(a) The generative model does indeed have a higher
asymptotic error (as the number of training examples be-
comes large) than the discriminative model, but (b) The
generative model may also approach its asymptotic error
much faster than the discriminative model—possibly with
a number of training examples that is only logarithmic,
rather than linear, in the number of parameters.

Ng and Jordan 2001
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Implicit vs Explicit Distribution Modelling

Explicit: calculate P(x ∼ X ) for all x

Implicit: can generate samples x ∼ X

Why is explicit harder?
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Explicit Distribution Modelling

Dogs vs Cats: calculate probability X is a cat

Faces: calculate probability X is a face
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Implicit Distribution Modelling

Dogs vs Cats: generate dog/cat labels at a ratio indicating
confidence

Faces: generate faces from the distribution of faces
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Can you convert from explicit to implicit?

Can you go approximate explicit from implicit? How about implicit
to explicit?
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GANs

Generative Adversarial Networks were introduced in 2014
[GPM+14]

Goal is to model P(X ), the distribution of the training data

Model can generate samples from P(X )

Trained using a pair of “adversaries” (two players with
conflicting loss functions)
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Generator

The generator learns P(X | Z ); produce realistic looking
output samples X given samples from a hidden space Z

Hidden representation Z is sampled from a known prior, such
as a Gaussian
Generator function can be deterministic because composition
of sampling from prior and the generator is stochastic
Generator maps between a simple known distribution and a
complicated output distribution; learns a lower-dimensional
manifold in the output space
However, no simple loss function available to measure the
divergence between the generated distribution and the real
distribution
Easy to measure distance between individual samples, harder
to measure distance between complicated distributions
Instead of a traditional loss function, loss is calculated by a
discriminator (another network)
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Discriminator

The discriminator is a secondary neural network that guides
the generator

Trained to tell the difference between real and generated data
Generator tries to “confuse” the discriminator, so it can’t tell
the difference between real and generated data
From the perspective of the generator, the discriminator is like
an adaptive loss function

“Throwaway” network only really useful to train the generator
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GAN Architecture Diagram

https://medium.freecodecamp.org/

an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394
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Visualizing a GAN
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Min-Max Gaming

A GAN is defined by the following min-max game

min
G

max
D

V (D,G ) = EX logD(X ) + EZ log(1− D(G (Z )))

D wants D(X ) = 1 and D(G (Z )) = 0

G wants D(G (Z )) = 1
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Min-Max Optimal Discriminator

What is the optimal discriminator?

f := EX∼PD
logD(X ) + EX∼PG

log(1− D(X ))

=

∫
X

[PD(X ) logD(X ) + PG (X ) log(1− D(X ))] dX

Assuming we have an ideal function for the discriminator, it can
output a different value for every X. So we optimize the following
for each X.

[PD(X ) logD(X ) + PG (X ) log(1− D(X ))]

Benjamin Striner CMU
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Min-Max Optimal Discriminator

Optimize by setting the derivative to 0.

∂f

∂D(X )
=

PD(X )

D(X )
− PG (X )

1− D(X )
= 0

PD(X )

D(X )
=

PG (X )

1− D(X )

(1− D(X ))PD(X ) = D(X )PG (X )

D(X ) =
PD(X )

PG (X ) + PD(X )
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Min-Max Optimal Discriminator

What is the optimal discriminator? How would you describe this in
words?

D(X ) =
PD(X )

PG (X ) + PD(X )
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Min-Max Optimal Discriminator

What is the optimal discriminator? How would you describe this in
words?

D(X ) =
PD(X )

PG (X ) + PD(X )

If samples are equally likely to come from real or fake population,
D is probability that the sample is real.
What would D be if the samples are definitely real? If they are
definitely fake? If the real and fake distributions are the same?
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Min-Max Optimal Value

What is value at the optimal discriminator?

f := EX∼PD
logD(X ) + EX∼PG

log(1− D(X ))

= EPD
log

PD(X )

PG (X ) + PD(X )
+ EPG

log
PG (X )

PG (X ) + PD(X )

Can we rewrite this as a common divergence? Can anyone guess?
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Min-Max Optimal Value

What is value at the optimal discriminator?

f = EPD
log

PD(X )

PG (X ) + PD(X )
+ EPG

log
PG (X )

PG (X ) + PD(X )

= EPD
log

PD(X )

2m(X ))
+ EPG

log
PG (X )

2m(X )

= EPD
log

PD(X )

m(X ))
+ EPG

log
PG (X )

m(X )
− log 4

= KL(PD‖m) + KL(PG‖m)− log 4

= 2

(
1

2
KL(PD‖m) +

1

2
KL(PG‖m)

)
− log 4

m(X ) :=
PD(X ) + PG (X )

2
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Min-Max Optimal Generator

What is the optimal generator?

J = min
G

2JSD(PD‖PG )− log 4

JSD(A‖B) :=
1

2
KL(A‖A + B

2
) +

1

2
KL(B‖A + B

2
)

Minimize the Jensen-Shannon divergence between the real and
generated distributions (make the distributions similar). Roughly
average KL between A and B and an average distribution.
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Min-Max Stationary Point

There exists a stationary point

If the generated data exactly matches the real data, the
discriminator should output 0.5 for all inputs. Why?
If the discriminator outputs 0.5 for all inputs, the gradient to
the generator is flat, so the generated distribution has no
reason to change.
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Min-Max Stable Point

The stationary point might not be stable (depends on exact
GAN formulation and other factors)

If the generated data is near the real data, the discriminator
outputs might be arbitrarily large
Generator may overshoot some values or oscillate around an
optimum
Whether those oscillations converge or not depends on training
details

Imagine real data and generated data are separated by some
minimal distance. A discriminator with unlimited capacity can
still assign an arbitrarily large distance between these
distributions.
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Min-Max Optimization

The hard part is that both generator and discriminator need
to be trained simultaneously

If the discriminator is under-trained, it provides incorrect
information to the generator

If the discriminator is over-trained, there is nothing local that
a generator can do to get a marginal improvement

The correct discriminator changes during training

Discriminator and generator are trying to hit “moving targets”

Significant research on techniques, tricks, modifications, etc.
to help stabilize training
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GAN Stability in Pictures

There are many variations of GANs that attempt to make the
stationary point more stable

https://avg.is.tuebingen.mpg.de/projects/convergence-and-stability-of-gan-training
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GAN Stability in Videos

GANs can be very sensitive to hyperparameters (more training
details next time), as seen in these MNIST examples

Good Hyperparameters https://www.youtube.com/watch?v=IUi0REAWj2c&t=4s

Bad Hyperparameters https://www.youtube.com/watch?v=J8m1NXLwSKw

More Advanced Method (WGAN-GP)
https://www.youtube.com/watch?v=unXILX2wp1A
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**Perceptual Loss**

A discriminator might be able to address the ethereal issue of
“perceptual distance”

Loss functions like L2 are easy to implement and optimize
The L2 distance is not very representative of images humans
consider “similar”
Discriminator loss is much more flexible than L1, L2, etc.
For example, if discriminator includes a CNN, pooling, etc.,
then the loss will have some degree of shift invariance

Although an idealized discriminator just calculates the JS
divergence, a real discriminator calculates something much
more complicated

Benjamin Striner CMU
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**Implicit Distributions**

Note that a generator implicitly learns a target distribution
P(X )

Generator models P(X | Z )
Can draw samples from P(X ) by drawing samples from P(Z )
and calculating P(X | Z )
Not easy to actually marginalize over all Z and calculate
EZP(X | Z ) explicitly
So easy to draw samples, but requires sampling to calculate
things like the likelihood of a given input
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The Good, the Bad, and the Ugly

Good GANs can produce awesome, crisp results for many
problems

Bad GANs have stability issues and open theoretical questions

Ugly Many ad-hoc tricks and modifications to get GANs to
work correctly
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GAN Evaluation

The task of generating realistic-looking images is not as easily
quantified as a task like correctly labeling images

The distribution is implicit and we cannot easily evaluate by
something like calculating the likelihood of a test set

Ask humans to compare and evaluate image quality
Sampling-based methods can approximately calculate the
likelihood of a test set.
Neural networks trained for other purposes can be co-opted to
evaluate GANs
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Human Evaluations

The most direct answer to the question of whether generated data
is “realistic-looking”

Expensive

Time consuming

Not reproducible

Yet maybe the only justifyable way to claim that generated
data is “realistic”

Maybe not so bad with MechanicalTurk, etc.

Benjamin Striner CMU

GANs



Motivation Generative vs. Discriminative GAN Theory GAN Evaluation GANs and VAEs GAN Architectures

Approximate test set likelihood

A simple method to approximate the likelihood of a test set.
However, not very accurate or efficient and requires a number of
assumptions and hyperparameters.

Cannot directly calculate P(X ), only P(X | Z )
Therefore, pull many samples of Z and calculate P(X | Z ) for
each, and then calculate the average probability
If you generate a million images, and count how many of
those match your test point, then you know the probability of
the test point, sounds feasible . . . ?
No image matches exactly, so generate a million images and
place a Gaussian around each one. Convert your GAN to a
GMM and calculate the probability under the GMM.
Requires many samples, and some assumptions about a
meaningful ball around each generated X
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Evaluate with Discriminative Network

A standard discriminative network can be used to evaluate a GAN
under some assumptions and some independence

An Inception or other standard network is trained to classify
real images into some number of labels

A GAN is trained to generate images and is not given the
labels

If the GAN is generating images correctly

Inception should produce a wide variety of labels
Each label should have high confidence

The “Inception Score” quantifies this intuition in terms of the
entropy of each labeling and the entropy of the marginal
labeling [SGZ+16]
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GANs and VAEs

GANs and VAEs are two large families of generative models that
are useful to compare

Generative Adversarial Networks (GANs) [this week] minimize
the divergence between the generated distribution and the
target distribution. This is a noisy and difficult optimization.

Variational Autoencoders (VAEs) [next week] minimize a
bound on the divergence between the generated distribution
and the target distribution. This is a simpler optimization but
can produce “blurry” results.

We will discuss some high-level comparisons between the two but
save a deep-dive into VAEs for another time. There is also research
on hybridizing the two models.
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VAEs

Similar to a typical autoencoders

Trained to reconstruct inputs
Encoder models P(Z | X )
Decoder models P(X | Z )
Hidden representation Z is learned by the model

We encourage the marginal distribution over Z to match a
prior Q(Z )

Hidden representation during training is generated by encoder

EXP(Z | X ) ≈ Q(Z )

If our prior is something simple, then we can draw samples
from the prior and pass them to the decoder.
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Pros and Cons

GANs produce “sharper” results

VAEs train faster and more reliably

VAEs require an analytical understanding of the prior and it’s
KL divergence

GANs only require the ability to sample from a prior

VAEs learn an encoder decoder pair but GANs do not

VAEs are more theoretically justified, the GAN zoo is more
based on what works

VAE generator trained on encoded data but evaluated on prior
samples; GAN trained and evaluated on prior samples

Benjamin Striner CMU
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GAN Architectures

There are many variations of GANs for modeling different tasks.
This is not meant to be exhaustive but a sample of the
possibilities.

GAN

Conditional GAN

LapGAN

Recurrent Adversarial Network

Categorical GAN

InfoGAN

AAE

BiGAN

CycleGAN
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GAN

Unqualified, “GAN” typically refers to a simple model of P(X )
[GPM+14]. This is a vanilla GAN. Think unsupervised generation
of unlabeled images, video, etc.
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Conditional GANs

A conditional GAN models P(X | Y ). For example, generate
samples of MNIST conditioned on the digit you are generating.
[MO14]. The model is constructed by adding the labels Y as an
input to both generator and discriminator.

min
G

max
D

V (D,G ) = EX logD(X ,Y ) + EZ logD(G (Z ,Y ),Y )

Benjamin Striner CMU
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Conditional GAN Architecture
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Conditional GAN Results
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LapGAN

A Laplacian GAN is constructed of a chain of conditional GANs, to
generate progressively larger images. A GAN generates small,
blurry images. A conditional GAN generates larger images
conditioned on the smaller image, repeated until you reach the
desired size. [DCSF15]
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LapGAN Architecture
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Recurrent Adversarial Networks

A recurrent adversarial network iteratively modifies a canvas to
draw an image over several timesteps. The inputs to the generator
are a sequence of prior samples. [IKJM16]
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Recurrent Adversarial Network Architecture
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Recurrent Adversarial Network Results

Images are generated over several timesteps
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Categorical GANs

A categorical GAN is useful for clustering and semi-supervised
learning. Rather than a binary output, the discriminator produces a
softmax output. The discriminator attempts to correctly label real
data with low entropy and to produce high entropy labels for
generated data. [Spr15]
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CatGAN Results
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InfoGANs

An InfoGAN learns both a decoder and a partial encoder. A
secondary loss term is added to train an encoder to recover the
hidden space from the output. The hidden space is split into c
(information you care about) and z (noise you don’t care about).
[CDH+16]

min
G

max
D

VI (D,G ) = V (D,G )− λI (c;G (z , c))

The premise is that if you can recover z , then z will be meaningful
and “disentangled”
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InfoGAN Representations

InfoGAN learns meaningful representations
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Adversarial Autoencoders

An adversarial autoencoder is like a combination of VAE and GAN.
An encoder/decoder pair is trained to reconstruct X using hidden
representation Z . [MSJG15]

In VAE, encodings EXP(Z | X ) match prior Q(Z ) using
bounds on KL divergence

In AAE, encodings EXP(Z | X ) match prior Q(Z ) using
discriminator to measure distance between the two
distributions

If we have an autoencoder where the latent distribution is a known
prior, then we can sample from Z directly, and now have a
generative model.
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AAE Architecture

Benjamin Striner CMU

GANs



Motivation Generative vs. Discriminative GAN Theory GAN Evaluation GANs and VAEs GAN Architectures

AAE vs. VAE

Learns encoder/decoder pair instead of just decoder

Discriminator works on latent space not input/output space,
so easy to use on discrete inputs/outputs

Latent space is strongly regularized to match prior exactly

However, still requires a traditional loss function for
reconstruction loss
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AAE vs. VAE Visualized

AAE latent space matches prior better than VAE
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BiGANs

A Bi-Directional Generative Adversarial Network trains an
encoder/decoder pair in an elegant fashion. The discriminator tries
to tell the difference between pairs of real data and encoded real
data from data generated from prior samples and prior samples.
[DKD16]

V (D,E ,G ) = EX logD(X ,E (X )) + EZ log(1− D(G (Z ),Z ))

This method simultaneously trains the pair and does not require
any assumptions about the distance metric in either the hidden or
output spaces.
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BiGAN Architecture
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CycleGAN

CycleGAN trains a pair of conditional GANs to perform
image-to-image translation [ZPIE17].

GAN A trained to convert from X to Y

GAN B trained to convert from Y to X

Additional “cycle-consistency” losses ‖Y − A(B(Y ))‖1 and
‖X − B(A(X ))‖
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CycleGAN Results
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CycleGAN Results
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CycleGAN Results
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CycleGAN Lesson

There is no paired dataset of zebras and horses

So no easy discriminative method to train zebras from horses

But using GANs, can train distributions to match
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