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Outline

• Quick recap
• Back propagation through a CNN
• Modifications:  Scaling, rotation and deformation 

invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
– Transformers and self similarity
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Story so far
• Pattern classification tasks such as “does this picture contain a cat”, 

or “does this recording include HELLO”  are best performed by 
scanning for the target pattern

• Scanning an input with a network and combining the outcomes is 
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or layer makes the final decision
– Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a 
convnet

• For 1-D scan along time, it is called a Time-delay neural network
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The general architecture of a 
convolutional neural network

• A convolutional neural network comprises of 
“convolutional” and optional “downsampling” layers

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output
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A convolutional layer

• Each activation map in the convolutional layer has two components
– A linear map, obtained by (joint) convolution over maps in the previous layer

• Each linear map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer
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What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are 

multiplied component wise, and the products are added along with 
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias
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What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

 

௠
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A better representation

• ..A stacked arrangement of planes

• We can view the joint processing of the various 
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)
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• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

bias

A better representation
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• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

bias
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Convolutional neural net: 
Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl tensor 

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
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Convolution can shrink a map by 
using strides greater than 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias
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x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

4 4

Convolution can shrink a map by 
using strides greater than 1
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0
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4 4

2
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4 4

2 4

Convolution can shrink a map by 
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Convolution strides

• Convolution with stride 1  output size same as input size
– Besides edge effects

• Stride greater than 1  output size shrinks w.r.t. input

Stride=1 Stride>1
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Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
m = 1

for x = 1:stride:Wl-1-Kl+1

n = 1

for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

n++

m++

Y = softmax( {Y(L,:,:,:)} )
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The other method for shrinking the maps:
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by 
“downsampling”  (or “pooling”) layers
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output
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Recall: Max pooling

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

33



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

34



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

35



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

36



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

37



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

38



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

39



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

40



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

41



Max Pooling layer at layer 

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

u(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
42

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Recall: Mean pooling

• Mean pooling computes the mean of the window 
of values
– As opposed to the max of max pooling

• Scanning with strides is otherwise identical to 
max pooling

Mean

3 1

4 6

Mean 3.5
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Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

u(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

44

a) Performed separately for every map (j)



Setting everything together

• Typical image classification task
– Assuming maxpooling..
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Convolutional Neural Networks

• Input: 1 or 3 images
– Black and white or color
– Will assume color to be generic

46



௠ 1 2 2

2

2

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1

2

• Several convolutional and pooling layers. 
• The output of the last layer is “flattened” and passed through an MLP

convolve convolve
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Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௠ 1 2 2

2

2

௠

1

ଵ
ଵ

ଶ
ଵ

1

1

2

convolve convolve
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Learning the CNN
• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a divergence between the desired output and 
true output of the network in response to any input

• Network parameters are trained through variants of 
gradient descent

• Gradients are computed through backpropagation

49



௠ 1 2 2

2

2

Defining the loss
௠

1

ଵ
ଵ

ଶ
ଵ

1

1

2

• The loss for a single instance

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))
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Problem Setup
• Given a training set of input-output pairs 

• The error on the ith instance is 
• The total error

• Minimize w.r.t 
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Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 

• Do:
– For every layer for all filter indices update:

•

• Until has converged
52

Total training loss:

Assuming the bias is also
represented as a weight
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The derivative

• Computing the derivative

54

Total derivative:

Total training loss:



The derivative

• Computing the derivative

55

Total derivative:

Total training loss:



Backpropagation: Final flat layers

• Backpropagation continues in the usual manner 
until the computation of the derivative of the 
divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the 

“unrolling” of the maps from the final convolutional 
layer

௒(௅)

௄భ

ଵ

1
௄మ

ଵ

2

2

Conventional backprop until here
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Backpropagation: Convolutional and 
Pooling layers

• Backpropagation from the flat MLP requires 
special consideration of 
– The shared computation in the convolution layers

– The pooling layers (particularly maxout)

௄భ

ଵ

1
௄మ

ଵ

2

2

Need adjustments here

௒(௅)
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BP: Convolutional layer

• For every th layer filter, each position in the 
map in the th layer affects several 
positions in the map of the th layer
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3 44
4 32
3 42

1 22
2 10
1 20

Activation
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BP: Convolutional layer

• For every th layer filter, each position in the 
map in the th layer affects several 
positions in the map of the th layer

3 44
4 32
3 42

1 22
2 10
1 20

Output of l-1th

layer Affine combination
at lth layer

Output of lth

layer

Activation
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BP: Convolutional layer

• Assuming is available
– Remember – it is available for the Lth layer already from 

the flat MLP

• Must compute and 

3 44
4 32
3 42

1 22
2 10
1 20

Activation
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BP: Convolutional layer

• Computing 

• Simple component-wise computation

3 44
4 32
3 42

1 22
2 10
1 20

Activation
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BP: Convolutional layer

• Computing and 

• Each affects several terms
– All of them contribute to the derivative w.r.t. 

3 44
4 32
3 42

1 22
2 10
1 20

Activation
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BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence 

w.r.t. 
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BP: Convolutional layer

• Each affects several terms
– Through ௟

ᇱ ᇱ

– Affects terms in all th layer maps

N = No. of filters

66
Assuming indexing
is from 0
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BP: Convolutional layer

• Each affects several terms for every 
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence w.r.t. 69



BP: Convolutional layer

 

௫ᇱ,௬ᇱ

 

௡

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡

Derivative w.r.t a specific term

Assuming indexing
is from 0 70



BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡

Summing over all Z maps
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BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡

Summing over all Z maps
Summing over all positions in each Z map
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BP: Convolutional layer

• Each weight ௟ also affects several terms for every 
– Affects terms in only one map (the nth map)
– All  entries in the map contribute to the derivative of the divergence 

w.r.t. ௟

௟
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BP: Convolutional layer

௟ ௟

 

௫ᇱ,௬ᇱ

ᇱ ᇱ
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

Derivative w.r.t a specific term

௟

74
Assuming indexing
is from 0



BP: Convolutional layer

௟
ᇱ ᇱ

ᇱ ᇱ

 

௫ᇱ,௬ᇱ

௟

Summing over all (z,Y) pairs that are related
multiplicatively by the weight
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CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:W-K+1 

for y = 1:H-K+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1) )
76

Switching to 1-based
indexing with appropriate 
adjustments



Backward layer 

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)
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78

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here



Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
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for x’ = 1:Kl
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w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)79
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Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here



Backward (with strides)
dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for j = 1:Dl

for x = 1:Wl
m = (x-1)stride
for y = 1:Hl

n = (y-1)stride
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

dY(l-1,i,m+x’-1,n+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’-1,n+y’-1)
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Complete Backward (with strides)
dY(L) = dDiv/dY(L)
for l = L:1  # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for j = 1:Dl

for x = 1:stride:Wl
m = (x-1)stride
for y = 1:stride: Hl

n = (y-1)stride
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)
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Derivative w.r.t y: in practice

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡
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Derivative w.r.t y: in practice

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡

This is a convolution
What are the limits of summation?
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the 

derivative w.r.t that component of 

௟
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌

• Each is the sum of component-wise product of the filter elements and the 
elements of the region of it is placed on

௟

𝑥 − 2
𝑦 − 2
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How a single influences 

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌

• Each is the sum of component-wise product of the filter elements and the 
elements of the region of it is placed on 87



How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦
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How a single influences 

• Compute how each in influences various locations of 
– We will have to  reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the 

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦
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How a single influences 

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

𝑥 𝑦

• Lets see the derivative maps..

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡

95



Computing the derivative

௟

• The derivative (w.r.t) at is obtained by flipping the filter left-
right, top-bottom, and computing the inner product with respect to 
the square patch of డ஽௜௩

డ௭
ending at 

– This would be for any 

ᇱ ᇱ ௟
ᇱ ᇱ

 

௫ᇱ,௬ᇱ

 

௡

Flip up down
flip left right 
of ௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative
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Computing the derivative
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Computing the derivative

௟

102



Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative
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Computing the derivative
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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Computing the derivative

௟
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In reality, the derivative at each (x,y)
location is obtained from all z maps
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flip

In reality, the derivative at each (x,y)
location is obtained from all z maps
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flip
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flip

140



flip
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flip
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flip
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flip
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flip
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flip
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flip
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flip
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Computing the derivative

• This is just a convolution of  by the 

inverted filter
– After zero padding it first with L-1 zeros on every side
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Derivative w.r.t y

2 31
5 64
8 97

8 79
5 46
2 13

Bottom to top flip
Left to right flip

Define

ᇱ ᇱ
ᇱ

 

௫ᇲ,௬ᇱ

 

௡

Flipping the fiter left-right and top-bottom

𝜕𝐷𝑖𝑣

𝜕𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍ 𝑤(𝑙, 𝑛, 𝑚, 𝐾 − 1 − 𝑥ᇱ, 𝐾 − 1 − 𝑦ᇱ)

𝜕𝐷𝑖𝑣

𝜕𝑧(𝑙, 𝑛, 𝑥 + 𝑥ᇱ − (𝐾 − 1), 𝑦 + 𝑦′ − (𝐾 − 1))

 

௫ᇲ,௬ᇱ

 

௡
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Derivative w.r.t y

ᇱ ᇱ
ᇱ ᇱ

 

௫ᇲ,௬ᇱ

 

௡

0,0 0,K-1

K-1,K-1K-1,1

0,0

K-1,K-1

Reading the value at (x,y) from 
a shifted version of z
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Derivative w.r.t y

ᇱ ᇱ

௦௛௜௙௧
ᇱ

 

௫ᇲ,௬ᇱ

 

௡

Shifting down and right by K-1, such that 0,0 becomes K-1,K-1

ᇱ ᇱ
ᇱ ᇱ

 

௫ᇲ,௬ᇱ

 

௡
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ᇱ ᇱ

௦௛௜௙௧
ᇱ ᇱ

 

௫ᇲ,௬ᇱ

 

௡

Derivative w.r.t y

Define

𝜕𝐷𝑖𝑣

𝜕𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍ 𝑤(𝑙, 𝑛, 𝑚, 𝐾 − 1 − 𝑥ᇱ, 𝐾 − 1 − 𝑦ᇱ)

𝜕𝐷𝑖𝑣

𝜕𝑧(𝑙, 𝑛, 𝑥 + 𝑥ᇱ − (𝐾 − 1), 𝑦 + 𝑦′ − (𝐾 − 1))

 

௫ᇲ,௬ᇱ

 

௡

153



Derivative w.r.t y
Define

ᇱ ᇱ

௦௛௜௙௧
ᇱ ᇱ

 

௫ᇲ,௬ᇱ

 

௡

Regular convolution running on
shifted derivative maps using
flipped filter
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Derivatives for a single layer : 
Vector notation

# The weight W(l,j)is a 3D Dl-1xKlxKl

dzshift = zeros(Dlx(Hl+2(Kl-1))x(Wl+2(Kl-1))) # zeropad
for j = 1:Dl

Wflip(j,:,:) = flipLeftRight(flipUpDown(W(l,j,:,:))) 
dzshift(j,Kl:Kl+Hl-1,Kl:Kl+Wl-1) = dz(l,j,:,:) # move 

idx 1->Kl
end

for j = 1:Dl
for x = 1:Wl-1
for y = 1:Hl-1
segment = dzshift(:, x:x+Kl-1, y:y+Kl-1) #3D tensor
dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.
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Max

156

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max
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Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max

160

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”



Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”
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Max pooling

Max

1 3

6 5
Max

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ , 

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

6
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Derivative of Max pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ , 

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

1 3

6 5 Max

6Derivative goes here?
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Max Pooling layer at layer 

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

u(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
164

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max



Derivative of max pooling layer at 
layer 

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l,j,pidx(l,j,x,y)) += u(l,j,x,y)

165

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent  overlapping windows 



Mean pooling

Mean

1 3

6 5
Mean

3.75

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

௟௣௢௢௟
ଶ

 

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ , 

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗
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Derivative of mean pooling

Mean

1 3

6 5

3.75

• The derivative of mean pooling is distributed over the 
pool

௟௣௢௢௟

௟௣௢௢௟ ௟௣௢௢௟
ଶ
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Mean Pooling layer at layer 

Mean pooling

for j = 1:Dl  #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = poooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

u(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

168

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.



Derivative of mean pooling layer at 
layer 

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride     

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l,j,p,n+i,m+j) += (1/K2lpool)u(l,j,x,y)

169

“+=“ because adjacent windows may overlap



Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, 
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the 
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– Downsampling layers that operate over groups of outputs from the 
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back 
propagation
– Maxpooling layers must propagate derivatives only over the maximum 

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for 
the fact that the network is, in fact, a shared parameter network 171



An implicit assumption

• We’ve always assumed that subsequent steps 
shrink the size of the maps

• Can subsequent maps increase in size

Stride>1

172



Recall this 1-D figure

• We’ve seen this before.. where??
time

softmax
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Recall this 1-D figure

• Simplified diagram
time

softmax

174



With layer of increased resolution

• Maintaining Symmetry: 
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3 
– The pattern of values of upward weights for each of the three pink (3rd layer) 

bars is identical

time

softmax
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With layer of increased resolution

• Maintaining Symmetry: 
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3 
– The pattern of values of upward weights for each of the three pink (3rd layer) 

bars is identical

time

softmax

176

Actual scanning network



With layer of increased resolution

• Maintaining Symmetry: 
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3 
– The pattern of values of upward weights for each of the three pink (3rd layer) 

bars is identical

time

softmax

177

Actual scanning networkNote two different types of
Neurons here



Scanning with increased-res layer

time

softmax

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note:  Arrangement of vertical bars is predetermined by architecture178



With layer of increased size

time

softmax
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With layer of increased size

time

softmax

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note:  Arrangement of vertical bars is predetermined by architecture181



“Transposed Convolution”

• Connection rules are transposed for expanding layers  
– In shrinking layers, the pattern of incoming weights is identical for each bar
– In expanding layers, the pattern of outgoing (upward) weights is identical for each bar

• When thought of as an MLP,  can write
𝑍௟ = 𝑊௟𝑌௟ିଵ

• 𝑊௟ is broader than tall for a shrinking layer
• 𝑊௟ is taller than broad for an expanding layer

– Sometimes viewed as the transpose of a broad matrix

• Leading to terminology “transpose convolution” 182



In 2-D

• Similar computation

183



2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input

is the “stride” 
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

 

௟

 

௞

 

௠
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2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd
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CNN: Expanding convolution layer 

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)
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CNN: Expanding convolution layer 
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for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)
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We leave the rather trivial issue of how to modify this code to
compute the derivatives w.r.t w and y to you



• Also called transpose convolution
– If you recast the CNN as a shared-parameter MLP, expanding 

layers have weight matrices that are taller than wide

• Also called “deconvolution”
– Strictly speaking, abuse of terminology
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is the “stride” 
(scaling factor between the sizes of Z and Y)

2D expanding convolution
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Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance
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• We can rewrite this as so (tensor inner product)

Shift-invariance – a different 
perspective
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• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance
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• More generally each 
filter produces a set of 
transformed (and 
shifted) maps
– Set of transforms 

must be enumerated 
and discrete

– E.g. discrete set of 
rotations and scaling, 
reflections etc.

• The network becomes 
invariant to all the 
transforms considered

Transform invariance
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Regular CNN : single layer 
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))
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Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1
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• Derivatives flow
back through the 
transforms to update 
individual filters
– Need point 

correspondences 
between original and 
transformed filters

– Left as an exercise

BP with transform invariance
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Story so far
• CNNs are shift-invariant neural-network models for shift-invariant 

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with 

distributed representations

• The parameters of the network can be learned through regular back 
propagation

• Like a regular MLP, individual layers may either increase or decrease 
the span of the representation learned

• The models can be easily modified to include invariance to other 
transforms
– Although these tend to be computationally painful
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But what about the exact location?

• We began with the desire to identify the picture as 
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?
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Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates) 

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier 

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of 
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)
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Pose estimation

• Can use the same mechanism to predict the 
joints of a stick model
– For post estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints
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Model variations

• Very deep networks
– 100 or more layers in MLP

– Formalism called “Resnet”

• “Depth-wise” convolutions
– Instead of multiple independent filters with 

independent parameters, use common layer-wise 
weights and combine the layers differently for 
each filter
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Depth-wise convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that 

filter

Conventional

convolve collapse
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Conventional convolutoins

• This is done separately for each of the M filters 
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve
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Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2
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Conventional vs. depth-wise 
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters, 
which span all M input channels

• Each filter produces one output channel

• Total  NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M  independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N   Mx1x1  1D filters
• Each applies to one 2D location across all M input 

channels
• Total  NM +  MK2 parameters 213



Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern 

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of 

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object 
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency, 
better ability to compute derivatives, etc.
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What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious 

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by 

backpropagation
215
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Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style 

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly 
become very large

• Insufficient training data to train well
– Solution: Data augmentation
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Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data
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Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms
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Digit classification
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Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result:  6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps  (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 221



Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html
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The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset:  Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories
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AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest 
• 1000 different classes (softmax layer)
• NN configuration 

• NN contains 60 million parameters and 650,000 neurons, 
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1:  96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer  [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3,  stride 2
• Normalization layer  [Unnecessary]
• Conv3: 384 3x3,  stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC:  3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons 
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Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over 

the lot! 

10 patches
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Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01,  decreased by 10 every time validation accuracy 

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7 
networks
– Lowest prior error using conventional classifiers:  > 25%
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ImageNet

Figure 3: 96 convolutional 
kernels of size 11×11×3 
learned by the first 
convolutional layer on the 
224×224×3 input images. The 
top 48 kernels were learned 
on GPU 1 while the bottom 48 
kernels were learned on GPU 
2. See Section 6.1 for details. 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional 
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five 
labels considered most probable by our model. 
The correct label is written under each image, 
and the probability assigned to the correct label 
is also shown with a red bar (if it happens to be 
in the top 5). 

Five ILSVRC-2010 test images in the first 
column. The remaining columns show the six 
training images that produce feature vectors in 
the last hidden layer with the smallest Euclidean 
distance from the feature vector for the test 
image. 



ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4%  14.8%

• Combining multiple models as before

5121024512
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VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error 

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to 

6.8% using only two classifiers

• Final arch:  64 conv, 64 conv, 
64 pool, 
128 conv, 128 conv, 
128 pool,
256 conv, 256 conv, 256 conv, 
256 pool,
512 conv, 512 conv, 512  conv, 
512 pool,
512 conv, 512 conv, 512  conv, 
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 232



Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant;  error  6.7%

– Using only 5 million parameters, thanks to average pooling233



Imagenet

• Resnet: 2015
– Current top-5 error:  < 3.5%
– Over 150 layers, with “skip” connections..
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Resnet details for the curious..

• Last layer before addition must have the same number of filters as 
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger 

learning rate)
• Mini batch 256
• Weight decay 1e-5 

235



Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 236



Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..
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CNN for Automatic 
Speech Recognition

• Convolution over frequencies
• Convolution over time



• Neural network with  specialized connectivity 
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time 

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap


