
Deep Neural Networks
Convolutional Networks III

Bhiksha Raj
Spring 2020

1

Outline

• Quick recap
• Back propagation through a CNN
• Modifications: Scaling, rotation and deformation

invariance
• Segmentation and localization
• Some success stories
• Some advanced architectures

– Resnet
– Densenet
– Transformers and self similarity

2

Story so far
• Pattern classification tasks such as “does this picture contain a cat”,

or “does this recording include HELLO” are best performed by
scanning for the target pattern

• Scanning an input with a network and combining the outcomes is
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or layer makes the final decision
– Deformations in the input can be handled by “pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a
convnet

• For 1-D scan along time, it is called a Time-delay neural network

3

The general architecture of a
convolutional neural network

• A convolutional neural network comprises of
“convolutional” and optional “downsampling” layers

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output

4

A convolutional layer

• Each activation map in the convolutional layer has two components
– A linear map, obtained by (joint) convolution over maps in the previous layer

• Each linear map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer

5

What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are

multiplied component wise, and the products are added along with
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

6

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

7

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

8

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

9

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

10

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

11

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

12

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

13

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

14

What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as

size of the filter x no. of maps in previous layer

Previous
layer

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏

ଷ

௟ୀଵ

ଷ

௞ୀଵ

௠

15

A better representation

• ..A stacked arrangement of planes

• We can view the joint processing of the various
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)

16

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

A better representation

17

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

A better representation

18

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

A better representation

19

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

A better representation

20

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

A better representation

21

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

A better representation

22

• The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias

23

Convolutional neural net:
Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl tensor

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax({Y(L,:,:,:)})

24

Convolution can shrink a map by
using strides greater than 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

25

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

4 4

Convolution can shrink a map by
using strides greater than 1

26

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

4 4

2

Convolution can shrink a map by
using strides greater than 1

27

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

4 4

2 4

Convolution can shrink a map by
using strides greater than 1

28

Convolution strides

• Convolution with stride 1  output size same as input size
– Besides edge effects

• Stride greater than 1  output size shrinks w.r.t. input

Stride=1 Stride>1

29

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
m = 1

for x = 1:stride:Wl-1-Kl+1

n = 1

for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

n++

m++

Y = softmax({Y(L,:,:,:)})
30

The other method for shrinking the maps:
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by
“downsampling” (or “pooling”) layers
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

31

Recall: Max pooling

• Max pooling selects the largest from a pool of
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6

32

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

33

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

34

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

35

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

36

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

37

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

38

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

39

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

40

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

41

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

u(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
42

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Recall: Mean pooling

• Mean pooling computes the mean of the window
of values
– As opposed to the max of max pooling

• Scanning with strides is otherwise identical to
max pooling

Mean

3 1

4 6

Mean 3.5

43

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

u(l,j,m,n) = mean(Y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

44

a) Performed separately for every map (j)

Setting everything together

• Typical image classification task
– Assuming maxpooling..

45

Convolutional Neural Networks

• Input: 1 or 3 images
– Black and white or color
– Will assume color to be generic

46

௠ 1 2 2

2

2

Convolutional Neural Networks
௠

1

ଵ
ଵ

ଶ
ଵ

1

1

2

• Several convolutional and pooling layers.
• The output of the last layer is “flattened” and passed through an MLP

convolve convolve

47

Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer

௠ 1 2 2

2

2

௠

1

ଵ
ଵ

ଶ
ଵ

1

1

2

convolve convolve

48

Learning the CNN
• Training is as in the case of the regular MLP

– The only difference is in the structure of the network

• Training examples of (Image, class) are provided

• Define a divergence between the desired output and
true output of the network in response to any input

• Network parameters are trained through variants of
gradient descent

• Gradients are computed through backpropagation

49

௠ 1 2 2

2

2

Defining the loss
௠

1

ଵ
ଵ

ଶ
ଵ

1

1

2

• The loss for a single instance

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))

50

Problem Setup
• Given a training set of input-output pairs

• The error on the ith instance is
• The total error

• Minimize w.r.t

51

Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases

• Do:
– For every layer for all filter indices update:

•

• Until has converged
52

Total training loss:

Assuming the bias is also
represented as a weight

Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases

• Do:
– For every layer for all filter indices update:

•

• Until has converged
53

Total training loss:

Assuming the bias is also
represented as a weight

The derivative

• Computing the derivative

54

Total derivative:

Total training loss:

The derivative

• Computing the derivative

55

Total derivative:

Total training loss:

Backpropagation: Final flat layers

• Backpropagation continues in the usual manner
until the computation of the derivative of the
divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the

“unrolling” of the maps from the final convolutional
layer

௒(௅)

௄భ

ଵ

1
௄మ

ଵ

2

2

Conventional backprop until here

56

Backpropagation: Convolutional and
Pooling layers

• Backpropagation from the flat MLP requires
special consideration of
– The shared computation in the convolution layers

– The pooling layers (particularly maxout)

௄భ

ଵ

1
௄మ

ଵ

2

2

Need adjustments here

௒(௅)

57

BP: Convolutional layer

• For every th layer filter, each position in the
map in the th layer affects several
positions in the map of the th layer

58

BP: Convolutional layer

• For every th layer filter, each position in the
map in the th layer affects several
positions in the map of the th layer

3 44
4 32
3 42

1 22
2 10
1 20

Activation

59

BP: Convolutional layer

• For every th layer filter, each position in the
map in the th layer affects several
positions in the map of the th layer

3 44
4 32
3 42

1 22
2 10
1 20

Output of l-1th

layer Affine combination
at lth layer

Output of lth

layer

Activation

60

BP: Convolutional layer

• Assuming is available
– Remember – it is available for the Lth layer already from

the flat MLP

• Must compute and

3 44
4 32
3 42

1 22
2 10
1 20

Activation

61

BP: Convolutional layer

• Computing

• Simple component-wise computation

3 44
4 32
3 42

1 22
2 10
1 20

Activation

62

BP: Convolutional layer

• Computing and

• Each affects several terms
– All of them contribute to the derivative w.r.t.

3 44
4 32
3 42

1 22
2 10
1 20

Activation

63

BP: Convolutional layer

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence

w.r.t.
64

BP: Convolutional layer

3 44
4 32
3 42

• Each affects several terms
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence

w.r.t.
65

BP: Convolutional layer

• Each affects several terms
– Through ௟

ᇱ ᇱ

– Affects terms in all th layer maps

N = No. of filters

66
Assuming indexing
is from 0

BP: Convolutional layer

• For every th layer filter, each affects several
terms
– Through ௟

ᇱ ᇱ

– All of them contribute to the derivative of the divergence w.r.t.
67

BP: Convolutional layer

3 44
4 32
3 42

• For every th layer filter, each affects
several terms
– All of them contribute to the derivative of the divergence

w.r.t.
68

BP: Convolutional layer

• Each affects several terms for every
– Affects terms in all th layer maps
– All of them contribute to the derivative of the divergence w.r.t. 69

BP: Convolutional layer

௫ᇱ,௬ᇱ

௡

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡

Derivative w.r.t a specific term

Assuming indexing
is from 0 70

BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡

Summing over all Z maps

71

BP: Convolutional layer

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡

Summing over all Z maps
Summing over all positions in each Z map

72

BP: Convolutional layer

• Each weight ௟ also affects several terms for every
– Affects terms in only one map (the nth map)
– All entries in the map contribute to the derivative of the divergence

w.r.t. ௟

௟

73

BP: Convolutional layer

௟ ௟

௫ᇱ,௬ᇱ

ᇱ ᇱ
ᇱ ᇱ

௫ᇱ,௬ᇱ

Derivative w.r.t a specific term

௟

74
Assuming indexing
is from 0

BP: Convolutional layer

௟
ᇱ ᇱ

ᇱ ᇱ

௫ᇱ,௬ᇱ

௟

Summing over all (z,Y) pairs that are related
multiplicatively by the weight

75

CNN: Forward
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,j,i,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
76

Switching to 1-based
indexing with appropriate
adjustments

Backward layer

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

77

Backward layer

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)Y(l-1,i,x+x’-1,y+y’-1)

78

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)79

Complete Backward (no pooling)

dY(L) = dDiv/dY(L)

for l = L:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)

dY(l-1) = zeros(Dl-1xWl-1xHl-1)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
dY(l-1,i,x+x’-1,y+y’-1) +=

w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=

dz(l,j,x,y)y(l-1,i,x+x’-1,y+y’-1)80

Multiple ways of recasting this
as tensor/ vector operations.

Will not discuss here

Backward (with strides)
dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for j = 1:Dl

for x = 1:Wl
m = (x-1)stride
for y = 1:Hl

n = (y-1)stride
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

dY(l-1,i,m+x’-1,n+y’-1) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’-1,n+y’-1)

81

Complete Backward (with strides)
dY(L) = dDiv/dY(L)
for l = L:1 # Backward through layers

dw(l) = zeros(DlxDl-1xKlxKl)
dY(l-1) = zeros(Dl-1xWl-1xHl-1)
for j = 1:Dl

for x = 1:stride:Wl
m = (x-1)stride
for y = 1:stride: Hl

n = (y-1)stride
dz(l,j,x,y) = dY(l,j,x,y).f’(z(l,j,x,y))
for i = 1:Dl-1

for x’ = 1:Kl
for y’ = 1:Kl

dY(l-1,i,m+x’,n+y’) +=
w(l,j,i,x’,y’)dz(l,j,x,y)

dw(l,j,i,x’,y’) +=
dz(l,j,x,y)y(l-1,i,m+x’,n+y’)

82

Derivative w.r.t y: in practice

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡
83

Derivative w.r.t y: in practice

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡

This is a convolution
What are the limits of summation?

84

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the

derivative w.r.t that component of

௟

85

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌

• Each is the sum of component-wise product of the filter elements and the
elements of the region of it is placed on

௟

𝑥 − 2
𝑦 − 2

86

How a single influences

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌

• Each is the sum of component-wise product of the filter elements and the
elements of the region of it is placed on 87

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

88

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

89

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

90

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

91

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

92

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

93

How a single influences

• Compute how each in influences various locations of
– We will have to reverse the direction of influence to compute the derivative w.r.t that 𝑥, 𝑦

component of 𝑌
– Each 𝑧 is the sum of component-wise product of the filter elements and the elements of the

region of 𝑌 it is placed on

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

94

How a single influences

௟

𝑥 − 2
𝑦 − 2

𝑥 − 1
𝑦 − 2

𝑥
𝑦 − 2

𝑥 − 2
𝑦 − 1

𝑥 − 1
𝑦 − 1

𝑥
𝑦 − 1

𝑥 − 2
𝑦

𝑥 − 1
𝑦

𝑥 𝑦

• Lets see the derivative maps..

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡

95

Computing the derivative

௟

• The derivative (w.r.t) at is obtained by flipping the filter left-
right, top-bottom, and computing the inner product with respect to
the square patch of డ஽௜௩

డ௭
ending at

– This would be for any

ᇱ ᇱ ௟
ᇱ ᇱ

௫ᇱ,௬ᇱ

௡

Flip up down
flip left right
of ௟

96

Computing the derivative

௟

97

Computing the derivative

௟

98

Computing the derivative

௟

99

Computing the derivative

௟

100

Computing the derivative

௟

101

Computing the derivative

௟

102

Computing the derivative

௟

103

Computing the derivative

௟

104

Computing the derivative

௟

105

Computing the derivative

௟

106

Computing the derivative

௟

107

Computing the derivative

௟

108

Computing the derivative

௟

109

Computing the derivative

௟

110

Computing the derivative

௟

111

Computing the derivative

௟

112

Computing the derivative

௟

113

Computing the derivative

௟

114

Computing the derivative

௟

115

Computing the derivative

௟

116

Computing the derivative

௟

117

Computing the derivative

௟

118

Computing the derivative

௟

119

Computing the derivative

௟

120

Computing the derivative

௟

121

In reality, the derivative at each (x,y)
location is obtained from all z maps

122

flip

In reality, the derivative at each (x,y)
location is obtained from all z maps

123

flip

124

flip

125

flip

126

flip

127

flip

128

flip

129

flip

130

flip

131

flip

132

flip

133

flip

134

flip

135

flip

136

flip

137

flip

138

flip

139

flip

140

flip

141

flip

142

flip

143

flip

144

flip

145

flip

146

flip

147

flip

148

Computing the derivative

• This is just a convolution of by the

inverted filter
– After zero padding it first with L-1 zeros on every side

149

Derivative w.r.t y

2 31
5 64
8 97

8 79
5 46
2 13

Bottom to top flip
Left to right flip

Define

ᇱ ᇱ
ᇱ

௫ᇲ,௬ᇱ

௡

Flipping the fiter left-right and top-bottom

𝜕𝐷𝑖𝑣

𝜕𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍ 𝑤(𝑙, 𝑛, 𝑚, 𝐾 − 1 − 𝑥ᇱ, 𝐾 − 1 − 𝑦ᇱ)

𝜕𝐷𝑖𝑣

𝜕𝑧(𝑙, 𝑛, 𝑥 + 𝑥ᇱ − (𝐾 − 1), 𝑦 + 𝑦′ − (𝐾 − 1))

௫ᇲ,௬ᇱ

௡

150

Derivative w.r.t y

ᇱ ᇱ
ᇱ ᇱ

௫ᇲ,௬ᇱ

௡

0,0 0,K-1

K-1,K-1K-1,1

0,0

K-1,K-1

Reading the value at (x,y) from
a shifted version of z

151

Derivative w.r.t y

ᇱ ᇱ

௦௛௜௙௧
ᇱ

௫ᇲ,௬ᇱ

௡

Shifting down and right by K-1, such that 0,0 becomes K-1,K-1

ᇱ ᇱ
ᇱ ᇱ

௫ᇲ,௬ᇱ

௡

152

ᇱ ᇱ

௦௛௜௙௧
ᇱ ᇱ

௫ᇲ,௬ᇱ

௡

Derivative w.r.t y

Define

𝜕𝐷𝑖𝑣

𝜕𝑦(𝑙 − 1, 𝑚, 𝑥, 𝑦)
= ෍ ෍ 𝑤(𝑙, 𝑛, 𝑚, 𝐾 − 1 − 𝑥ᇱ, 𝐾 − 1 − 𝑦ᇱ)

𝜕𝐷𝑖𝑣

𝜕𝑧(𝑙, 𝑛, 𝑥 + 𝑥ᇱ − (𝐾 − 1), 𝑦 + 𝑦′ − (𝐾 − 1))

௫ᇲ,௬ᇱ

௡

153

Derivative w.r.t y
Define

ᇱ ᇱ

௦௛௜௙௧
ᇱ ᇱ

௫ᇲ,௬ᇱ

௡

Regular convolution running on
shifted derivative maps using
flipped filter

154

Derivatives for a single layer :
Vector notation

The weight W(l,j)is a 3D Dl-1xKlxKl

dzshift = zeros(Dlx(Hl+2(Kl-1))x(Wl+2(Kl-1))) # zeropad
for j = 1:Dl

Wflip(j,:,:) = flipLeftRight(flipUpDown(W(l,j,:,:)))
dzshift(j,Kl:Kl+Hl-1,Kl:Kl+Wl-1) = dz(l,j,:,:) # move

idx 1->Kl
end

for j = 1:Dl
for x = 1:Wl-1
for y = 1:Hl-1
segment = dzshift(:, x:x+Kl-1, y:y+Kl-1) #3D tensor
dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.

155

Max

156

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

157

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

158

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

159

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

160

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

Max

Pooling and downsampling

• Pooling is typically performed with strides > 1
– Results in shrinking of the map

– “Downsampling”

161

Max pooling

Max

1 3

6 5
Max

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

6

162

Derivative of Max pooling

• Max pooling selects the largest from a pool of elements
• Pooling is performed by “scanning” the input

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

1 3

6 5 Max

6Derivative goes here?

163

Max Pooling layer at layer

Max pooling

for j = 1:Dl
m = 1

for x = 1:stride(l):Wl-1-Kl+1

n = 1

for y = 1:stride(l):Hl-1-Kl+1

pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

u(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))

n = n+1

m = m+1
164

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Derivative of max pooling layer at
layer

Max pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

for y = 1:Hl_downsampled
dy(l,j,pidx(l,j,x,y)) += u(l,j,x,y)

165

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

“+=“ because this entry may be selected in multiple adjacent overlapping windows

Mean pooling

Mean

1 3

6 5
Mean

3.75

• Mean pooling compute the mean of a pool of elements
• Pooling is performed by “scanning” the input

௟௣௢௢௟
ଶ

௞∈ ௜ିଵ ௗାଵ, ௜ିଵ ௗା௄೗೛೚೚೗ ,

௡∈ ௝ିଵ ௗାଵ, ௝ିଵ ௗା௄೗೛೚೚೗

166

Derivative of mean pooling

Mean

1 3

6 5

3.75

• The derivative of mean pooling is distributed over the
pool

௟௣௢௢௟

௟௣௢௢௟ ௟௣௢௢௟
ଶ

167

Mean Pooling layer at layer

Mean pooling

for j = 1:Dl #Over the maps

m = 1

for x = 1:stride(l):Wl-1-Kl+1 #Kl = poooling kernel size

n = 1

for y = 1:stride(l):Hl-1-Kl+1

u(l,j,m,n) = mean(y(l-1,j,x:x+Kl-1,y:y+Kl-1))

n = n+1

m = m+1

168

a) Performed separately for every map (j).
*) Not combining multiple maps within a single mean operation.

Derivative of mean pooling layer at
layer

Mean pooling

dy(:,:,:) = zeros(Dl x Wl x Hl)

for j = 1:Dl
for x = 1:Wl_downsampled

n = (x-1)*stride

for y = 1:Hl_downsampled
m = (y-1)*stride

for i = 1:Klpool
for j = 1:Klpool

dy(l,j,p,n+i,m+j) += (1/K2lpool)u(l,j,x,y)

169

“+=“ because adjacent windows may overlap

Learning the network

• Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the
network

ଵ
ଵ

ଶ
ଵ

ெ
ଵ

ெ
ଵ

ெమ

ଶ

2

2

170

Story so far
• The convolutional neural network is a supervised version of a

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs
of the previous layer

– Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

• The parameters of the network can be learned through regular back
propagation
– Maxpooling layers must propagate derivatives only over the maximum

element in each pool
• Other pooling operators can use regular gradients or subgradients

– Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network 171

An implicit assumption

• We’ve always assumed that subsequent steps
shrink the size of the maps

• Can subsequent maps increase in size

Stride>1

172

Recall this 1-D figure

• We’ve seen this before.. where??
time

softmax

173

Recall this 1-D figure

• Simplified diagram
time

softmax

174

With layer of increased resolution

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical

time

softmax

175

With layer of increased resolution

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical

time

softmax

176

Actual scanning network

With layer of increased resolution

• Maintaining Symmetry:
– Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
– The pattern of values of upward weights for each of the three pink (3rd layer)

bars is identical

time

softmax

177

Actual scanning networkNote two different types of
Neurons here

Scanning with increased-res layer

time

softmax

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture178

With layer of increased size

time

softmax

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture179

With layer of increased size

time

softmax

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture180

With layer of increased size

time

softmax

• Flow of info from bottom to top when implemented as a left-
to-right scan
– Note: Arrangement of vertical bars is predetermined by architecture181

“Transposed Convolution”

• Connection rules are transposed for expanding layers
– In shrinking layers, the pattern of incoming weights is identical for each bar
– In expanding layers, the pattern of outgoing (upward) weights is identical for each bar

• When thought of as an MLP, can write
𝑍௟ = 𝑊௟𝑌௟ିଵ

• 𝑊௟ is broader than tall for a shrinking layer
• 𝑊௟ is taller than broad for an expanding layer

– Sometimes viewed as the transpose of a broad matrix

• Leading to terminology “transpose convolution” 182

In 2-D

• Similar computation

183

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

184

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 185

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 186

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 187

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 188

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 189

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 190

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 191

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 192

is the “stride”
(scaling factor between the sizes of Z and Y)

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 193

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

is the “stride”
(scaling factor between the sizes of Z and Y)

2D expanding convolution

• Output size is typically an integer multiple of input
• +1 if filter width is odd

– Easier to determine assignment of output to input 194

CNN: Expanding convolution layer

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)

195

CNN: Expanding convolution layer

Z(l) = zeros(Dl x ((W-1)b+Kl) x ((H-1)b+Kl)) # b = stride

for j = 1:Dl
for x = 1:W

for y = 1:H

for i = 1:Dl-1
for x’ = 1:Kl
for y’ = 1:Kl
z(l,j,(x-1)b+x’,(y-1)b+y’) +=

w(l,j,i,x’,y’)y(l-1,i,x,y)

196

We leave the rather trivial issue of how to modify this code to
compute the derivatives w.r.t w and y to you

• Also called transpose convolution
– If you recast the CNN as a shared-parameter MLP, expanding

layers have weight matrices that are taller than wide

• Also called “deconvolution”
– Strictly speaking, abuse of terminology

𝑧 1, 𝑖, 𝑗 = ෍ ෍ ෍ 𝑤 1, 𝑚, 𝑖 − 𝑘𝑏, 𝑗 − 𝑙𝑏 𝐼 𝑚, 𝑘, 𝑙

௟

௞

௠

is the “stride”
(scaling factor between the sizes of Z and Y)

2D expanding convolution

197

Invariance

• CNNs are shift invariant
• What about rotation, scale or reflection invariance

198

• We can rewrite this as so (tensor inner product)

Shift-invariance – a different
perspective

199

• Also find rotated by 45 degrees version of the pattern

Generalizing shift-invariance

200

• More generally each
filter produces a set of
transformed (and
shifted) maps
– Set of transforms

must be enumerated
and discrete

– E.g. discrete set of
rotations and scaling,
reflections etc.

• The network becomes
invariant to all the
transforms considered

Transform invariance

೟ 201

Regular CNN : single layer
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

202

Transform invariance
The weight W(l,j)is a 3D Dl-1xKlxKl tensor

m = 1

for j = 1:Dl
for t in {Transforms} # enumerated transforms

TW = T(W(l,j))

for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1, :, x:x+Kl-1, y:y+Kl-1)#3D tensor

z(l,m,x,y) = TW.segment #tensor inner prod.

Y(l,m,x,y) = activation(z(l,m,x,y))

m = m + 1

203

• Derivatives flow
back through the
transforms to update
individual filters
– Need point

correspondences
between original and
transformed filters

– Left as an exercise

BP with transform invariance

204

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant

pattern detection
– Are equivalent to scanning with shared-parameter MLPs with

distributed representations

• The parameters of the network can be learned through regular back
propagation

• Like a regular MLP, individual layers may either increase or decrease
the span of the representation learned

• The models can be easily modified to include invariance to other
transforms
– Although these tend to be computationally painful

205

But what about the exact location?

• We began with the desire to identify the picture as
containing a flower, regardless of the position of the flower
– Or more generally the class of object in the picture

• But can we detect the position of the main object?

206

Finding Bounding Boxes

• The flatten layer outputs to two separate output layers
• One predicts the class of the output
• The second predicts the corners of the bounding box of the object (8 coordinates)

in all
• The divergence minimized is the sum of the cross-entropy loss of the classifier

layer and L2 loss of the bounding-box predictor
– Multi-task learning

Class Output

Coordinates of
bounding box
(x1,y1), (x2,y2)
(x3,y3),(x4,y4)

207

Pose estimation

• Can use the same mechanism to predict the
joints of a stick model
– For post estimation

Is there a person
in the image

(x,y) coordinates
of all 14 joints

208

Model variations

• Very deep networks
– 100 or more layers in MLP

– Formalism called “Resnet”

• “Depth-wise” convolutions
– Instead of multiple independent filters with

independent parameters, use common layer-wise
weights and combine the layers differently for
each filter

209

Depth-wise convolutions

• Alternate view of conventional convolution:

• Each layer of each filter scans its corresponding map to produce a convolved map
• N input channels will require a filter with N layers
• The independent convolutions of each layer of the filter result in N convolved maps
• The N convolved maps are added together to produce the final output map (or channel) for that

filter

Conventional

convolve collapse

210

Conventional convolutoins

• This is done separately for each of the M filters
producing M output maps (channels)

collapseconvolve

collapseconvolve

collapseconvolve

211

Depth-wise convolution

• In depth-wise convolution the convolution step is performed only once
• The simple summation is replaced by a weighted sum across channels

– Different weights (for summation) produce different output channels

convolve

Collapse with weight w2

212

Conventional vs. depth-wise
convolution

Conventional Depth-wise

• M input channels, N output channels:

• N independent MxKxK 3D filters,
which span all M input channels

• Each filter produces one output channel

• Total NMK2 parameters

• M input channels, N output channels in 2 stages:
• Stage 1:

• M independent KxK 2D filters, one per input channel
• Each filter applies to only one input channel
• No. of output channels = no. of input channels

• Stage 2:
• N Mx1x1 1D filters
• Each applies to one 2D location across all M input

channels
• Total NM + MK2 parameters 213

Story so far
• CNNs are shift-invariant neural-network models for shift-invariant pattern

detection
– Are equivalent to scanning with shared-parameter MLPs with distributed representations

• The parameters of the network can be learned through regular back propagation
• Like a regular MLP, individual layers may either increase or decrease the span of

the representation learned

• The models can be easily modified to include invariance to other transforms
– Although these tend to be computationally painful

• Can also make predictions related to the position and arrangement of target object
through multi-task learning

• Several variations on the basic model exist to obtain greater parameter efficiency,
better ability to compute derivatives, etc.

214

What do the filters learn?
Receptive fields

• The pattern in the input image that each neuron sees is its “Receptive Field”
• The receptive field for a first layer neurons is simply its arrangement of weights
• For the higher level neurons, the actual receptive field is not immediately obvious

and must be calculated
– What patterns in the input do the neurons actually respond to?
– We estimate it by setting the output of the neuron to 1, and learning the input by

backpropagation
215

216

Training Issues

• Standard convergence issues
– Solution: Adam or other momentum-style

algorithms
– Other tricks such as batch normalization

• The number of parameters can quickly
become very large

• Insufficient training data to train well
– Solution: Data augmentation

217

Data Augmentation

• rotation: uniformly chosen random angle between 0° and 360°
• translation: random translation between -10 and 10 pixels
• rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
• flipping: yes or no (bernoulli)
• shearing: random shearing with angle between -20° and 20°
• stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)

Original data Augmented data

218

Convolutional neural nets

• One of the most frequently used nnet
formalism today

• Used everywhere
– Not just for image classification
– Used in speech and audio processing

• Convnets on spectrograms

219

Digit classification

220

Le-net 5

• Digit recognition on MNIST (32x32 images)
– Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1

• Result: 6 28x28 maps

– Pool1: 2x2 max pooling, stride 2
• Result: 6 14x14 maps

– Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
• Result: 16 10x10 maps

– Pool2: 2x2 max pooling with stride 2 for second conv layer
• Result 16 5x5 maps (400 values in all)

– FC: Final MLP: 3 layers
• 120 neurons, 84 neurons, and finally 10 output neurons 221

Nice visual example

• http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html

222

The imagenet task

• Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
• http://www.image-net.org/challenges/LSVRC/
• Actual dataset: Many million images, thousands of categories
• For the evaluations that follow:

– 1.2 million pictures
– 1000 categories

223

AlexNet
• 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
• 1000 different classes (softmax layer)
• NN configuration

• NN contains 60 million parameters and 650,000 neurons,
• 5 convolutional layers, some of which are followed by max-pooling layers
• 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.
• Input: 227x227x3 images
• Conv1: 96 11x11 filters, stride 4, no zeropad
• Pool1: 3x3 filters, stride 2
• “Normalization” layer [Unnecessary]
• Conv2: 256 5x5 filters, stride 2, zero pad
• Pool2: 3x3, stride 2
• Normalization layer [Unnecessary]
• Conv3: 384 3x3, stride 1, zeropad
• Conv4: 384 3x3, stride 1, zeropad
• Conv5: 256 3x3, stride 1, zeropad
• Pool3: 3x3, stride 2
• FC: 3 layers,

– 4096 neurons, 4096 neurons, 1000 output neurons

225

226

Alexnet: Total parameters

• 650K neurons
• 60M parameters
• 630M connections

• Testing: Multi-crop
– Classify different shifts of the image and vote over

the lot!

10 patches

227

Learning magic in Alexnet
• Activations were RELU

– Made a large difference in convergence

• “Dropout” – 0.5 (in FC layers only)
• Large amount of data augmentation
• SGD with mini batch size 128
• Momentum, with momentum factor 0.9
• L2 weight decay 5e-4
• Learning rate: 0.01, decreased by 10 every time validation accuracy

plateaus
• Evaluated using: Validation accuracy

• Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks
– Lowest prior error using conventional classifiers: > 25%

228

ImageNet

Figure 3: 96 convolutional
kernels of size 11×11×3
learned by the first
convolutional layer on the
224×224×3 input images. The
top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU
2. See Section 6.1 for details.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually learns features!

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Eight ILSVRC-2010 test images and the five
labels considered most probable by our model.
The correct label is written under each image,
and the probability assigned to the correct label
is also shown with a red bar (if it happens to be
in the top 5).

Five ILSVRC-2010 test images in the first
column. The remaining columns show the six
training images that produce feature vectors in
the last hidden layer with the smallest Euclidean
distance from the feature vector for the test
image.

ZFNet

• Zeiler and Fergus 2013
• Same as Alexnet except:

– 7x7 input-layer filters with stride 2
– 3 conv layers are 512, 1024, 512
– Error went down from 15.4%  14.8%

• Combining multiple models as before

5121024512

231

VGGNet
• Simonyan and Zisserman, 2014
• Only used 3x3 filters, stride 1, pad 1
• Only used 2x2 pooling filters, stride 2

• Tried a large number of architectures.
• Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
– Combining 7 classifiers
– Subsequent to paper, reduced error to

6.8% using only two classifiers

• Final arch: 64 conv, 64 conv,
64 pool,
128 conv, 128 conv,
128 pool,
256 conv, 256 conv, 256 conv,
256 pool,
512 conv, 512 conv, 512 conv,
512 pool,
512 conv, 512 conv, 512 conv,
512 pool,
FC with 4096, 4096, 1000

• ~140 million parameters in all! Madness! 232

Googlenet: Inception

• Multiple filter sizes simultaneously
• Details irrelevant; error  6.7%

– Using only 5 million parameters, thanks to average pooling233

Imagenet

• Resnet: 2015
– Current top-5 error: < 3.5%
– Over 150 layers, with “skip” connections..

234

Resnet details for the curious..

• Last layer before addition must have the same number of filters as
the input to the module

• Batch normalization after each convolution
• SGD + momentum (0.9)
• Learning rate 0.1, divide by 10 (batch norm lets you use larger

learning rate)
• Mini batch 256
• Weight decay 1e-5

235

Densenet

• All convolutional
• Each layer looks at the union of maps from all previous layers

– Instead of just the set of maps from the immediately previous layer

• Was state of the art before I went for coffee one day
– Wasn’t when I got back.. 236

Many many more architectures

• Daily updates on arxiv..

• Many more applications
– CNNs for speech recognition
– CNNs for language processing!
– More on these later..

237

CNN for Automatic
Speech Recognition

• Convolution over frequencies
• Convolution over time

• Neural network with specialized connectivity
structure

• Feed-forward:
- Convolve input
- Non-linearity (rectified linear)
- Pooling (local max)

• Supervised training
• Train convolutional filters by back-propagating error
• Convolution over time

Feature maps

Pooling

Non-linearity

Convolution
(Learned)

Input image

CNN-Recap

